
System Identification Toolbox™
Reference

Lennart Ljung

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Identification Toolbox™ Reference
© COPYRIGHT 1988–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2007 Online only Revised for Version 7.1 (Release 2007b)
March 2008 Online only Revised for Version 7.2 (Release 2008a)
October 2008 Online only Revised for Version 7.2.1 (Release 2008b)
March 2009 Online only Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.3.1 (Release 2009b)
March 2010 Online only Revised for Version 7.4 (Release 2010a)
September 2010 Online only Revised for Version 7.4.1 (Release 2010b)
April 2011 Online only Revised for Version 7.4.2 (Release 2011a)
September 2011 Online only Revised for Version 7.4.3 (Release 2011b)
April 2012 Online only Revised for Version 8.0 (Release 2012a)
September 2012 Online only Revised for Version 8.1 (Release 2012b)
March 2013 Online only Revised for Version 8.2 (Release 2013a)
September 2013 Online only Revised for Version 8.3 (Release 2013b)
March 2014 Online only Revised for Version 9.0 (Release 2014a)
October 2014 Online only Revised for Version 9.1 (Release 2014b)
March 2015 Online only Revised for Version 9.2 (Release 2015a)
September 2015 Online only Revised for Version 9.3 (Release 2015b)
March 2016 Online only Revised for Version 9.4 (Release 2016a)
September 2016 Online only Revised for Version 9.5 (Release 2016b)
March 2017 Online only Revised for Version 9.6 (Release 2017a)
September 2017 Online only Revised for Version 9.7 (Release 2017b)
March 2018 Online only Revised for Version 9.8 (Release 2018a)
September 2018 Online only Revised for Version 9.9 (Release 2018b)
March 2019 Online only Revised for Version 9.10 (Release 2019a)
September 2019 Online only Revised for Version 9.11 (Release 2019b)
March 2020 Online only Revised for Version 9.12 (Release 2020a)
September 2020 Online only Revised for Version 9.13 (Release 2020b)
March 2021 Online only Revised for Version 9.14 (Release 2021a)
September 2021 Online only Revised for Version 9.15 (Release 2021b)
March 2022 Online only Revised for Version 9.16 (Release 2022a)
September 2022 Online only Revised for Version 10.0 (Release 2022b)

Functions
1

Blocks
2

v

Contents

Functions

1

absorbDelay
Replace time delays by poles at z = 0 or phase shift

Syntax
sysnd = absorbDelay(sysd)
[sysnd,G] = absorbDelay(sysd)

Description
sysnd = absorbDelay(sysd) absorbs all time delays of the dynamic system model sysd into the
system dynamics or the frequency response data.

For discrete-time models (other than frequency response data models), a delay of k sampling periods
is replaced by k poles at z = 0. For continuous-time models (other than frequency response data
models), time delays have no exact representation with a finite number of poles and zeros. Therefore,
use pade to compute a rational approximation of the time delay.

For frequency response data models in both continuous and discrete time, absorbDelay absorbs all
time delays into the frequency response data as a phase shift.

[sysnd,G] = absorbDelay(sysd) returns the matrix G that maps the initial states of the ss
model sysd to the initial states of the sysnd.

Examples

Absorb Time Delay into System Dynamics

Create a discrete-time transfer function that has a time delay.

z = tf('z',-1);
sysd = (-0.4*z -0.1)/(z^2 + 1.05*z + 0.08);
sysd.InputDelay = 3

sysd =

 -0.4 z - 0.1
 z^(-3) * -------------------
 z^2 + 1.05 z + 0.08

Sample time: unspecified
Discrete-time transfer function.

The display of sysd represents the InputDelay as a factor of z^(-3), separate from the system
poles that appear in the transfer function denominator.

Absorb the time delay into the system dynamics as poles at z= 0.

sysnd = absorbDelay(sysd)

1 Functions

1-2

sysnd =

 -0.4 z - 0.1

 z^5 + 1.05 z^4 + 0.08 z^3

Sample time: unspecified
Discrete-time transfer function.

The display of sysnd shows that the factor of z^(-3) has been absorbed as additional poles in the
denominator.

Verify that sysnd has no input delay.

sysnd.InputDelay

ans = 0

Convert Leading Structural Zeros of Polynomial Model to Regular Coefficients

Create a discrete-time polynomial model.

m = idpoly(1,[0 0 0 2 3]);

Convert m to a transfer function model.

sys = tf(m)

sys =

 z^(-2) * (2 z^-1 + 3 z^-2)

Sample time: unspecified
Discrete-time transfer function.

The numerator of the transfer function, sys, is [0 2 3] and the transport delay, sys.IODelay, is 2.
This is because the value of the B polynomial, m.B, has 3 leading zeros. The first fixed zero shows
lack of feedthrough in the model. The two zeros after that are treated as input-output delays.

Use absorbDelay to treat the leading zeros as regular B coefficients.

m2 = absorbDelay(m);
sys2 = tf(m2)

sys2 =

 2 z^-3 + 3 z^-4

Sample time: unspecified
Discrete-time transfer function.

The numerator of sys2 is [0 0 0 2 3] and transport delay is 0. The model m2 treats the leading
zeros as regular coefficients by freeing their values. m2.Structure.B.Free(2:3) is TRUE while
m.Structure.B.Free(2:3) is FALSE.

 absorbDelay

1-3

Version History
Introduced in R2012a

See Also
hasdelay | pade | totaldelay

1 Functions

1-4

advice
Analysis and recommendations for data or estimated linear models

Syntax
advice(data)
advice(model,data)

Description
advice(data) displays the following information about the data in the MATLAB® Command
Window:

• What are the excitation levels of the signals and how does this affect the model orders? See also
pexcit.

• Does it make sense to remove constant offsets and linear trends from the data? See also detrend.
• Is there an indication of output feedback in the data? See also feedback.
• Would a nonlinear ARX model perform better than a linear ARX model?

advice(model,data) displays the following information about the estimated linear model in the
MATLAB Command Window:

• Does the model capture essential dynamics of the system and the disturbance characteristics?
• Is the model order higher than necessary?
• Is there potential output feedback in the validation data?

Input Arguments
data

Specify data as an iddata object.

model

Specify model as an idtf, idgrey, idpoly, idproc, or idss model object.

Version History
Introduced before R2006a

See Also
detrend | feedback | iddata | pexcit

 advice

1-5

addMinPhase
Add minimum phase to frequency response magnitude

Syntax
datac = addMinPhase(data)
datac = addMinPhase(data,ts)

Description
datac = addMinPhase(data) adds phase information to the magnitude-only frequency-response
signals stored in data.

Use addMinPhase to generate phase information for any complex vector H(w) for which the
measured magnitude |H| is available but not the phase. addMinPhase assumes that H(w) represents
the frequency response of a minimum-phase stable linear system.

When data is numeric, the sample time is assumed to be one second and the frequency is assumed to
be linspace(0,pi,size(data,1)).

datac = addMinPhase(data,ts) replaces the default sample time with the sample time specified
in ts. Units are in seconds.

Examples

Add Minimum Phase to Frequency Response Data

Load time-domain input-output data and store the frequency response in an idfrd object. Remove
the phase information by taking the absolute value of the response. Plot the response.

load iddata1 z1
m0 = arx(z1,[2 3 0]);
ts = z1.Ts;
w = linspace(0,pi,128)/ts;
response = idfrd(m0,w);
response.ResponseData = abs(response.ResponseData);
bode(response)

1 Functions

1-6

Add the minimum phase information to the response. Plot the response.

responseMinPhase = addMinPhase(response,ts);
bode(responseMinPhase)

 addMinPhase

1-7

Input Arguments
data — Input frequency response signals
matrix of positive real values | idfrd object

Input frequency response signals, specified as one of these values:

• A matrix of positive real values
• An idfrd object containing positive real values in its ResponseData property.

ts — Sample time in seconds
nonnegative real scalar

Sample time of signals, in seconds, specified as a nonnegative real scalar.

Output Arguments
datac — Frequency response signals with minimum phase added
complex matrix | idfrd object

Frequency response signals with minimum phase added, returned as a complex matrix or as an
idfrd object.

1 Functions

1-8

• When data is a matrix, then datac is a complex matrix of the same size as data. If the vector
data(:,i) has all real and nonnegative values, then datac(:,i) is the complex version of
data(:,i) with added phase. Otherwise, datac(:,i) is identical to data(:,i).

• When data is an idfrd object, then datac is also an idfrd object. If the matrix
data.ResponseData(i,j,:) has real and nonnegative values for each input-output pair (i,j),
then datac.ResponseData(i,j,:) is the complex version of that vector with added phase.
Otherwise, datac.ResponseData(i,j,:) is identical to data.ResponseData(i,j,:).

Version History
Introduced in R2022b

See Also
spectrumest

 addMinPhase

1-9

addreg
(Not recommended) Add custom regressors to nonlinear ARX model

Note addreg is not recommended. Add linear, polynomial, and custom regressors directly to the
idnlarx Regressors property instead. For more information, see “Compatibility Considerations”.

Syntax
m = addreg(model,regressors)
m = addreg(model,regressors,output)

Description
m = addreg(model,regressors) adds custom regressors to a nonlinear ARX model by appending
the CustomRegressors model property. model and m are idnalrx objects. For single-output
models, regressors is an object array of regressors you create using customreg or polyreg, or a
cell array of character vectors. For multiple-output models, regressors is 1-by-ny cell array of
customreg objects or 1-by-ny cell array of cell arrays of character vectors. addreg adds each
element of the ny cells to the corresponding model output channel. If regressors is a single
regressor, addreg adds this regressor to all output channels.

m = addreg(model,regressors,output) adds regressors regressors to specific output
channels output of a multiple-output model. output is a scalar integer or vector of integers, where
each integer is the index of a model output channel. Specify several pairs of regressors and
output values to add different regressor variables to the corresponding output channels.

Examples

Add Regressors to a Nonlinear ARX Model

Create nonlinear ARX model with standard regressors.

 m1 = idnlarx([4 2 1],'idWaveletNetwork','nlr',[1:3]);

Create model with additional custom regressors, specified as a cell array of character vectors.

 m2 = addreg(m1,{'y1(t-2)^2';'u1(t)*y1(t-7)'});

List all standard and custom regressors of m2.

 getreg(m2)

ans = 8x1 cell
 {'y1(t-1)' }
 {'y1(t-2)' }
 {'y1(t-3)' }
 {'y1(t-4)' }
 {'u1(t-1)' }
 {'u1(t-2)' }

1 Functions

1-10

 {'y1(t-2)^2' }
 {'u1(t)*y1(t-7)'}

Add Regressors to a Nonlinear ARX Model as customreg Objects

Create nonlinear ARX model with standard regressors.

m1 = idnlarx([4 2 1],'idWaveletNetwork','nlr',[1:3]);

Create customreg objects.

r1 = customreg(@(x)x^2,{'y1'},2)

Custom Regressor:
Expression: y1(t-2)^2
 Function: @(x)x^2
 Arguments: {'y1'}
 Delays: 2
 Vectorized: 0
 TimeVariable: 't'

r2 = customreg(@(x,y)x*y,{'u1','y1'},[0 7])

Custom Regressor:
Expression: u1(t)*y1(t-7)
 Function: @(x,y)x*y
 Arguments: {'u1' 'y1'}
 Delays: [0 7]
 Vectorized: 0
 TimeVariable: 't'

Create a model based on m1 with custom regressors.

m2 = addreg(m1,[r1 r2]);

List all standard and custom regressors of m2.

getreg(m2)

ans = 8x1 cell
 {'y1(t-1)' }
 {'y1(t-2)' }
 {'y1(t-3)' }
 {'y1(t-4)' }
 {'u1(t-1)' }
 {'u1(t-2)' }
 {'y1(t-2)^2' }
 {'u1(t)*y1(t-7)'}

Version History
Introduced in R2007a

 addreg

1-11

addreg is not recommended
Not recommended starting in R2021a

Starting in R2021a, add regressor objects linearRegressor, polynomialRegressor, and
customRegressor directly to the idnlarx model Regressor property by using the syntax
model.Regressors(end+1) = new_regressor_object. There are no plans to remove addreg
at this time.

See Also
idnlarx | getreg | nlarx | customRegressor | polynomialRegressor | linearRegressor

Topics
“Identifying Nonlinear ARX Models”

1 Functions

1-12

aic
Akaike’s Information Criterion for estimated model

Syntax
value = aic(model)
value = aic(model1,...,modeln)
value = aic(___ ,measure)

Description
value = aic(model) returns the normalized “Akaike's Information Criterion (AIC)” on page 1-16
value for the estimated model.

value = aic(model1,...,modeln) returns the normalized AIC values for multiple estimated
models.

value = aic(___ ,measure) specifies the type of AIC.

Examples

Compute Normalized Akaike's Information Criterion of Estimated Model

Estimate a transfer function model.

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

Compute the normalized Akaike's Information Criterion value.

value = aic(sys)

value = 0.5453

The value is also computed during model estimation. Alternatively, use the Report property of the
model to access this value.

sys.Report.Fit.nAIC

ans = 0.5453

Compute Akaike's Information Criterion Metrics of Estimated Model

Estimate a transfer function model.

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

 aic

1-13

Compute the normalized Akaike's Information Criterion (AIC) value. This syntax is equivalent to
aic_raw = aic(sys).

aic_raw = aic(sys,'nAIC')

aic_raw = 0.5453

Compute the raw AIC value.

aic_raw = aic(sys,'aic')

aic_raw = 1.0150e+03

Compute the sample-size corrected AIC value.

aic_c = aic(sys,'AICc')

aic_c = 1.0153e+03

Compute the Bayesian Information Criteria (BIC) value.

bic = aic(sys,'BIC')

bic = 1.0372e+03

These values are also computed during model estimation. Alternatively, use the Report.Fit
property of the model to access these values.

sys.Report.Fit

ans = struct with fields:
 FitPercent: 70.7720
 LossFcn: 1.6575
 MSE: 1.6575
 FPE: 1.7252
 AIC: 1.0150e+03
 AICc: 1.0153e+03
 nAIC: 0.5453
 BIC: 1.0372e+03

Pick Model with Optimal Tradeoff Between Accuracy and Complexity Using AICc Criterion

Estimate multiple Output-Error (OE) models and use the small sample-size corrected Akaike's
Information Criterion (AICc) value to pick the one with optimal tradeoff between accuracy and
complexity.

Load the estimation data.

load iddata2

Specify model orders varying in 1:4 range.

nf = 1:4;
nb = 1:4;
nk = 0:4;

1 Functions

1-14

Estimate OE models with all possible combinations of chosen order ranges.

NN = struc(nf,nb,nk);
models = cell(size(NN,1),1);
for ct = 1:size(NN,1)
 models{ct} = oe(z2, NN(ct,:));
end

Compute the small sample-size corrected AIC values for the models, and return the smallest value.

V = aic(models{:},'AICc');
[Vmin,I] = min(V);

Return the optimal model that has the smallest AICc value.

models{I}

ans =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)
 B(z) = 1.067 z^-2

 F(z) = 1 - 1.824 z^-1 + 1.195 z^-2 - 0.2307 z^-3

Sample time: 0.1 seconds

Parameterization:
 Polynomial orders: nb=1 nf=3 nk=2
 Number of free coefficients: 4
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using OE on time domain data "z2".
Fit to estimation data: 86.53%
FPE: 0.9809, MSE: 0.9615

Input Arguments
model — Identified model
idtf | idgrey | idpoly | idproc | idss | idnlarx, | idnlhw | idnlgrey

Identified model, specified as one of the following model objects:

• idtf
• idgrey
• idpoly
• idproc
• idss
• idnlarx, except nonlinear ARX model that includes a binary-tree or neural network nonlinearity

estimator
• idnlhw
• idnlgrey

 aic

1-15

measure — Type of AIC
'nAIC' (default) | 'aic' | 'AICc' | 'BIC'

Type of AIC, specified as one of the following values:

• 'nAIC' — Normalized AIC
• 'aic' — Raw AIC
• 'AICc' — Small sample-size corrected AIC
• 'BIC' — Bayesian Information Criteria

See “Akaike's Information Criterion (AIC)” on page 1-16 for more information.

Output Arguments
value — Value of quality metric
scalar | vector

Value of the quality measure, returned as a scalar or vector. For multiple models, value is a row
vector where value(k) corresponds to the kth estimated model modelk.

More About
Akaike's Information Criterion (AIC)

Akaike's Information Criterion (AIC) provides a measure of model quality obtained by simulating the
situation where the model is tested on a different data set. After computing several different models,
you can compare them using this criterion. According to Akaike's theory, the most accurate model has
the smallest AIC. If you use the same data set for both model estimation and validation, the fit always
improves as you increase the model order and, therefore, the flexibility of the model structure.

Akaike's Information Criterion (AIC) includes the following quality metrics:

• Raw AIC, defined as:

AIC = N * log det 1
N∑1

N
ε t, θ N ε t, θ N

T + 2np + N * ny * log(2π) + 1

where:

• N is the number of values in the estimation data set
• ε(t) is a ny-by-1 vector of prediction errors
• θN represents the estimated parameters
• np is the number of estimated parameters
• ny is the number of model outputs

• Small sample-size corrected AIC, defined as:

AICc = AIC + 2np *
np + 1

N − np− 1
• Normalized AIC, defined as:

1 Functions

1-16

nAIC = log det 1
N∑1

N
ε t, θ N ε t, θ N

T +
2np
N

• Bayesian Information Criteria, defined as:

BIC = N * log det 1
N∑1

N
ε t, θ N ε t, θ N

T + N * (ny * log(2π) + 1) + np * log(N)

Tips
• The software computes and stores all types of Akaike's Information Criterion metrics during model

estimation. If you want to access these values, see the Report.Fit property of the model.

Version History
Introduced before R2006a

References
[1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR,

1999. See sections about the statistical framework for parameter estimation and maximum
likelihood method and comparing model structures.

See Also
fpe | goodnessOfFit

Topics
“Loss Function and Model Quality Metrics”

 aic

1-17

append
Group models by appending their inputs and outputs

Syntax
sys = append(sys1,sys2,...,sysN)

Description
sys = append(sys1,sys2,...,sysN) appends the inputs and outputs of the models
sys1,...,sysN to form the augmented model sys depicted below.

For systems with transfer functions H1(s), . . . , HN(s), the resulting system sys has the block-diagonal
transfer function

H1(s) 0 … 0
0 H2(s) ⋯ ⋮
⋮ ⋮ ⋱ 0
0 ⋯ 0 HN(s)

For state-space models sys1 and sys2 with data (A1, B1, C1, D1) and (A2, B2, C2, D2),
append(sys1,sys2) produces the following state-space model:

ẋ1

ẋ2
=

A1 0
0 A2

x1
x2

+
B1 0
0 B2

u1
u2

y1
y2

=
C1 0
0 C2

x1
x2

+
D1 0
0 D2

u1
u2

1 Functions

1-18

Arguments
The input arguments sys1,..., sysN can be model objects s of any type. Regular matrices are also
accepted as a representation of static gains, but there should be at least one model in the input list.
The models should be either all continuous, or all discrete with the same sample time. When
appending models of different types, the resulting type is determined by the precedence rules (see
“Rules That Determine Model Type” (Control System Toolbox) for details).

There is no limitation on the number of inputs.

Examples

Append Inputs and Outputs of Models

Create a SISO transfer function.

sys1 = tf(1,[1 0]);
size(sys1)

Transfer function with 1 outputs and 1 inputs.

Create a SISO continuous-time state-space model.

sys2 = ss(1,2,3,4);
size(sys2)

State-space model with 1 outputs, 1 inputs, and 1 states.

Append the inputs and outputs of sys1, a SISO static gain system, and sys2. The resulting model
should be a 3-input, 3-output state-space model.

sys = append(sys1,10,sys2)

sys =

 A =
 x1 x2
 x1 0 0
 x2 0 1

 B =
 u1 u2 u3
 x1 1 0 0
 x2 0 0 2

 C =
 x1 x2
 y1 1 0
 y2 0 0
 y3 0 3

 D =
 u1 u2 u3
 y1 0 0 0
 y2 0 10 0
 y3 0 0 4

 append

1-19

Continuous-time state-space model.

size(sys)

State-space model with 3 outputs, 3 inputs, and 2 states.

Version History
Introduced in R2012a

See Also
connect | feedback | parallel | series

1 Functions

1-20

ar
Estimate parameters when identifying AR model or ARI model for scalar time series

Syntax
sys = ar(y,n)
sys = ar(y,n,approach,window)
sys = ar(y,n, ___ ,Name,Value)
sys = ar(y,n, ___ ,opt)
[sys,refl] = ar(y,n,approach, ___)

Description
sys = ar(y,n) estimates the parameters of an AR on page 1-29 idpoly model sys of order n
using a least-squares method. The model properties include covariances (parameter uncertainties)
and estimation goodness of fit. y can be an output-only iddata object, a numeric vector, or a
timetable.

sys = ar(y,n,approach,window) uses the algorithm specified by approach and the
prewindowing and postwindowing specification in window. To specify window while accepting the
default value for approach, use [] in the third position of the syntax.

sys = ar(y,n, ___ ,Name,Value) specifies additional options using one or more name-value pair
arguments. For instance, using the name-value pair argument 'IntegrateNoise',1 estimates an
ARI on page 1-29 model, which is useful for systems with nonstationary disturbances. Specify
Name,Value after any of the input argument combinations in the previous syntaxes.

sys = ar(y,n, ___ ,opt) specifies estimation options using the option set opt.

[sys,refl] = ar(y,n,approach, ___) returns an AR model along with the reflection
coefficients refl when approach is the lattice-based method 'burg' or 'gl'.

Examples

AR Model

Estimate an AR model and compare its response with the measured output.

Load the data, which contains the time series tt9 with noise.

load sdata9 tt9

Estimate a fourth-order AR model.

sys = ar(tt9,4)

sys =
Discrete-time AR model: A(z)y(t) = e(t)
 A(z) = 1 - 0.8369 z^-1 - 0.4744 z^-2 - 0.06621 z^-3 + 0.4857 z^-4

 ar

1-21

Sample time: 0.0039062 seconds

Parameterization:
 Polynomial orders: na=4
 Number of free coefficients: 4
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using AR ('fb/now') on time domain data "tt9".
Fit to estimation data: 79.38%
FPE: 0.5189, MSE: 0.5108

The output displays the polynomial containing the estimated parameters alongside other estimation
details. Under Status, Fit to estimation data shows that the estimated model has 1-step-
ahead prediction accuracy above 75%.

You can find additional information about the estimation results by exploring the estimation report,
sys.Report. For instance, you can retrieve the parameter covariance.

covar = sys.Report.Parameters.FreeParCovariance

covar = 4×4

 0.0015 -0.0015 -0.0005 0.0007
 -0.0015 0.0027 -0.0008 -0.0004
 -0.0005 -0.0008 0.0028 -0.0015
 0.0007 -0.0004 -0.0015 0.0014

For more information on viewing the estimation report, see “Estimation Report”.

Compare Burg's Method with Forward-Backward Approach

Given a sinusoidal signal with noise, compare the spectral estimates of Burg's method with those
found using the forward-backward approach.

Generate an output signal and convert it into an iddata object.

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);

Estimate fourth-order AR models using Burg's method and using the default forward-backward
approach. Plot the model spectra together.

sys_b = ar(y,4,'burg');
sys_fb = ar(y,4);
spectrum(sys_b,sys_fb)
legend('Burg','Forward-Backward')

1 Functions

1-22

The two responses match closely throughout most of the frequency range.

ARI Model

Estimate an ARI model, which includes an integrator in the noise source.

Load the data, which contains the time series ymat9 with noise. Ts contains the sample time.

load sdata9 ymat9 Ts

Integrate the output signal.

y = cumsum(ymat9);

Estimate an AR model with 'IntegrateNoise' set to true. Use the least-squares method 'ls'.

sys = ar(y,4,'ls','Ts',Ts,'IntegrateNoise',true);

Predict the model output using 5-step prediction and compare the result with the integrated output
signal y.

compare(y,sys,5)

 ar

1-23

Modify Default Options

Modify the default options for the AR function.

Load the data, which contains a time series z9 with noise.

load iddata9 z9

Modify the default options so that the function uses the 'ls' approach and does not estimate
covariance.

opt = arOptions('Approach','ls','EstimateCovariance',false)

opt =
Option set for the ar command:

 Approach: 'ls'
 Window: 'now'
 DataOffset: 0
 EstimateCovariance: 0
 MaxSize: 250000

Description of options

Estimate a fourth-order AR model using the updated options.

1 Functions

1-24

sys = ar(z9,4,opt);

Retrieve Reflection Coefficients for Burg's Method

Retrieve reflection coefficients and loss functions when using Burg's method.

Lattice-based approaches such, as Burg's method 'burg' and geometric lattice 'gl', compute
reflection coefficients and corresponding loss function values as part of the estimation process. Use a
second output argument to retrieve these values.

Generate an output signal and convert it into an iddata object.

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);

Estimate a fourth-order AR model using Burg's method and include an output argument for the
reflection coefficients.

[sys,refl] = ar(y,4,'burg');
refl

refl = 2×5

 0 -0.3562 0.4430 0.5528 0.2385
 0.8494 0.7416 0.5960 0.4139 0.3904

Input Arguments
y — Time-series data
iddata object | numeric vector | timetable

Time-series data, specified as one of the following:

• An iddata object that contains a single output channel and an empty input channel.
• A numeric column vector containing output-channel data. When you specify y as a vector, you

must also specify the sample time Ts.
• A single-variable timetable.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

n — Model order
positive integer

Model order, specified as a positive integer. The value of n determines the number of A parameters in
the AR model.
Example: ar(idy,2) computes a second-order AR model from the single-channel iddata object idy

approach — Algorithm for computing AR model
'fb' (default) | 'burg' | 'gl' | 'ls' | 'yw'

 ar

1-25

Algorithm for computing the AR model, specified as one of the following values:

• 'burg': Burg's lattice-based method. Solves the lattice filter equations using the harmonic mean
of forward and backward squared prediction errors.

• 'fb': (Default) Forward-backward approach. Minimizes the sum of a least-squares criterion for a
forward model, and the analogous criterion for a time-reversed model.

• 'gl': Geometric lattice approach. Similar to Burg's method, but uses the geometric mean instead
of the harmonic mean during minimization.

• 'ls': Least-squares approach. Minimizes the standard sum of squared forward-prediction errors.
• 'yw': Yule-Walker approach. Solves the Yule-Walker equations, formed from sample covariances.

All of these algorithms are variants of the least-squares method. For more information, see
“Algorithms” on page 1-30 .
Example: ar(idy,2,'ls') computes an AR model using the least-squares approach

window — Prewindowing and postwindowing
'now' | 'pow' | 'ppw' | 'prw

Prewindowing and postwindowing outside the measured time interval (past and future values),
specified as one of the following values:

• 'now': No windowing. This value is the default except when you set approach to 'yw'. Only
measured data is used to form regression vectors. The summation in the criteria starts at the
sample index equal to n+1.

• 'pow': Postwindowing. Missing end values are replaced with zeros and the summation is
extended to time N+n (N is the number of observations).

• 'ppw': Prewindowing and postwindowing. The software uses this value whenever you select the
Yule-Walker approach 'yw', regardless of your window specification.

• 'prw': Prewindowing. Missing past values are replaced with zeros so that the summation in the
criteria can start at time equal to zero.

Example: ar(idy,2,'yw','ppw') computes an AR model using the Yule-Walker approach with
prewindowing and postwindowing.

opt — Estimation options
arOptions option set

Estimation options for AR model identification, specified as an arOptions option set. opt specifies
the following options:

• Estimation approach
• Data windowing technique
• Data offset
• Maximum number of elements in a segment of data

For more information, see arOptions. For an example, see “Modify Default Options” on page 1-24.

1 Functions

1-26

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IntegrateNoise',true adds an integrator in the noise source

OutputName — Output signal names
" " (default) | character vector | string

Output channel names for timetable data, specified as a string or a character vector. By default, the
software interprets the last variable in tt as the sole output channel. When you want to select a
different timetable variable for the output channel, use 'OutputName' to identify it. For example,
sys = ar(tt,__,'OutputName',"y3") selects the variable y3 as the output channel for the
estimation.

Ts — Sample time
1 (default) | positive scalar

Sample time, specified as the comma-separated pair consisting of 'Ts' and the sample time in
seconds. If y is a numeric vector, then you must specify 'Ts'.
Example: ar(y_signal,2,'Ts',0.08) computes a second-order AR model with sample time of
0.08 seconds

IntegrateNoise — Add integrator to noise channel
false (default) | logical vector

Noise-channel integration option for estimating ARI on page 1-29 models, specified as the comma-
separated pair consisting of 'IntegrateNoise' and a logical. Noise integration is useful in cases
where the disturbance is nonstationary.

When using 'IntegrateNoise', you must also integrate the output-channel data. For an example,
see “ARI Model” on page 1-23.

Output Arguments
sys — AR or ARI model
idpoly model object

AR on page 1-29 or ARI on page 1-29 model that fits the given estimation data, returned as a
discrete-time idpoly model object. This model is created using the specified model orders, delays,
and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

 ar

1-27

Report
Field

Description

Method Estimation command used.
Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function

and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See arOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

1 Functions

1-28

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

refl — Reflection coefficients and loss functions
array

Reflection coefficients and loss functions, returned as a 2-by-2 array. For the two lattice-based
approaches 'burg' and 'gl', refl stores the reflection coefficients in the first row and the
corresponding loss function values in the second row. The first column of refl is the zeroth-order
model, and the (2,1) element of refl is the norm of the time series itself. For an example, see
“Retrieve Reflection Coefficients for Burg's Method” on page 1-25.

More About
AR (Autoregressive) Model

The AR model structure has no input, and is given by the following equation:

A(q)y(t) = e(t)

This model structure accommodates estimation for scalar time-series data, which have no input
channel. The structure is a special case of the ARX structure.

ARI (Autoregressive Integrated) Model

The ARI model is an AR model with an integrator in the noise channel. The ARI model structure is
given by the following equation:

 ar

1-29

A(q)y(t) = 1
1− q−1e(t)

Algorithms
AR and ARI model parameters are estimated using variants of the least-squares method. The
following table summarizes the common names for methods with a specific combination of approach
and window argument values.

Method Approach and Windowing
Modified covariance method (Default) Forward-backward approach with no

windowing
Correlation method Yule-Walker approach with prewindowing and

postwindowing
Covariance method Least squares approach with no windowing. arx

uses this routine

Version History
Introduced in R2006a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

References
[1] Marple, S. L., Jr. Chapter 8. Digital Spectral Analysis with Applications. Englewood Cliffs, NJ:

Prentice Hall, 1987.

See Also
arOptions | idpoly | arx | etfe | ivar | pem | spa | forecast | iddata | spectrum

Topics
“What Are Time Series Models?”
“Representing Data in MATLAB Workspace”
“Identify Time Series Models at the Command Line”

1 Functions

1-30

armax
Estimate parameters of ARMAX, ARIMAX, ARMA, or ARIMA model using time-domain data

Syntax
sys = armax(tt,[na nb nc nk])
sys = armax(u,y,[na nb nc nk])
sys = armax(data,[na nb nc nk])
sys = armax(___ ,Name,Value)

sys = armax(tt,init_sys)
sys = armax(u,y,init_sys)
sys = armax(data,init_sys)

sys = armax(___ ,opt)

[sys,ic] = armax(___)

Description
Estimate ARMAX or ARMA Model

sys = armax(tt,[na nb nc nk]) estimates the parameters of an ARMAX on page 1-46 or an
ARMA on page 1-47 idpoly model sys using the data contained in the variables of timetable tt.
The software uses the first Nu variables as inputs and the next Ny variables as outputs, where Nu and
Ny are determined from the dimensions of nb and na, respectively.

For ARMA models, which have no input signals, use sys = armax(tt,na). In this case, the
software fits the model using the first Ny variables.

armax performs the estimation using the prediction-error method and the polynomial orders
specified in [na nb nc nk]. The model properties include estimation covariances (parameter
uncertainties) and goodness of fit between the estimated and the measured data.

To select specific input and output channels from tt, use name-value syntax to set 'InputName' and
'OutputName' to the corresponding timetable variable names.

sys = armax(u,y,[na nb nc nk]) uses the time-domain input and output signals in the comma-
separated matrices u,y. The software assumes that the data sample time is 1 second. To change the
sample time, set Ts using name-value syntax..

sys = armax(data,[na nb nc nk]) uses the time-domain data in the iddata object data. Use
this syntax especially when you want to take advantage of the additional information, such as data
sample time or experiment labeling, that data objects provide.

sys = armax(___ ,Name,Value) specifies additional options using one or more name-value
arguments. For instance, using the name-value argument 'IntegrateNoise',1 estimates an
ARIMAX on page 1-47 or ARIMA on page 1-47 model, which is useful for systems with
nonstationary disturbances. Specify Name,Value after any of the previous input-argument
combinations.

 armax

1-31

Configure Initial Parameters

sys = armax(tt,init_sys) uses the discrete-time linear system init_sys to configure the
initial parameterization of sys for estimation using the timetable tt.

sys = armax(u,y,init_sys) uses the matrix data u,y for estimation.

sys = armax(data,init_sys) uses the data object data for estimation.

Specify Additional Estimation Options

sys = armax(___ ,opt) incorporates an option set opt that specifies options such as handling of
initial conditions, regularization, and numerical search method to use for estimation.

Return Estimated Initial Conditions

[sys,ic] = armax(___) returns the estimated initial conditions as an initialCondition
object. Use this syntax if you plan to simulate or predict the model response using the same
estimation input data and then compare the response with the same estimation output data.
Incorporating the initial conditions yields a better match during the first part of the simulation.

Examples

Estimate ARMAX Model

Estimate an ARMAX model and view the fit of the model output to the estimation data.

Load the measurement data in iddata object z2.

load iddata2 z2

Estimate an ARMAX model with second-order A,B, and C polynomials and a transport delay of one
sample period.

na = 2;
nb = 2;
nc = 2;
nk = 1;
sys = armax(z2,[na nb nc nk])

sys =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
 A(z) = 1 - 1.512 z^-1 + 0.7006 z^-2

 B(z) = -0.2606 z^-1 + 1.664 z^-2

 C(z) = 1 - 1.604 z^-1 + 0.7504 z^-2

Sample time: 0.1 seconds

Parameterization:
 Polynomial orders: na=2 nb=2 nc=2 nk=1
 Number of free coefficients: 6
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

1 Functions

1-32

Estimated using ARMAX on time domain data "z2".
Fit to estimation data: 85.89% (prediction focus)
FPE: 1.086, MSE: 1.054

The output displays the polynomial containing the estimated parameters alongside the estimation
details. Under Status, Fit to estimation data shows that the estimated model has 1-step-
ahead prediction accuracy above 80%.

Compare the model simulated output to the measured data.

compare(z2,sys)

The fit of the simulated model to the measured data is nearly the same as the estimation fit.

ARMA Model

Estimate an ARMA model and compare its response with both the measured output and an AR model.

Load the data, which contains the time series z9 with noise.

load iddata9 z9

Estimate a fourth-order ARMA model with a first-order C polynomial.

 armax

1-33

na = 4;
nc = 1;
sys = armax(z9,[na nc]);

Estimate a fourth-order AR model.

sys_ar = ar(z9,na);

Compare the model outputs with the measured data.

compare(z9,sys,sys_ar)

The ARMA model has the better fit to the data.

Specify Estimation Options

Estimate an ARMAX model from measured data and specify estimation options.

Load the data and create an iddata object. Initialize option set opt, and set options for Focus,
SearchMethod, MaxIterations, and Display. Then estimate the ARMAX model using the updated
option set.

load twotankdata;
z = iddata(y,u,0.2);
opt = armaxOptions;

1 Functions

1-34

opt.Focus = 'simulation';
opt.SearchMethod = 'lm';
opt.SearchOptions.MaxIterations = 10;
opt.Display = 'on';
sys = armax(z,[2 2 2 1],opt);

The termination conditions for measured component of the model shown in the progress viewer is
that the maximum number of iterations were reached.

To improve results, re-estimate the model using a greater value for MaxIterations, or continue
iterations on the previously estimated model as follows:

sys2 = armax(z,sys);
compare(z,sys,sys2)

where sys2 refines the parameters of sys to improve the fit to data.

ARMAX Model with Regularization

Estimate a regularized ARMAX model by converting a regularized ARX model.

Load data.

load regularizationExampleData.mat m0simdata;

 armax

1-35

Estimate an unregularized ARMAX model of order 30.

m1 = armax(m0simdata(1:150),[30 30 30 1]);

Estimate a regularized ARMAX model by determining the Lambda value by trial and error.

opt = armaxOptions;
opt.Regularization.Lambda = 1;
m2 = armax(m0simdata(1:150),[30 30 30 1],opt);

Obtain a lower order ARMAX model by converting a regularized ARX model and then performing
order reduction.

opt1 = arxOptions;
[L,R] = arxRegul(m0simdata(1:150),[30 30 1]);
opt1.Regularization.Lambda = L;
opt1.Regularization.R = R;
m0 = arx(m0simdata(1:150),[30 30 1],opt1);
mr = idpoly(balred(idss(m0),7));

Compare the model outputs against the data.

opt2 = compareOptions('InitialCondition','z');
compare(m0simdata(150:end),m1,m2,mr,opt2);

1 Functions

1-36

ARIMA Model

Estimate a fourth-order ARIMA model for univariate time-series data.

Load data that contains a time series with noise.

load iddata9 z9;

Integrate the output signal and use the result to replace the original output signal in z9.

z9.y = cumsum(z9.y);

Estimate a fourth-order ARIMA model with a first-orderCpolynomial by setting 'IntegrateNoise' to
true.

model = armax(z9,[4 1],'IntegrateNoise',true);

Predict the model output using 10-step ahead prediction, and compare the predicted output with the
estimation data.

compare(z9,model,10)

Estimate ARMAX Models Iteratively

Estimate ARMAX models of varying orders iteratively from measured data.

 armax

1-37

Load dryer2 data and perform estimation for combinations of polynomial orders na, nb, nc, and
input delay nk.

load dryer2;
z = iddata(y2,u2,0.08,'Tstart',0);
na = 2:4;
nc = 1:2;
nk = 0:2;
models = cell(1,18);
ct = 1;
for i = 1:3
 na_ = na(i);
 nb_ = na_;
 for j = 1:2
 nc_ = nc(j);
 for k = 1:3
 nk_ = nk(k);
 models{ct} = armax(z,[na_ nb_ nc_ nk_]);
 ct = ct+1;
 end
 end
end

Stack the estimated models and compare their simulated responses to the estimation data z.

models = stack(1,models{:});
compare(z,models)

1 Functions

1-38

Initialize ARMAX Model Parameters Using State-Space Model

Load the estimation data.

load iddata2 z2

Estimate a state-space model of order 3 from the estimation data.

sys0 = n4sid(z2,3);

Estimate an ARMAX model using the previously estimated state-space model to initialize the
parameters.

sys = armax(z2,sys0);

Obtain Initial Conditions

Load the data.

load iddata1ic z1i

Estimate a second-order ARMAX model sys and return the initial conditions in ic.

na = 2;
nb = 2;
nc = 2;
nk = 1;
[sys,ic] = armax(z1i,[na nb nc nk]);
ic

ic =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [0 1]
 Ts: 0.1000

ic is an initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z1i output signal.

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables.

Estimation data, specified as a timetable that uses a regularly spaced time vector. tt contains
variables representing input and output channels. For multiexperiment data, tt is a cell array of
timetables of length Ne, where Ne is the number of experiments

 armax

1-39

The software determines the number of input and output channels to use for estimation from the
dimensions of the specified polynomial orders. The input/output channel selection depends on
whether the 'InputName' and 'OutputName' name-value arguments are specified.

• If 'InputName' and 'OutputName' are not specified, then the software uses the first Nu
variables of tt as inputs and the next Ny variables of tt as outputs.

• If 'InputName' and 'OutputName' are specified, then the software uses the specified variables.
The number of specified input and output names must be consistent with Nu and Ny.

• For functions that can estimate a time series model, where there are no inputs, 'InputName'
does not need to be specified.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

For time series data, which contains only outputs and no inputs, specify y only.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Time-domain estimation data
iddata object

Time-domain estimation data, specified as an iddata object. For ARMA and ARIMA time-series
models, the input channel in data must be empty. For examples, see “ARMA Model” on page 1-33 and
“ARIMA Model” on page 1-36.

[na nb nc nk] — Polynomial orders
integer row vector | row vector of integer matrices | scalar

Polynomial orders and delays for the model, specified as a 1-by-4 vector or vector of matrices [na nb
nc nk]. The polynomial order is equal to the number of coefficients to estimate in that polynomial.

For an ARMA or ARIMA time-series model, which has no input, set [na nb nc nk] to [na nc]. For
an example, see “ARMA Model” on page 1-33.

For a model with Ny outputs and Nu inputs:

• na is the order of the polynomial A(q), specified as an Ny-by-Ny matrix of nonnegative integers.

1 Functions

1-40

• nb is the order of the polynomial B(q) + 1, specified as an Ny-by-Nu matrix of nonnegative
integers.

• nc is the order of the polynomial C(q), specified as a column vector of nonnegative integers of
length Ny.

• nk is the input-output delay, also known at the transport delay, specified as an Ny-by-Nu matrix of
nonnegative integers. nk is represented in ARMAX models by fixed leading zeros of the B
polynomial.

For an example, see “Estimate ARMAX Model” on page 1-32.

init_sys — System for configuring initial parameterization
discrete-time linear model

System for configuring the initial parameterization of sys, specified as a discrete-time linear model.
You obtain init_sys by either performing an estimation using measured data or by direct
construction using commands such as idpoly and idss.

If init_sys is an ARMAX model, armax uses the parameter values of init_sys as the initial guess
for estimation. To configure initial guesses and constraints for A(q), B(q), and C(q), use the
Structure property of init_sys. For example:

• To specify an initial guess for the A(q) term of init_sys, set init_sys.Structure.A.Value as
the initial guess.

• To specify constraints for the B(q) term of init_sys:

• Set init_sys.Structure.B.Minimum to the minimum B(q) coefficient values.
• Set init_sys.Structure.B.Maximum to the maximum B(q) coefficient values.
• Set init_sys.Structure.B.Free to indicate which B(q) coefficients are free for estimation.

If init_sys is not a polynomial model with the ARMAX structure, the software first converts
init_sys to an ARMAX model. armax uses the parameters of the resulting model as the initial guess
for estimating sys.

If opt is not specified and init_sys was obtained by estimation, then the estimation options from
init_sys.Report.OptionsUsed are used.

For an example, see “Initialize ARMAX Model Parameters Using State-Space Model” on page 1-39.

opt — Estimation options
armaxOptions option set

Estimation options for ARMAX model identification, specified as an armaxOptions option set.
Options specified by opt include the following:

• Initial condition handling — Use this option to determine how the initial conditions are set or
estimated.

• Input and output data offsets — Use these options to remove offsets from data during estimation.
• Regularization — Use this option to control the tradeoff between bias and variance errors during

the estimation process.

 armax

1-41

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'InputDelay',2 applies an input delay of two sample periods to all input channels

Ts — Sample time
1 (default) | positive scalar

Sample time, specified as the comma-separated pair consisting of 'Ts' and the sample time in
seconds. When you use matrix-based data (u,y), you must specify 'Ts' if you require a sample time
other than the assumed sample time of 1 second.

To obtain the data sample time for a timetable tt, use the timetable property
tt.Properties.Timestep.
Example: armax(umat1,ymat1,___,'Ts',0.08) computes a model with sample time of 0.08
seconds.

InputDelay — Input delays
0 (default) | integer scalar | positive integer vector

Input delays expressed as integer multiples of the sample time, specified as the comma-separated
pair consisting of 'InputDelay' and one of the following:

• Nu-by-1 vector, where Nu is the number of inputs — Each entry is a numerical value representing
the input delay for the corresponding input channel.

• Scalar value — Apply the same delay to all input channels.
• 0 — No input delays.

Example: armax(data,[2 1 1 0],'InputDelay',1) estimates a second-order ARX model with
first-order B and C polynomials that has an input delay of two samples.

IODelay — Transport delays
0 (default) | scalar | matrix

Transport delays for each input-output pair, expressed as integer multiples of the sample time, and
specified as the comma-separated pair consisting of 'IODelay' and one of the following:

• Ny-by-Nu matrix, where Ny is the number of outputs and Nu is the number of inputs — Each entry
is an integer value representing the transport delay for the corresponding input-output pair.

• Scalar value — Apply the same delay to all input-output pairs.

'IODelay' is useful as a replacement for the nk order. You can factor out max(nk-1,0) lags as the
'IODelay' value. For nk > 1, armax(na,nb,nk) is equivalent to
armax(na,nb,1,'IODelay',nk-1).

IntegrateNoise — Addition of integrators in noise channel
false (default) | logical vector

1 Functions

1-42

Addition of integrators in the noise channel, specified as the comma-separated pair consisting of
'IntegrateNoise' and a logical vector of length Ny, where Ny is the number of outputs.

Setting 'IntegrateNoise' to true for a particular output results in the model

A(q)y(t) = B(q)u(t − nk) + C(q)
1− q−1e(t)

where 1
1− q−1 is the integrator in the noise channel, e(t).

Use 'IntegrateNoise' to create ARIMA or ARIMAX models.

For an example, see “ARIMA Model” on page 1-36.

Output Arguments
sys — ARMAX model
idpoly object

ARMAX model that fits the given estimation data, returned as a discrete-time idpoly object. This
model is created using the specified model orders, delays, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent estimation

parameters.
• 'backcast' — The initial conditions were estimated using the best least squares
fit.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option set is 'auto'.

 armax

1-43

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See armaxOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

1 Functions

1-44

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information on using Report, see “Estimation Report”.

 armax

1-45

ic — Initial conditions
initialCondition object | object array of initialCondition values

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

• For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x0).

• For a multiple-experiment data set with Ne experiments, ic is an object array of length Ne that
contains one set of initialCondition values for each experiment.

If armax returns ic values of 0 and the you know that you have non-zero initial conditions, set the
'InitialCondition' option in armaxOptions to 'estimate' and pass the updated option set to
armax. For example:

opt = armaxOptions('InitialCondition','estimate')
[sys,ic] = armax(data,np,nz,opt)

The default 'auto' setting of 'InitialCondition' uses the 'zero' method when the initial
conditions have a negligible effect on the overall estimation-error minimization process. Specifying
'estimate' ensures that the software estimates values for ic.

For more information, see initialCondition. For an example of using this argument, see “Obtain
Initial Conditions” on page 1-39.

More About
ARMAX Model

The ARMAX (Autoregressive Moving Average with Extra Input) model structure is:

y(t) + a1y(t − 1) + … + anay(t − na) =

 b1u(t − nk) + … + bnbu(t − nk− nb + 1) +

 c1e(t − 1) + … + cnce(t − nc) + e(t)

A more compact way to write the difference equation is

A(q)y(t) = B(q)u(t − nk) + C(q)e(t)

where

• y(t) — Output at time t
• na — Number of poles
• nb — Number of zeroes plus 1
• nc — Number of C coefficients
• nk — Number of input samples that occur before the input affects the output, also called the dead

time in the system
• y(t − 1)…y(t − na) — Previous outputs on which the current output depends
• u(t − nk)…u(t − nk− nb + 1) — Previous and delayed inputs on which the current output depends

1 Functions

1-46

• e(t − 1)…e(t − nc) — White-noise disturbance value

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is the delay. q is the delay
operator. Specifically,

A(q) = 1 + a1q−1 + … + anaq−na

B(q) = b1 + b2q−1 + … + bnbq−nb + 1

C(q) = 1 + c1q−1 + … + cncq
−nc

ARMA Time-Series Model

The ARMA (Autoregressive Moving Average) model is a special case of an “ARMAX Model” on page 1-
46 with no input channels. The ARMA single-output model structure is given by the following
equation:

A(q)y(t) = C(q)e(t)

ARIMAX Model

The ARIMAX (Autoregressive Integrated Moving Average with Extra Input) model structure is similar
to the ARMAX model, except that it contains an integrator in the noise source e(t):

A(q)y(t) = B(q)u(t − nk) + C(q)
(1− q−1)

e(t)

ARIMA Model

The ARIMA (Autoregressive Integrated Moving Average) model structure is a reduction of the
ARIMAX model with no inputs:

A(q)y(t) = C(q)
(1− q−1)

e(t)

Algorithms
An iterative search algorithm minimizes a robustified quadratic prediction error criterion. The
iterations are terminated when any of the following is true:

• Maximum number of iterations is reached.
• Expected improvement is less than the specified tolerance.
• Lower value of the criterion cannot be found.

You can get information about the stopping criteria using sys.Report.Termination.

Use the armaxOptions option set to create and configure options affecting the estimation results. In
particular, set the search algorithm attributes, such as MaxIterations and Tolerance, using the
'SearchOptions' property.

When you do not specify initial parameter values for the iterative search as an initial model, they are
constructed in a special four-stage LS-IV algorithm.

 armax

1-47

The cutoff value for the robustification is based on the Advanced.ErrorThreshold estimation
option and on the estimated standard deviation of the residuals from the initial parameter estimate.
The cutoff value is not recalculated during the minimization. By default, no robustification is
performed; the default value of ErrorThreshold option is 0.

To ensure that only models corresponding to stable predictors are tested, the algorithm performs a
stability test of the predictor. Generally, both C(q) and F(q) (if applicable) must have all zeros inside
the unit circle.

Minimization information is displayed on the screen when the estimation option 'Display' is 'On'
or 'Full'. When 'Display' is 'Full', both the current and the previous parameter estimates are
displayed in column-vector form, and the parameters are listed in alphabetical order. Also, the values
of the criterion function (cost) are given and the Gauss-Newton vector and its norm are displayed.
When 'Display' is 'On', only the criterion values are displayed.

Alternatives
armax does not support continuous-time model estimation. Use tfest to estimate a continuous-time
transfer function model, or ssest to estimate a continuous-time state-space model.

armax supports only time-domain data. For frequency-domain data, use oe to estimate an Output-
Error (OE) model.

Version History
Introduced in R2006a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox™.

References
[1] Ljung, L. System Identification: Theory for the User, Second Edition. Upper Saddle River, NJ:

Prentice-Hall PTR, 1999. See chapter about computing the estimate.

See Also
armaxOptions | arx | bj | oe | polyest | ssest | tfest | idpoly | iddata | compare | aic | fpe

Topics
“What Are Polynomial Models?”

1 Functions

1-48

“What Are Time Series Models?”
“Estimate Models Using armax”
“Estimation Report”
“Loss Function and Model Quality Metrics”
“Regularized Estimates of Model Parameters”
“Apply Initial Conditions When Simulating Identified Linear Models”

 armax

1-49

armaxOptions
Option set for armax

Syntax
opt = armaxOptions
opt = armaxOptions(Name,Value)

Description
opt = armaxOptions creates the default options set for armax.

opt = armaxOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate' | 'backcast'

Handling of initial conditions during estimation, specified as one of the following values:

• 'zero' — The initial conditions are set to zero.
• 'estimate' — The initial conditions are treated as independent estimation parameters.
• 'backcast' — The initial conditions are estimated using the best least squares fit.
• 'auto' — The software chooses the method to handle initial conditions based on the estimation

data.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

1 Functions

1-50

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh], where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

This option is not available for multi-output models with a non-diagonal A polynomial array.
Data Types: logical

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

 armaxOptions

1-51

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as a structure with the fields in the
following table. For more information on regularization, see “Regularized Estimates of Model
Parameters”.

Field Name Description Default
Lambda Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the
estimation cost.

The default value of 0 implies no regularization.

0

1 Functions

1-52

Field Name Description Default
R Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-
definite matrix. The length must be equal to the number of free
parameters of the model.

For black-box models, using the default value is recommended. For
structured and grey-box models, you can also specify a vector of np
positive numbers such that each entry denotes the confidence in the
value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where
npfree is the number of free parameters.

1

Nominal The nominal value towards which the free parameters are pulled
during estimation.

The default value of 0 implies that the parameter values are pulled
towards zero. If you are refining a model, you can set the value to
'model' to pull the parameters towards the parameter values of the
initial model. The initial parameter values must be finite for this
setting to work.

0

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

 armaxOptions

1-53

SearchMethod Description
'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

1 Functions

1-54

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

 armaxOptions

1-55

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

1 Functions

1-56

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

 armaxOptions

1-57

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

1 Functions

1-58

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight
in the loss function. The standard deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors and divided by 0.7. For more information on
robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic loss function.
When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For
time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
• MaxSize — Specifies the maximum number of elements in a segment when input-output data is

split into segments.

MaxSize must be a positive integer.

Default: 250000
• StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

• s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0
• z — Specifies the maximum distance of all poles from the origin to test stability of discrete-

time models. A model is considered stable if all poles are within the distance z from the origin.

 armaxOptions

1-59

Default: 1+sqrt(eps)
• AutoInitThreshold — Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

yp, z − ymeas
yp, e− ymeas

> AutoInitThreshold

• ymeas is the measured output.
• yp,z is the predicted output of a model estimated using zero initial conditions.
• yp,e is the predicted output of a model estimated using estimated initial conditions.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output Arguments
opt — Options set for armax
armaxOptions option set

Option set for armax, returned as an armaxOptions option set.

Examples

Create Default Options Set for ARMAX Estimation

opt = armaxOptions;

Specify Options for ARMAX Estimation

Create an option set for armax to use the 'simulation' Focus and to set the Display to 'on'.

opt = armaxOptions('Focus','simulation','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = armaxOptions;
opt.Focus = 'simulation';
opt.Display = 'on';

Version History
Introduced in R2012a

Renaming of Estimation and Analysis Options

1 Functions

1-60

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References

[1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates”. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3–8,
2005. Oxford, UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

See Also
armax | idfilt

Topics
“Loss Function and Model Quality Metrics”

 armaxOptions

1-61

arOptions
Option set for ar

Syntax
opt = arOptions
opt = arOptions(Name,Value)

Description
opt = arOptions creates the default options set for ar.

opt = arOptions(Name,Value) creates an option set with the options specified by one or more
Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Approach

Technique used for AR model estimation.

Approach is specified as one of the following values:

• 'fb' — Forward-backward approach.
• 'ls' — Least-squares method.
• 'yw' — Yule-Walker approach.
• 'burg' — Burg’s method.
• 'gl' — Geometric lattice method.

Default: 'fb'

Window

Data windowing technique.

Window determines how the data outside the measured time interval (past and future values) is
handled.

Window is specified as one of the following values:

• 'now' — No windowing.

1 Functions

1-62

• 'prw' — Pre-windowing.
• 'pow' — Post-windowing.
• 'ppw' — Pre- and post-windowing.

This option is ignored when you use the Yule-Walker approach.

Default: 'now'

DataOffset

Data offset level that is removed before estimation of parameters.

Specify DataOffset as a double scalar. For multiexperiment data, specify DataOffset as a vector
of length Ne, where Ne is the number of experiments. Each entry of the vector is subtracted from the
corresponding data.

Default: [] (no offsets)

MaxSize

Specifies the maximum number of elements in a segment when input/output data is split into
segments.

If larger matrices are needed, the software uses loops for calculations. Use this option to manage the
trade-off between memory management and program execution speed. The original data matrix must
be smaller than the matrix specified by MaxSize.

MaxSize must be a positive integer.

Default: 250000

Output Arguments
opt

Option set containing the specified options for ar.

Examples

Create Default Options Set for AR Estimation

opt = arOptions;

Specify Options for AR Estimation

Create an options set for ar using the least squares algorithm for estimation. Set Window to 'ppw'.

opt = arOptions('Approach','ls','Window','ppw');

Alternatively, use dot notation to set the values of opt.

 arOptions

1-63

opt = arOptions;
opt.Approach = 'ls';
opt.Window = 'ppw';

Version History
Introduced in R2012a

See Also
ar

1 Functions

1-64

arx
Estimate parameters of ARX, ARIX, AR, or ARI model

Syntax
sys = arx(tt,[na nb nk])
sys = arx(u,y,[na nb nk])
sys = arx(data,[na nb nk])

sys = arx(___ ,Name,Value)
sys = arx(___ ,opt)

[sys,ic] = arx(___)

Description
Estimate AR or ARX Model

sys = arx(tt,[na nb nk]) estimates the parameters of an ARX on page 1-74 or an AR on page
1-75 idpoly model sys using the data contained in the variables of timetable tt. The software uses
the first Nu variables as inputs and the next Ny variables as outputs, where Nu and Ny are
determined from the dimensions of nb and na, respectively.

For AR models, which have no input signals, use sys = arx(tt,na). In this case, the software fits
the model using the first Ny variables.

arx performs the estimation using a least-squares method and the polynomial orders specified in [na
nb nk]. The model properties include covariances (parameter uncertainties) and goodness of fit
between the estimated and measured data.

To select specific input and output channels from tt, use name-value syntax to set 'InputName' and
'OutputName' to the corresponding timetable variable names.

sys = arx(u,y,[na nb nk]) uses the time-domain input and output signals in the comma-
separated matrices u,y. The software assumes that the data sample time is 1 second. To change the
sample time, set Ts using name-value syntax.

sys = arx(data,[na nb nk]) uses the time-domain or frequency-domain data in the data object
data. Use this syntax especially when you want to estimate a model using frequency-domain or
frequency-response data, or when you want to take advantage of the additional information, such as
data sample time or experiment labeling, that data objects provide.

Specify Additional Options

sys = arx(___ ,Name,Value) specifies additional options using one or more name-value pair
arguments. For instance, using the name-value pair argument 'IntegrateNoise',1 estimates an
ARIX on page 1-75 or ARI on page 1-75 structure model, which is useful for systems with
nonstationary disturbances. You can use this syntax with any of the previous input-argument
combinations.

sys = arx(___ ,opt) specifies estimation options using the option set opt.

 arx

1-65

Return Estimated Initial Conditions

[sys,ic] = arx(___) returns the estimated initial conditions as an initialCondition object.
Use this syntax if you plan to simulate or predict the model response using the same estimation input
data and then compare the response with the same estimation output data. Incorporating the initial
conditions yields a better match during the first part of the simulation.

Examples

ARX Model

Generate output data based on a specified ARX model and use the output data to estimate the model.

Specify a polynomial model sys0 with the ARX structure. The model includes an input delay of one
sample, expressed as a leading zero in the B polynomial.

A = [1 -1.5 0.7];
B = [0 1 0.5];
sys0 = idpoly(A,B);

Generate a measured input signal u that contains random binary noise and an error signal e that
contains normally distributed noise. With these signals, simulate the measured output signal y of
sys0.

u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(sys0,[u e]);

Combine y and u into a single iddata object z. Estimate a new ARX model using z and the same
polynomial orders and input delay as the original model.

z = [y,u];
sys = arx(z,[2 2 1])

sys =
Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)
 A(z) = 1 - 1.524 z^-1 + 0.7134 z^-2

 B(z) = z^-1 + 0.4748 z^-2

Sample time: 1 seconds

Parameterization:
 Polynomial orders: na=2 nb=2 nk=1
 Number of free coefficients: 4
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using ARX on time domain data "sys0".
Fit to estimation data: 81.36% (prediction focus)
FPE: 1.025, MSE: 0.9846

The output displays the polynomial containing the estimated parameters alongside other estimation
details. Under Status, Fit to estimation data shows that the estimated model has 1-step-
ahead prediction accuracy above 80%.

1 Functions

1-66

AR Model

Estimate a time-series AR model using the arx function. An AR model has no measured input.

Load the data, which contains the time series z9 with noise.

load iddata9 z9

Estimate a fourth-order AR model by specifying only the na order in [na nb nk].

sys = arx(z9,4);

Examine the estimated A polynomial parameters and the fit of the estimate to the data.

param = sys.Report.Parameters.ParVector

param = 4×1

 -0.7923
 -0.4780
 -0.0921
 0.4698

fit = sys.Report.Fit.FitPercent

fit = 79.4835

ARIX Model

Estimate the parameters of an ARIX model. An ARIX model is an ARX model with integrated noise.

Specify a polynomial model sys0 with an ARX structure. The model includes an input delay of one
sample, expressed as a leading zero in B.

A = [1 -1.5 0.7];
B = [0 1 0.5];
sys0 = idpoly(A,B);

Simulate the output signal of sys0 using the random binary input signal u and the normally
distributed error signal e.

u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(sys0,[u e]);

Integrate the output signal and store the result yi in the iddata object zi.

yi = iddata(cumsum(y.y),[]);
zi = [yi,u];

Estimate an ARIX model from zi. Set the name-value pair argument 'IntegrateNoise' to true.

sys = arx(zi,[2 2 1],'IntegrateNoise',true);

 arx

1-67

Predict the model output using 5-step prediction and compare the result with yi.

compare(zi,sys,5)

ARX Model with Regularization

Use arxRegul to determine regularization constants automatically and use the values for estimating
an FIR model with an order of 50.

Obtain the lambda and R values.

load regularizationExampleData eData;
orders = [0 50 0];
[lambda,R] = arxRegul(eData,orders);

Use the returned lambda and R values for regularized ARX model estimation.

opt = arxOptions;
opt.Regularization.Lambda = lambda;
opt.Regularization.R = R;
sys = arx(eData,orders,opt);

Obtain Initial Conditions

Load the data.

load iddata1ic z1i

Estimate a second-order ARX model sys and return the initial conditions in ic.

1 Functions

1-68

na = 2;
nb = 2;
nk = 1;
[sys,ic] = arx(z1i,[na nb nk]);
ic

ic =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [0 2]
 Ts: 0.1000

ic is an initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z1i output signal.

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables.

Estimation data, specified as a timetable that uses a regularly spaced time vector. tt contains
variables representing input and output channels. For multiexperiment data, tt is a cell array of
timetables of length Ne, where Ne is the number of experiments

The software determines the number of input and output channels to use for estimation from the
dimensions of the specified polynomial orders. The input/output channel selection depends on
whether the 'InputName' and 'OutputName' name-value arguments are specified.

• If 'InputName' and 'OutputName' are not specified, then the software uses the first Nu
variables of tt as inputs and the next Ny variables of tt as outputs.

• If 'InputName' and 'OutputName' are specified, then the software uses the specified variables.
The number of specified input and output names must be consistent with Nu and Ny.

• For functions that can estimate a time series model, where there are no inputs, 'InputName'
does not need to be specified.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

 arx

1-69

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

For time series data, which contains only outputs and no inputs, specify y only.

Limitations

• Matrix-based data does not support estimation from frequency-domain data. You must use a data
object such as an iddata object or idfrd object (see data).

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data
iddata object | frd object | idfrd object

Estimation data, specified as an iddata object, an frd object, or an idfrd frequency-response
object. For AR and ARI time-series models, the input channel in data must be empty.

[na nb nk] — Polynomial orders and delays
integer row vector | row vector of integer matrices | scalar

Polynomial orders and delays for the model, specified as a 1-by-3 vector or vector of matrices [na nb
nk]. The polynomial order is equal to the number of coefficients to estimate in that polynomial.

For an AR or ARI time-series model, which has no input, set [na nb nk] to the scalar na. For an
example, see “AR Model” on page 1-67.

For a model with Ny outputs and Nu inputs:

• na is the order of polynomial A(q), specified as an Ny-by-Ny matrix of nonnegative integers.
• nb is the order of polynomial B(q) + 1, specified as an Ny-by-Nu matrix of nonnegative integers.
• nk is the input-output delay, also known as the transport delay, specified as an Ny-by-Nu matrix of

nonnegative integers. nk is represented in ARX models by fixed leading zeros in the B polynomial.

For instance, suppose that without transport delays, sys.b is [5 6].

• Because sys.b + 1 is a second-order polynomial, nb = 2.
• Specify a transport delay of nk = 3. Specifying this delay adds three leading zeros to sys.b so

that sys.b is now [0 0 0 5 6], while nb remains equal to 2.
• These coefficients represent the polynomial B(q) = 5 q-3 + 6q-4.

You can also implement transport delays using the name-value pair argument 'IODelay'.

.
Example: arx(data,[2 1 1]) computes, from an iddata object, a second-order ARX model with
one input channel that has an input delay of one sample.

opt — Estimation options
arxOptions option set

Estimation options for ARX model identification, specified as an arOptions option set. Options
specified by opt include the following:

1 Functions

1-70

• Initial condition handling — Use this option only for frequency-domain data. For time-domain data,
the signals are shifted such that unmeasured signals are never required in the predictors.

• Input and output data offsets — Use these options to remove offsets from time-domain data during
estimation.

• Regularization — Use this option to control the tradeoff between bias and variance errors during
the estimation process.

For more information, see arxOptions. For an example, see “ARX Model with Regularization” on
page 1-68.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IntegrateNoise',true adds an integrator in the noise source s

InputName — Input channel names
" " (default) | string | character vector | array of strings | cell array of character vectors

Input channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets all but the last variable in tt
as input channels. When you want to select a subset of the timetable variables as input channels use
'InputName' to identify them. For example, sys = arx(tt,__,'InputName',["u1" "u2"])
selects the variables u1 and u2 as the input channels for the estimation.

OutputName — Output signal names
" " (default) | character vector | string | cell array of character vectors or strings

Output channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets the last variable in tt as the
sole output channel. When you want to select a subset of the timetable variables as output channels,
use 'OutputName' to identify them. For example, sys = arx(tt,__,'OutputName',["y1"
"y3"]) selects the variables y1 and y3 as the output channels for the estimation.

Ts — Sample time
1 (default) | positive scalar

Sample time, specified as the comma-separated pair consisting of 'Ts' and the sample time in
seconds. When you use matrix-based data (u,y), you must specify 'Ts' if you require a sample time
other than the assumed sample time of 1 second.

To obtain the data sample time for a timetable tt, use the timetable property
tt.Properties.Timestep.
Example: arx(umat1,ymat1,___,'Ts',0.08) computes a model with sample time of 0.08
seconds.

InputDelay — Input delays
0 (default) | integer scalar | positive integer vector

 arx

1-71

Input delays expressed as integer multiples of the sample time, specified as the comma-separated
pair consisting of 'InputDelay' and one of the following:

• Nu-by-1 vector, where Nu is the number of inputs — Each entry is a numerical value representing
the input delay for the corresponding input channel.

• Scalar value — Apply the same delay to all input channels.

Example: arx(data,[2 1 3],'InputDelay',1) estimates a second-order ARX model with one
input channel that has an input delay of three samples.

IODelay — Transport delays
0 (default) | integer scalar | integer array

Transport delays for each input-output pair, expressed as integer multiples of the sample time, and
specified as the comma-separated pair consisting of 'IODelay' and one of the following:

• Ny-by-Nu matrix, where Ny is the number of outputs and Nu is the number of inputs — Each entry
is an integer value representing the transport delay for the corresponding input-output pair.

• Scalar value — Apply the same delay is applied to all input-output pairs. This approach is useful
when the input-output delay parameter nk results in a large number of fixed leading zeros in the B
polynomial. You can factor out max(nk-1,0) lags by moving those lags from nk into the
'IODelay' value.

For instance, suppose that you have a system with two inputs, where the first input has a delay of
three samples and the second input has a delay of six samples. Also suppose that the B
polynomials for these inputs are order n. You can express these delays using the following:

• nk = [3 6] — This results in B polynomials of [0 0 0 b11 ... b1n] and [0 0 0 0 0 0
b21 ... b2n].

• nk = [3 6] and 'IODelay',3 — This results in B polynomials of [b11 ... b1n] and [0 0
0 b21 ... b2n].

IntegrateNoise — Addition of integrators in noise channel
false (default) | logical vector

Addition of integrators in the noise channel, specified as the comma-separated pair consisting of
'IntegrateNoise' and a logical vector of length Ny, where Ny is the number of outputs.

Setting 'IntegrateNoise' to true for a particular output creates an ARIX on page 1-75 or ARI
model for that channel. Noise integration is useful in cases where the disturbance is nonstationary.

When using 'IntegrateNoise', you must also integrate the output channel data. For an example,
see “ARIX Model” on page 1-67.

Output Arguments
sys — ARX model
idpoly object

ARX model that fits the estimation data, returned as a discrete-time idpoly object. This model is
created using the specified model orders, delays, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

1 Functions

1-72

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent estimation

parameters.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option set is 'auto'.

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See arxOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

 arx

1-73

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

ic — Initial conditions
initialCondition object | object array of initialCondition values

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

• For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x0).

• For a multiple-experiment data set with Ne experiments, ic is an object array of length Ne that
contains one set of initialCondition values for each experiment.

For more information, see initialCondition. For an example of using this argument, see “Obtain
Initial Conditions” on page 1-68.

More About
ARX Structure

The ARX model name stands for Autoregressive with Extra Input, because, unlike the AR model, the
ARX model includes an input term. ARX is also known as Autoregressive with Exogenous Variables,
where the exogenous variable is the input term. The ARX model structure is given by the following
equation:

1 Functions

1-74

y(t) + a1y(t − 1) + ... + anay(t − na) =
b1u(t − nk) + ... + bnbu(t − nb− nk + 1) + e(t)

The parameters na and nb are the orders of the ARX model, and nk is the delay.

• y(t) — Output at time t
• na — Number of poles
• nb — Number of zeros
• nk — Number of input samples that occur before the input affects the output, also called the dead

time in the system
• y(t − 1)…y(t − na) — Previous outputs on which the current output depends
• u(t − nk)…u(t − nk− nb + 1) — Previous and delayed inputs on which the current output depends
• e(t) — White-noise disturbance value

A more compact way to write the difference equation is

A(q)y(t) = B(q)u(t − nk) + e(t)

q is the delay operator. Specifically,

A(q) = 1 + a1q−1 + … + anaq−na

B(q) = b1 + b2q−1 + … + bnbq−nb + 1

ARIX Model

The ARIX (Autoregressive Integrated with Extra Input) model is an ARX model with an integrator in
the noise channel. The ARIX model structure is given by the following equation:

A(q)y(t) = B(q)u(t − nk) + 1
1− q−1e(t)

where 1
1− q−1 is the integrator in the noise channel, e(t).

AR Time-Series Models

For time-series data that contains no inputs, one output, and the A polynomial order na, the model
has an AR structure of order na.

The AR (Autoregressive) model structure is given by the following equation:

A(q)y(t) = e(t)

ARI Model

The ARI (Autoregressive Integrated) model is an AR model with an integrator in the noise channel.
The ARI model structure is given by the following equation:

A(q)y(t) = 1
1− q−1e(t)

 arx

1-75

Multiple-Input, Single-Output Models

For multiple-input, single-output systems (MISO) with nu inputs, nb and nk are row vectors where the
ith element corresponds to the order and delay associated with the ith input in column vector u(t).
Similarly, the coefficients of the B polynomial are row vectors. The ARX MISO structure is then given
by the following equation:

A(q)y(t) = B1(q)u1(t − nk1) + B2(q)u2(t − nk2) +⋯+ Bnu(q)unu(t − nknu)

Multiple-Input, Multiple-Output Models

For multiple-input, multiple-output systems, na, nb, and nk contain one row for each output signal.

In the multiple-output case, arx minimizes the trace of the prediction error covariance matrix, or the
norm

∑
t = 1

N
eT(t)e(t)

To transform this norm to an arbitrary quadratic norm using a weighting matrix Lambda

∑
t = 1

N
eT(t)Λ−1e(t)

use the following syntax:

opt = arxOptions('OutputWeight',inv(lambda))
m = arx(data,orders,opt)

Initial Conditions

For time-domain data, the signals are shifted such that unmeasured signals are never required in the
predictors. Therefore, there is no need to estimate initial conditions.

For frequency-domain data, it might be necessary to adjust the data by initial conditions that support
circular convolution.

Set the 'InitialCondition' estimation option (see arxOptions) to one of the following values:

• 'zero' — No adjustment
• 'estimate' — Perform adjustment to the data by initial conditions that support circular

convolution
• 'auto' — Automatically choose 'zero' or 'estimate' based on the data

Algorithms
QR factorization solves the overdetermined set of linear equations that constitutes the least-squares
estimation problem.

Without regularization, the ARX model parameters vector θ is estimated by solving the normal
equation

JT J θ = JTy

1 Functions

1-76

where J is the regressor matrix and y is the measured output. Therefore,

θ = JT J −1 JTy

Using regularization adds the regularization term

θ = JT J + λR −1 JTy

where λ and R are the regularization constants. For more information on the regularization constants,
see arxOptions.

When the regression matrix is larger than the MaxSize specified in arxOptions, the data is
segmented and QR factorization is performed iteratively on the data segments.

Version History
Introduced before R2006a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

See Also
arxOptions | arxRegul | arxstruc | ar | armax | iv4 | idinput | iddata | idfrd

Topics
“What Are Polynomial Models?”
“What Are Time Series Models?”
“Estimate Polynomial Models at the Command Line”
“Regularized Estimates of Model Parameters”
“Estimating Models Using Frequency-Domain Data”
“Apply Initial Conditions When Simulating Identified Linear Models”

 arx

1-77

arxOptions
Option set for arx

Syntax
opt = arxOptions
opt = arxOptions(Name,Value)

Description
opt = arxOptions creates the default options set for arx.

opt = arxOptions(Name,Value) creates an option set with the options specified by one or more
Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate'

Handling of initial conditions during estimation using frequency-domain data, specified as the
comma-separated pair consisting of 'InitialCondition' and one of the following values:

• 'zero' — The initial conditions are set to zero.
• 'estimate' — The initial conditions are treated as independent estimation parameters.
• 'auto' — The software chooses the method to handle initial conditions based on the estimation

data.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

1 Functions

1-78

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

• Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

This option is not available for multi-output models with a non-diagonal A polynomial array.
Data Types: logical

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

 arxOptions

1-79

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weight of prediction errors in multi-output estimation
[] (default) | positive semidefinite, symmetric matrix

Weight of prediction errors in multi-output estimation, specified as one of the following values:

• Positive semidefinite, symmetric matrix (W). The software minimizes the trace of the weighted
prediction error matrix trace(E'*E*W/N) where:

• E is the matrix of prediction errors, with one column for each output, and W is the positive
semidefinite, symmetric matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-output models, or the reliability of corresponding
data.

• N is the number of data samples.
• [] — No weighting is used. Specifying as [] is the same as eye(Ny), where Ny is the number of

outputs.

This option is relevant only for multi-output models.

Regularization — Options for regularized estimation of model parameters
[] (default) | positive semidefinite, symmetric matrix

1 Functions

1-80

Options for regularized estimation of model parameters, specified as a structure with the following
fields:

• Lambda — Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.

The default value of zero implies no regularization.

Default: 0
• R — Weighting matrix.

Specify a positive scalar or a positive definite matrix. The length of the matrix must be equal to
the number of free parameters (np) of the model. For ARX model, np = sum(sum([na nb]).

Default: 1
• Nominal — This option is not used for ARX models.

Default: 0

Use arxRegul to automatically determine Lambda and R values.

For more information on regularization, see “Regularized Estimates of Model Parameters”.

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

• MaxSize — Specifies the maximum number of elements in a segment when input-output data is
split into segments.

MaxSize must be a positive integer.

Default: 250000
• StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

• s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0
• z — Specifies the maximum distance of all poles from the origin to test stability of discrete-

time models. A model is considered stable if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

Output Arguments
opt — Options set for arx
arxOptions option set

Option set for arx, returned as an arxOptions option set.

 arxOptions

1-81

Examples

Create Default Options Set for ARX Estimation

opt = arxOptions;

Specify Options for ARX Estimation

Create an options set for arx using zero initial conditions for estimation. Set Display to 'on'.

opt = arxOptions('InitialCondition','zero','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = arxOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';

Version History
Introduced in R2012a

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

See Also
arx | arxRegul | idfilt

Topics
“Loss Function and Model Quality Metrics”

1 Functions

1-82

arxRegul
Determine regularization constants for ARX model estimation

Syntax
[lambda,R] = arxRegul(tt,orders)
[lambda,R] = arxRegul(u,y,orders)
[lambda,R] = arxRegul(data,orders)

[lambda,R] = arxRegul(___ ,Name,Value)
[lambda,R] = arxRegul(___ ,options)

Description
Calculate Regularization Constants

[lambda,R] = arxRegul(tt,orders) returns the regularization constants used for ARX model
estimation, using the data contained in the variables of timetable tt. Use the regularization constants
in arxOptions to configure the regularization options for ARX model estimation.

The software uses the first Nu variables as inputs and the next Ny variables as outputs, where Nu and
Ny are determined from the dimensions of nb and na in the orders argument, respectively.

To select specific input and output channels from tt, use name-value syntax to set 'InputName' and
'OutputName' to the corresponding timetable variable names.

[lambda,R] = arxRegul(u,y,orders) uses the time-domain input and output signals in the
comma-separated matrices u,y. The software assumes that the data sample time is 1 second.

[lambda,R] = arxRegul(data,orders) uses the time-domain or frequency-domain data in the
data object data. Use this syntax especially when you want to estimate a model using frequency-
domain or frequency-response data, or when you want to take advantage of the additional
information, such as data sample time or experiment labeling, that data objects provide.

Specify Additional Options

[lambda,R] = arxRegul(___ ,Name,Value) specifies model structure attributes, such as noise
integrator and input delay, using one or more name-value arguments. You can use this syntax with
any of the previous input-argument combinations.

[lambda,R] = arxRegul(___ ,options) specifies regularization options such as regularization
kernel and I/O offsets.

Examples

Determine Regularization Constants for ARX Model Estimation Using Default Kernel

load iddata1 z1;
orders = [10 10 1];
[Lambda,R] = arxRegul(z1,orders);

 arxRegul

1-83

The ARX model is estimated using the default regularization kernel TC.

Use the Lambda and R values for ARX model estimation.

opt = arxOptions;
opt.Regularization.Lambda = Lambda;
opt.Regularization.R = R;
model = arx(z1,orders,opt);

Specify a Regularization Kernel

Specify 'DC' as the regularization kernel and obtain a regularized ARX model of order [|10 10 1|].

load iddata1 z1;
orders = [10 10 1];
option = arxRegulOptions('RegularizationKernel','DC');
[Lambda,R] = arxRegul(z1,orders,option);

Use the Lambda and R values for ARX model estimation.

arxOpt = arxOptions;
arxOpt.Regularization.Lambda = Lambda;
arxOpt.Regularization.R = R;
model = arx(z1,orders,arxOpt);

Specify Noise Source Integrator

Specify to include a noise source integrator in the noise component of the model.

load iddata1 z1;
orders = [10 10 1];
[Lambda,R] = arxRegul(z1,orders,'IntegrateNoise',true);

Specify Regularization Kernel And Noise Integrator

Specify the regularization kernel and include a noise source integrator in the noise component of the
model.

load iddata1 z1;
orders = [10 10 1];
opt = arxRegulOptions('RegularizationKernel','DC');
[Lambda,R] = arxRegul(z1,orders,opt,'IntegrateNoise',true);

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables.

1 Functions

1-84

Estimation data, specified as a timetable that uses a regularly spaced time vector. tt contains
variables representing input and output channels. For multiexperiment data, tt is a cell array of
timetables of length Ne, where Ne is the number of experiments

The software determines the number of input and output channels to use for estimation from the
dimensions of the specified polynomial orders. The input/output channel selection depends on
whether the 'InputName' and 'OutputName' name-value arguments are specified.

• If 'InputName' and 'OutputName' are not specified, then the software uses the first Nu
variables of tt as inputs and the next Ny variables of tt as outputs.

• If 'InputName' and 'OutputName' are specified, then the software uses the specified variables.
The number of specified input and output names must be consistent with Nu and Ny.

• For functions that can estimate a time series model, where there are no inputs, 'InputName'
does not need to be specified.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

For time series data, which contains only outputs and no inputs, specify y only.

Limitations

• Matrix-based data does not support estimation from frequency-domain data. You must use a data
object such as an iddata object or idfrd object (see data).

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data
iddata object

Estimation data, specified as an iddata object.

orders — ARX model orders
matrix of nonnegative integers

ARX model orders [na nb nc], specified as a matrix of nonnegative integers. See the arx reference
page for more information on model orders.

 arxRegul

1-85

options — Regularization options
arxRegulOptions options set

Regularization options, specified as an options set you create using arxRegulOptions.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [Lambda, R] = arxRegul(z1,orders,option,'InputDelay',10);

InputName — Input channel names
" " (default) | string | character vector | array of strings | cell array of character vectors

Input channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets all but the last variable in tt
as input channels. When you want to select a subset of the timetable variables as input channels use
'InputName' to identify them. For example, sys = arxRegul(tt,__,'InputName',["u1"
"u2"]) selects the variables u1 and u2 as the input channels for the estimation.

OutputName — Output signal names
" " (default) | character vector | string | cell array of character vectors or strings

Output channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets the last variable in tt as the
sole output channel. When you want to select a subset of the timetable variables as output channels,
use 'OutputName' to identify them. For example, sys = arxRegul(tt,__,'OutputName',
["y1" "y3"]) selects the variables y1 and y3 as the output channels for the estimation.

InputDelay — Input delay
0 (default) | positive integer

Input delay, specified as a positive, nonzero numeric value representing the number of samples.
Example: [Lambda, R] = arxRegul(z1,orders,'InputDelay',10);
Data Types: double

IntegrateNoise — Noise source integrator
false (default) | true

Noise source integrator, specified as a logical. Specifies whether the noise source e(t) should
contain an integrator. The default is false, indicating the noise integrator is off. To turn it on, change
the value to true.
Example: [Lambda, R] = arxRegul(z1,orders,'IntegrateNoise',true);
Data Types: logical

Output Arguments
lambda — Constant that determines bias versus variance trade-off
positive scalar

1 Functions

1-86

Constant that determines the bias versus variance trade-off, returned as a positive scalar.

R — Weighting matrix
vector of nonnegative numbers | square positive semi-definite matrix

Weighting matrix, returned as a vector of nonnegative numbers or a positive definite matrix.

Algorithms
Without regularization, the ARX model parameters vector θ is estimated by solving the normal
equation

JT J θ = JTy

where J is the regressor matrix and y is the measured output. Therefore,

θ = JT J −1 JTy

Using regularization adds the regularization term

θ = JT J + λR −1 JTy

where λ and R are the regularization constants. For more information on the regularization constants,
see arxOptions.

Version History
Introduced in R2013b

References
[1] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer Functions, Regularizations and

Gaussian Processes - Revisited”, Automatica, Volume 48, August 2012.

See Also
arx | arxOptions | arxRegulOptions

Topics
“Estimate Regularized ARX Model Using System Identification App”
“Regularized Estimates of Model Parameters”

 arxRegul

1-87

arxRegulOptions
Option set for arxRegul

Syntax
opt = arxRegulOptions
opt = arxRegulOptions(Name,Value)

Description
opt = arxRegulOptions creates a default option set for arxRegul.

opt = arxRegulOptions(Name,Value) creates an options set with the options specified by one or
more name-value pair arguments.

Examples

Create Default Options Set for Determining Regularization Constants

opt = arxRegulOptions;

Specify Regularizing Kernel for ARX Model Estimation

opt = arxRegulOptions('RegularizationKernel','DC');

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: option = arxRegulOptions('RegularizationKernel', 'DC') specifies 'DC' as
the regularization kernel.

RegularizationKernel — Regularization kernel
'TC' (default) | 'SE' | 'SS' | 'HF' | 'DI' | 'DC'

Regularization kernel, specified as one of the following values:

• 'TC' — Tuned and correlated kernel
• 'SE' — Squared exponential kernel

1 Functions

1-88

• 'SS' — Stable spline kernel
• 'HF' — High frequency stable spline kernel
• 'DI' — Diagonal kernel
• 'DC' — Diagonal and correlated kernel

The specified kernel is used for regularized estimation of impulse response for all input-output
channels. Regularization reduces variance of estimated model coefficients and produces a smoother
response by trading variance for bias.

For more information about these choices, see [1].
Data Types: char

InputOffset — Offset levels present in the input signals of estimation data
[] (default) | vector | matrix

Offset levels present in the input signals of time-domain estimation data, specified as one of the
following:

• An Nu-element column vector, where Nu is the number of inputs. For multi-experiment data,
specify a Nu-by-Ne matrix, where Ne is the number of experiments. The offset value
InputOffset(i,j) is subtracted from the ith input signal of the jth experiment.

• [] — No offsets.

Data Types: double

OutputOffset — Output signal offset levels
[] (default) | vector | matrix

Output signal offset level of time-domain estimation data, specified as one of the following:

• An Ny-element column vector, where Ny is the number of outputs. For multi-experiment data,
specify a Ny-by-Ne matrix, where Ne is the number of experiments. The offset value
OputOffset(i,j) is subtracted from the ith output signal of the jth experiment.

• [] — No offsets.

The specified values are subtracted from the output signals before using them for estimation.
Data Types: double

Advanced — Advanced estimation options
structure

Advanced options for regularized estimation, specified as a structure with the following fields:

• MaxSize — Maximum allowable size of Jacobian matrices formed during estimation, specified as a
large positive number.

Default: 250e3
• SearchMethod — Search method for estimating regularization parameters, specified as one of

the following values:

• 'gn': Quasi-Newton line search.

 arxRegulOptions

1-89

• 'fmincon': Trust-region-reflective constrained minimizer. In general, 'fmincon' is better
than 'gn' for handling bounds on regularization parameters that are imposed automatically
during estimation.

Default: 'fmincon'

Output Arguments
opt — Regularization options
arxRegulOptions options set

Regularization options, returned as an arxRegulOptions options set.

Version History
Introduced in R2014a

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References
[1] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer Functions, Regularizations and

Gaussian Processes - Revisited”, Automatica, Volume 48, August 2012.

See Also
arxRegul

Topics
“Regularized Estimates of Model Parameters”

1 Functions

1-90

arxstruc
Compute loss functions for single-output ARX models

Syntax
V = arxstruc(ze,zv,NN)

Arguments
ze

Estimation data set can be iddata or idfrd object.
zv

Validation data set can be iddata or idfrd object.
NN

Matrix defines the number of different ARX-model structures. Each row of NN is of the form:

nn = [na nb nk]

Description

Note Use arxstruc for single-output systems only. arxstruc supports both single-input and
multiple-input systems.

V = arxstruc(ze,zv,NN) returns V, which contains the loss functions in its first row. The
remaining rows of V contain the transpose of NN, so that the orders and delays are given just below
the corresponding loss functions. The last column of V contains the number of data points in ze.

The output argument V is best analyzed using selstruc. The selection of a suitable model structure
based on the information in v is normally done using selstruc.

Examples

Generate Model-Order Combinations and Estimate Single-Input ARX Model

Create an ARX model for generating data.

A = [1 -1.5 0.7];
B = [0 1 0.5];
m0 = idpoly(A,B);

Generate random input and additive noise signals.

u = iddata([],idinput(400,'rbs'));
e = iddata([],0.1*randn(400,1));

Simulate the model output using the defined input and error signals.

 arxstruc

1-91

y = sim(m0,[u e]);
z = [y,u];

Generate model-order combinations for estimation. Specify a delay of 1 for all models, and a model
order range between 1 and 5 for na and nb.

NN = struc(1:5,1:5,1);

Estimate ARX models and compute the loss function for each model order combination. The input
data is split into estimation and validation data sets.

V = arxstruc(z(1:200),z(201:400),NN);

Select the model order with the best fit to the validation data.

order = selstruc(V,0);

Estimate an ARX model of selected order.

M = arx(z,order);

Generate Model-Order Combinations and Estimate Multi-Input ARX Model

Create estimation and validation data sets.

load co2data;
Ts = 0.5; % Sample time is 0.5 min
ze = iddata(Output_exp1,Input_exp1,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);

Generate model-order combinations for:

• na = 2:4
• nb = 2:5 for the first input, and 1 or 4 for the second input.
• nk = 1:4 for the first input, and 0 for the second input.

NN = struc(2:4,2:5,[1 4],1:4,0);

Estimate an ARX model for each model order combination.

V = arxstruc(ze,zv,NN);

Select the model order with the best fit to the validation data.

order = selstruc(V,0);

Estimate an ARX model of selected order.

M = arx(ze,order);

Tips
Each of ze and zv is an iddata object containing output-input data. Frequency-domain data and
idfrd objects are also supported. Models for each of the model structures defined by NN are

1 Functions

1-92

estimated using the data set ze. The loss functions (normalized sum of squared prediction errors) are
then computed for these models when applied to the validation data set zv. The data sets ze and zv
need not be of equal size. They could, however, be the same sets, in which case the computation is
faster.

Version History
Introduced before R2006a

See Also
arx | idpoly | ivstruc | selstruc | struc

 arxstruc

1-93

balred
Model order reduction

Syntax
[rsys,info] = balred(sys,order)
[~,info] = balred(sys)
[___] = balred(___ ,opts)

balred(sys)

Description
[rsys,info] = balred(sys,order) computes a reduced-order approximation rsys of the LTI
model sys. The desired order (number of states) is specified by order. You can try multiple orders at
once by setting order to a vector of integers, in which case rsys is an array of reduced models.
balred also returns a structure info with additional information like the Hankel singular values
(HSV), error bound, regularization level and the Cholesky factors of the gramians.

[~,info] = balred(sys) returns the structure info without computing the reduced-order model.
You can use this information to select the reduced order order based on your desired fidelity.

Note When performance is a concern, avoid computing the Hankel singular values twice by using
the information obtained from the above syntax to select the desired model order and then use rsys
= balred(sys,order,info) to compute the reduced-order model.

[___] = balred(___ ,opts) computes the reduced model using the options set opts that you
specify using balredOptions. You can specify additional options for eliminating states, using
absolute vs. relative error control, emphasizing certain time or frequency bands, and separating the
stable and unstable modes. See balredOptions to create and configure the option set opts.

balred(sys) displays the Hankel singular values and approximation error on a plot. Use hsvplot
to customize this plot.

Examples

Reduced-Order Model using Hankel Singular Values

For this example, use the Hankel singular value plot to select suitable order and compute the
reduced-order model.

For this instance, generate a random discrete-time state-space model with 40 states.

rng(0)
sys = drss(40);

Plot the Hankel singular values using balred.

1 Functions

1-94

balred(sys)

For this example, select order of 16 since it is the first order with an absolute error less than 1e-4. In
general, you select the order based on the desired absolute or relative fidelity. Then, compute the
reduced-order model.

rsys = balred(sys,16);

Verify the absolute error by plotting the singular value response using sigma.

sigma(sys,sys-rsys)

 balred

1-95

Observe from the plot that the error, represented by the red curve, is below -80 dB (1e-4).

Array of Reduced-Order Models

For this example, consider a random continuous-time state-space model with 65 states.

rng(0)
sys = rss(65);
size(sys)

State-space model with 1 outputs, 1 inputs, and 65 states.

Visualize the Hankel singular values on a plot.

balred(sys)

1 Functions

1-96

For this instance, compute reduced-order models with 25, 30 and 35 states.

order = [25,30,35];
rsys = balred(sys,order);
size(rsys)

3x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and between 25 and 35 states.

Reduced-Order Approximation with Offset Option

Compute a reduced-order approximation of the system given by:

G s = s + 0 . 5 s + 1 . 1 s + 2 . 9
s + 10−6 s + 1 s + 2 s + 3

.

Create the model.

sys = zpk([-0.5 -1.1 -2.9],[-1e-6 -2 -1 -3],1);

Exclude the pole at s = 10−6 from the stable term of the stable/unstable decomposition. To do so, set
the Offset option of balredOptions to a value larger than the pole you want to exclude.

opts = balredOptions('Offset',0.001,'StateProjection','Truncate');

 balred

1-97

Visualize the Hankel singular values (HSV) and the approximation error.

balred(sys,opts)

Observe that the first HSV is red which indicates that it is associated with an unstable mode.

Now, compute a second-order approximation with the specified options.

[rsys,info] = balred(sys,2,opts);
rsys

rsys =

 0.99113 (s+0.5235)

 (s+1e-06) (s+1.952)

Continuous-time zero/pole/gain model.

Notice that the pole at -1e-6 appears unchanged in the reduced model rsys.

Compare the responses of the original and reduced-order models.

bodeplot(sys,rsys,'r--')

1 Functions

1-98

Observe that the bode response of the original model and the reduced-order model nearly match.

Model Reduction in a Particular Frequency Band

Reduce a high-order model with a focus on the dynamics in a particular frequency range.

Load a model and examine its frequency response.

load('highOrderModel.mat','G')
bodeplot(G)

 balred

1-99

G is a 48th-order model with several large peak regions around 5.2 rad/s, 13.5 rad/s, and 24.5 rad/s,
and smaller peaks scattered across many frequencies. Suppose that for your application you are only
interested in the dynamics near the second large peak, between 10 rad/s and 22 rad/s. Focus the
model reduction on the region of interest to obtain a good match with a low-order approximation. Use
balredOptions (Control System Toolbox) to specify the frequency interval for balred.

bopt = balredOptions('StateProjection','Truncate','FreqIntervals',[10,22]);
GLim10 = balred(G,10,bopt);
GLim18 = balred(G,18,bopt);

Examine the frequency responses of the reduced-order models. Also, examine the difference between
those responses and the original response (the absolute error).

subplot(2,1,1);
bodemag(G,GLim10,GLim18,logspace(0.5,1.5,100));
title('Bode Magnitude Plot')
legend('Original','Order 10','Order 18');
subplot(2,1,2);
bodemag(G-GLim10,G-GLim18,logspace(0.5,1.5,100));
title('Absolute Error Plot')
legend('Order 10','Order 18');

1 Functions

1-100

With the frequency-limited energy computation, even the 10th-order approximation is quite good in
the region of interest.

Model-Order Reduction with Relative Error Approximation

For this example, consider the SISO state-space model cdrom with 120 states. You can use absolute
or relative error control when approximating models with balred. This example compares the two
approaches when applied to a 120-state model of a portable CD player device crdom [1,2] on page 1-
102.

Load the CD player model cdrom.

load cdromData.mat cdrom
size(cdrom)

State-space model with 1 outputs, 1 inputs, and 120 states.

To compare results with absolute vs. relative error control, create one option set for each approach.

opt_abs = balredOptions('ErrorBound','absolute','StateProjection','truncate');
opt_rel = balredOptions('ErrorBound','relative','StateProjection','truncate');

Compute reduced-order models of order 15 with both approaches.

 balred

1-101

rsys_abs = balred(cdrom,15,opt_abs);
rsys_rel = balred(cdrom,15,opt_rel);
size(rsys_abs)

State-space model with 1 outputs, 1 inputs, and 15 states.

size(rsys_rel)

State-space model with 1 outputs, 1 inputs, and 15 states.

Plot the Bode response of the original model along with the absolute-error and relative-error reduced
models.

bo = bodeoptions;
bo.PhaseMatching = 'on';
bodeplot(cdrom,'b.',rsys_abs,'r',rsys_rel,'g',bo)
legend('Original (120 states)','Absolute Error (15 states)','Relative Error (15 states)')

Observe that the Bode response of:

• The relative-error reduced model rsys_rel nearly matches the response of the original model
sys across the complete frequency range.

• The absolute-error reduced model rsys_abs matches the response of the original model sys only
in areas with the most gain.

References

1 Functions

1-102

1 Benchmark Examples for Model Reduction, Subroutine Library in Systems and Control Theory
(SLICOT). The CDROM data set is reproduced with permission, see BSD3-license for details.

2 A.Varga, “On stochastic balancing related model reduction”, Proceedings of the 39th IEEE
Conference on Decision and Control (Cat. No.00CH37187), Sydney, NSW, 2000, pp. 2385-2390
vol.3, doi: 10.1109/CDC.2000.914156.

Input Arguments
sys — Dynamic system
dynamic system model

Dynamic system, specified as a SISO or MIMO dynamic system model (Control System Toolbox).
Dynamic systems that you can use can be continuous-time or discrete-time numeric LTI models, such
as tf, zpk, or ssmodels.

When sys has unstable poles, balred decomposes sys to its stable and unstable parts and only the
stable part is approximated. Use balredOptions to specify additional options for the stable/unstable
decomposition.

balred does not support frequency response data models, uncertain and generalized state-space
models, PID models or sparse model objects.

order — Desired number of states
integer | vector of integers

Desired number of states, specified as an integer or a vector of integers. You can try multiple orders
at once by setting order to a vector of integers, in which case rys is returned as an array of reduced
models.

You can also use the Hankel singular values and error bound information to select the reduced-model
order based on the desired model fidelity.

opts — Additional options for model reduction
options set

Additional options for model reduction, specified as an options set. You can specify additional options
for eliminating states, using absolute vs. relative error control, emphasizing certain time or frequency
bands, and separating the stable and unstable modes.

See balredOptions to create and configure the option set opts.

Output Arguments
rsys — Reduced-order model
dynamic system model | array of dynamic system models

Reduced-order model, returned as a dynamic system model or an array of dynamic system models.

info — Additional information about the LTI model
structure

Additional information about the LTI model, returned as a structure with the following fields:

 balred

1-103

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

• HSV — Hankel singular values (state contributions to the input/output behavior). In state
coordinates that equalize the input-to-state and state-to-output energy transfers, the Hankel
singular values measure the contribution of each state to the input/output behavior. Hankel
singular values are to model order what singular values are to matrix rank. In particular, small
Hankel singular values signal states that can be discarded to simplify the model.

• ErrorBound — Bound on absolute or relative approximation error. info.ErrorBound(J+1)
bounds the error for order J.

• Regularization — Regularization level ⍴ (for relative error only). Here, sys is replaced by
[sys,⍴*I] or [sys;⍴*I] that ensures a well-defined relative error at all frequencies.

• Rr, Ro — Cholesky factors of gramians.

Algorithms
1 balred first decomposes G into its stable and unstable parts:

G = Gs + Gu

2 When you specify ErrorBound as absolute, balred uses the balanced truncation method of
[1] to reduce Gs. This computes the Hankel singular values (HSV) σj based on the controllability

and observability gramians. For order r, the absolute error Gs− Gr ∞ is bounded by 2 ∑
j = r + 1

n
σ j.

Here, n is the number of states in Gs.
3 When you specify ErrorBound as relative, balred uses the balanced stochastic truncation

method of [2] to reduce Gs. For square Gs, this computes the HSV σj of the phase matrix
F = W ′ −1G where W(s) is a stable, minimum-phase spectral factor of GG’:

W ′(s)W(s) = G(s)G′(s)

For order r, the relative error Gs−1(Gs− Gr) ∞ is bounded by:

∏
j = r + 1

H 1 + σ j
1− σ j

− 1 ≈ 2 ∑
j = r + 1

n
σ j

when, 2 ∑
j = r + 1

n
σ j ≪ 1.

Alternative Functionality
App

Model Reducer

Live Editor Task

Reduce Model Order (Control System Toolbox)

Version History
Introduced before R2006a

1 Functions

1-104

MatchDC option honored when specified frequency or time intervals exclude DC
Behavior changed in R2017b

When you use balred for model reduction, you can use balredOptions to restrict the computation
to specified frequency or time intervals. If the StateProjection option of balredOptions is set to
'MatchDC' (the default value), then balred attempts to match the DC gain of the original and
reduced models, even if the specified intervals exclude DC (frequency = 0 or time = Inf).

Prior to R2017b, if you specified time or frequency intervals that excluded DC, balred did not
attempt to match the DC gain of the original and reduced models, even if StateProjection =
'MatchDC'.

References
[1] Varga, A., "Balancing-Free Square-Root Algorithm for Computing Singular Perturbation

Approximations," Proc. of 30th IEEE CDC, Brighton, UK (1991), pp. 1062-1065.

[2] Green, M., "A Relative Error Bound for Balanced Stochastic Truncation", IEEE Transactions on
Automatic Control, Vol. 33, No. 10, 1988

See Also
Functions
balredOptions

Apps
Model Reducer

Live Editor Tasks
Reduce Model Order

Topics
“Model Reduction Basics” (Control System Toolbox)
“Balanced Truncation Model Reduction” (Control System Toolbox)

 balred

1-105

bandwidth
Frequency response bandwidth

Syntax
fb = bandwidth(sys)
fb = bandwidth(sys,dbdrop)

Description
fb = bandwidth(sys) returns the bandwidth of the SISO dynamic system model sys. The
bandwidth is the first frequency where the gain drops below 70.79% (-3 dB) of its DC value. The
bandwidth is expressed in rad/TimeUnit, where TimeUnit is the TimeUnit property of sys.

This command requires a Control System Toolbox™ license.

fb = bandwidth(sys,dbdrop) returns the bandwidth for a specified gain drop.

Examples

Compute System Bandwidth

Compute the bandwidth of the transfer function sys = 1/(s+1).

sys = tf(1,[1 1]);
fb = bandwidth(sys)

fb = 0.9976

This result shows that the gain of sys drops to 3 dB below its DC value at around 1 rad/s.

Find Bandwidth of System with Custom Gain Drop

Compute the frequency at which the gain of a system drops to 3.5 dB below its DC value. Create a
state-space model.

A = [-2,-1;1,0];
B = [1;0];
C = [1,2];
D = 1;
sys = ss(A,B,C,D);

Find the 3.5 dB bandwidth of sys.

dbdrop = -3.5;
fb = bandwidth(sys,dbdrop)

fb = 0.8348

1 Functions

1-106

Find Bandwidth of Model Array

Find the bandwidth of each entry in a 5-by-1 array of transfer function models. Use a for loop to
create the array, and confirm its dimensions.

sys = tf(zeros(1,1,5));
s = tf('s');
for m = 1:5
 sys(:,:,m) = m/(s^2+s+m);
end
size(sys)

5x1 array of transfer functions.
Each model has 1 outputs and 1 inputs.

Find the bandwidths.

fb = bandwidth(sys)

fb = 5×1

 1.2712
 1.9991
 2.5298
 2.9678
 3.3493

bandwidth returns an array in which each entry is the bandwidth of the corresponding entry in sys.
For instance, the bandwidth of sys(:,:,2) is fb(2).

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO dynamic system model or an array of SISO dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models such as tf, zpk, or ss models.
• Frequency-response data models such as frd models. For such models, bandwidth uses the first

frequency point to approximate the DC gain.

If sys is an array of models, bandwidth returns an array of the same size, where each entry is the
bandwidth of the corresponding model in sys. For more information on model arrays, see “Model
Arrays” (Control System Toolbox).

dbdrop — Gain drop
-3 (default) | negative scalar

Gain drop in dB, specified as a real negative scalar.

 bandwidth

1-107

Output Arguments
fb — Frequency response bandwidth
scalar | array

Frequency response bandwidth, returned as a scalar or an array. If sys is:

• A single model, then fb is the bandwidth of sys.
• A model array, then fb is an array of the same size as the model array sys. Each entry is the

bandwidth of the corresponding entry in sys.

fb is expressed in rad/TimeUnit, where TimeUnit is the TimeUnit property of sys.

Version History
Introduced before R2006a

See Also
dcgain | issiso | bodeplot

1 Functions

1-108

bj
Estimate Box-Jenkins polynomial model using time-domain data

Syntax
sys = bj(tt,[nb nc nd nf nk])
sys = bj(u,y,[nb nc nd nf nk])
sys = bj(data,[nb nc nd nf nk])
sys = bj(___ , Name,Value)

sys = bj(tt, init_sys)
sys = bj(u,y,init_sys)
sys = bj(u,y,init_sys)

sys = bj(___ , opt)

[sys,ic] = bj(___)

Description
Box-Jenkins (BJ) models are a special configuration of polynomial models that provide completely
independent parameterization for the dynamics and noise using rational polynomial functions. BJ
models, which are always discrete-time models, can be estimated only from time-domain data. Use BJ
models when the noise is primarily a measurement disturbance rather than an input disturbance. The
BJ structure provides additional flexibility for modeling the noise.

Estimate Box-Jenkins Model

sys = bj(tt,[nb nc nd nf nk]) estimates a Box-Jenkins polynomial model sys using the data
contained in the variables of timetable tt. The software uses the first Nu variables as inputs and the
next Ny variables as outputs, where Nu and Ny are determined from the dimensions of the specified
polynomial orders.

sys is represented by the equation

y(t) = ∑
i = 1

nu Bi(q)
Fi(q)ui t − nki + C(q)

D(q)e(t)

Here, y(t) is the output, u(t) is the input, and e(t) is the error.

The components of [nb nc nd nf nk] define the orders of the polynomials used for estimation. For
more information about the Box-Jenkins model structure, see “Box-Jenkins Model Structure” on page
1-120.

To select specific input and output channels from tt, use name-value syntax to set 'InputName' and
'OutputName' to the corresponding timetable variable names.

sys = bj(u,y,[nb nc nd nf nk]) uses the time-domain input and output signals in the comma-
separated matrices u,y. The software assumes that the data sample time is 1 second. To change the
sample time, set Ts using name-value syntax.

 bj

1-109

sys = bj(data,[nb nc nd nf nk]) uses the time-domain data in the iddata object data. Use
this syntax especially when you want to take advantage of the additional information, such as data
sample time or experiment labeling, that data objects provide.

sys = bj(___ , Name,Value) specifies model structure attributes using additional options
specified by one or more name-value arguments. You can use this syntax with any of the previous
input-argument combinations.

Configure Initial Parameters

sys = bj(tt, init_sys) uses the polynomial model init_sys to configure the initial
parameterization of sys for estimation using the timetable tt.

sys = bj(u,y,init_sys) uses the matrix data u,y for estimation.

sys = bj(u,y,init_sys) uses the data object data, for estimation.

Specify Additional Estimation Options

sys = bj(___ , opt) incorporates an option set opt that specifies options such as handling of
initial conditions, regularization, and numerical search method to use for estimation.

Return Estimated Initial Conditions

[sys,ic] = bj(___) returns the estimated initial conditions as an initialCondition object.
Use this syntax if you plan to simulate or predict the model response using the same estimation input
data and then compare the response with the same estimation output data. Incorporating the initial
conditions yields a better match during the first part of the simulation.

Examples

Identify SISO Box-Jenkins Model

Estimate the parameters of a single-input, single-output Box-Jenkins model from measured data.

load iddata1 z1;
nb = 2;
nc = 2;
nd = 2;
nf = 2;
nk = 1;
sys = bj(z1,[nb nc nd nf nk]);

sys is a discrete-time idpoly model with estimated coefficients. The order of sys is as described by
nb, nc, nd, nf, and nk.

Use getpvec to obtain the estimated parameters and getcov to obtain the covariance associated
with the estimated parameters.

Estimate a Multi-Input, Single-Output Box-Jenkins Model

Estimate the parameters of a multi-input, single-output Box-Jenkins model from measured data.

1 Functions

1-110

load iddata8
nb = [2 1 1];
nc = 1;
nd = 1;
nf = [2 1 2];
nk = [5 10 15];
sys = bj(z8,[nb nc nd nf nk]);

sys estimates the parameters of a model with three inputs and one output. Each of the inputs has a
delay associated with it.

Estimate Box-Jenkins Model Using Regularization

Estimate a regularized BJ model by converting a regularized ARX model.

Load data.

load regularizationExampleData.mat m0simdata;

Estimate an unregularized BJ model of order 30.

m1 = bj(m0simdata(1:150),[15 15 15 15 1]);

Estimate a regularized BJ model by determining Lambda value by trial and error.

opt = bjOptions;
opt.Regularization.Lambda = 1;
m2 = bj(m0simdata(1:150),[15 15 15 15 1],opt);

Obtain a lower-order BJ model by converting a regularized ARX model followed by order reduction.

opt1 = arxOptions;
[L,R] = arxRegul(m0simdata(1:150),[30 30 1]);
opt1.Regularization.Lambda = L;
opt1.Regularization.R = R;
m0 = arx(m0simdata(1:150),[30 30 1],opt1);
mr = idpoly(balred(idss(m0),7));

Compare the model outputs against data.

opt2 = compareOptions('InitialCondition','z');
compare(m0simdata(150:end),m1,m2,mr,opt2);

 bj

1-111

Configure Estimation Options

Estimate the parameters of a single-input, single-output Box-Jenkins model while configuring some
estimation options.

Generate estimation data.

B = [0 1 0.5];
C = [1 -1 0.2];
D = [1 1.5 0.7];
F = [1 -1.5 0.7];
sys0 = idpoly(1,B,C,D,F,0.1);
e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(sys0,[u e]);
data = [y u];

data is a single-input, single-output data set created by simulating a known model.

Estimate initial Box-Jenkins model.

nb = 2;
nc = 2;
nd = 2;
nf = 2;

1 Functions

1-112

nk = 1;
init_sys = bj(data,[2 2 2 2 1]);

Create an estimation option set to refine the parameters of the estimated model.

opt = bjOptions;
opt.Display = 'on';
opt.SearchOptions.MaxIterations = 50;

opt is an estimation option set that configures the estimation to iterate 50 times at most and display
the estimation progress.

Reestimate the model parameters using the estimation option set.

sys = bj(data,init_sys,opt);

sys is estimated using init_sys for the initial parameterization for the polynomial coefficients.

To view the estimation result, enter sys.Report.

Estimate MIMO Box-Jenkins Model

Estimate a multi-input, multi-output Box-Jenkins model from estimated data.

Load measured data.

load iddata1 z1
load iddata2 z2
data = [z1 z2(1:300)];

data contains the measured data for two inputs and two outputs.

Estimate the model.

 nb = [2 2; 3 4];
 nc = [2;2];
 nd = [2;2];
 nf = [1 0; 2 2];
 nk = [1 1; 0 0];
 sys = bj(data,[nb nc nd nf nk]);

The polynomial order coefficients contain one row for each output.

sys is a discrete-time idpoly model with two inputs and two outputs.

Obtain Initial Conditions

Load the data.

load iddata1ic z1i

Estimate a second-order Box-Jenkins model sys and return the initial conditions in ic.

 bj

1-113

nb = 2;
nc = 2;
nd = 2;
nf = 2;
nk = 1;
[sys,ic] = bj(z1i,[nb nc nd nf nk]);
ic

ic =
 initialCondition with properties:

 A: [4x4 double]
 X0: [4x1 double]
 C: [0.8744 0.5426 0.4647 -0.5285]
 Ts: 0.1000

ic is an initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z1i output signal.

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables.

Estimation data, specified as a timetable that uses a regularly spaced time vector. tt contains
variables representing input and output channels. For multiexperiment data, tt is a cell array of
timetables of length Ne, where Ne is the number of experiments

The software determines the number of input and output channels to use for estimation from the
dimensions of the specified polynomial orders. The input/output channel selection depends on
whether the 'InputName' and 'OutputName' name-value arguments are specified.

• If 'InputName' and 'OutputName' are not specified, then the software uses the first Nu
variables of tt as inputs and the next Ny variables of tt as outputs.

• If 'InputName' and 'OutputName' are specified, then the software uses the specified variables.
The number of specified input and output names must be consistent with Nu and Ny.

• For functions that can estimate a time series model, where there are no inputs, 'InputName'
does not need to be specified.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

1 Functions

1-114

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

For time series data, which contains only outputs and no inputs, specify y only.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data
iddata object

Estimation data, specified as an iddata object that contains time-domain input and output signal
values.

You cannot use frequency-domain data for estimating bj models.

[nb nc nd nf nk] — Model orders and delays
vector of matrices

Vector of matrices with nonnegative integers that contain the orders and delays of the Box-Jenkins
model, as the following list describes.

• nb — Order of the B polynomial + 1, specified as an Ny-by-Nu matrix, where Ny is the number of
outputs and Nu is the number of inputs.

• nc — Order of the C polynomial + 1, specified as an Ny-by-1 matrix.
• nd — Order of the D polynomial + 1, specified as an Ny-by-1 matrix.
• nf — Order of the F polynomial + 1, specified as an Ny-by-Nu matrix.
• nk — Input delay in units of samples, specified as an Nu-by-Ny matrix.

init_sys — Linear system
idpoly model | linear model | structure

Polynomial model that configures the initial parameterization of sys, specified as an idpoly model
with the Box-Jenkins structure that has only B, C, D and F polynomials active.

bj uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.

Use the Structure property of init_sys to configure initial guesses and constraints for B(q), F(q),
C(q) and D(q).

To specify an initial guess for, say, the C(q) term of init_sys, set init_sys.Structure.C.Value
to the guess value.

To specify constraints for, say, the B(q) term of init_sys:

• set init_sys.Structure.B.Minimum to the minimum B(q) coefficient values
• set init_sys.Structure.B.Maximum to the maximum B(q) coefficient values
• set init_sys.Structure.B.Free to indicate which B(q) coefficients are free for estimation

You can similarly specify the initial guess and constraints for the other polynomials.

 bj

1-115

opt — Estimation options
bjOptions option set

Estimation options, specified as an bjOptions option set. Options specified by opt include:

• Estimation objective
• Handling of initial conditions
• Numerical search method and the associated options

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'InputDelay',1

InputName — Input channel names
" " (default) | string | character vector | array of strings | cell array of character vectors

Input channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets all but the last variable in tt
as input channels. When you want to select a subset of the timetable variables as input channels use
'InputName' to identify them. For example, sys = bj(tt,__,'InputName',["u1" "u2"])
selects the variables u1 and u2 as the input channels for the estimation.

OutputName — Output signal names
" " (default) | character vector | string | cell array of character vectors or strings

Output channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets the last variable in tt as the
sole output channel. When you want to select a subset of the timetable variables as output channels,
use 'OutputName' to identify them. For example, sys = bj(tt,__,'OutputName',["y1"
"y3"]) selects the variables y1 and y3 as the output channels for the estimation.

Ts — Sample time
1 (default) | positive scalar

Sample time, specified as the comma-separated pair consisting of 'Ts' and the sample time in
seconds. When you use matrix-based data (u,y), you must specify 'Ts' if you require a sample time
other than the assumed sample time of 1 second.

To obtain the data sample time for a timetable tt, use the timetable property
tt.Properties.Timestep.
Example: bj(umat1,ymat1,___,'Ts',0.08) computes a model with sample time of 0.08 seconds.

InputDelay — Input delays
0 (default) | positive integer vector | integer scalar

Input delays for each input channel, specified as the comma-separated pair consisting of
'InputDelay' and a numeric vector.

1 Functions

1-116

• For continuous-time models, specify 'InputDelay' in the time units stored in the TimeUnit
property.

• For discrete-time models, specify 'InputDelay' in integer multiples of the sample time Ts. For
example, setting 'InputDelay' to 3 specifies a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

To apply the same delay to all channels, specify 'InputDelay' as a scalar.

For an example, see .

IODelay — Transport delays
0 (default) | scalar | numeric array

Transport delays for each input/output pair, specified as the comma-separated pair consisting of
'IODelay' and a numeric array.

• For continuous-time models, specify 'IODelay' in the time units stored in the TimeUnit
property.

• For discrete-time models, specify 'IODelay' in integer multiples of the sample time Ts. For
example, setting 'IODelay' to 4 specifies a transport delay of four sampling periods.

For a system with Nu inputs and Ny outputs, set 'IODelay' to an Ny-by-Nu matrix. Each entry is an
integer value representing the transport delay for the corresponding input/output pair.

To apply the same delay to all channels, specify 'IODelay' as a scalar.

You can specify 'IODelay' as an alternative to the nk value. Doing so simplifies the model structure
by reducing the number of leading zeros in the B polynomial. In particular, you can represent
max(nk-1,0) leading zeros as input/output delays using 'IODelay' instead.

IntegrateNoise — Use integrators in noise channel
false(Ny,1) (default) | logical scalar | logical vector

Flag to use integrators in the noise channels, specified as false(Ny,1), a logical scalar, or a logical
vector of length Ny, where Ny is the number of outputs.

Setting IntegrateNoise to true for a particular output results in the model:

y(t) = B(q)
F(q)u(t − nk) + C(q)

D(q)
e(t)

1− q−1

Here, 1
1− q−1 is the integrator in the noise channel,e(t).

Output Arguments
sys — Box-Jenkins polynomial model
idpoly object

Box-Jenkins polynomial model that fits the estimation data, returned as a discrete-time idpoly
object. This model is created using the specified model orders, delays, and estimation options.

 bj

1-117

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent estimation

parameters.
• 'backcast' — The initial conditions were estimated using the best least squares
fit.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option set is 'auto'.

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See bjOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

1 Functions

1-118

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information on using Report, see “Estimation Report”.

 bj

1-119

ic — Initial conditions
initialCondition object | object array of initialCondition values

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

• For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x0).

• For a multiple-experiment data set with Ne experiments, ic is an object array of length Ne that
contains one set of initialCondition values for each experiment.

If bj returns ic values of 0 and the you know that you have non-zero initial conditions, set the
'InitialCondition' option in bjOptions to 'estimate' and pass the updated option set to bj.
For example:

opt = bjOptions('InitialCondition','estimate')
[sys,ic] = bj(data,[nb nc nd nf nk],opt)

The default 'auto' setting of 'InitialCondition' uses the 'zero' method when the initial
conditions have a negligible effect on the overall estimation-error minimization process. Specifying
'estimate' ensures that the software estimates values for ic.

For more information, see initialCondition. For an example of using this argument, see .“Obtain
Initial Conditions” on page 1-113.

More About
Box-Jenkins Model Structure

The general Box-Jenkins model structure is:

y(t) = ∑
i = 1

nu Bi(q)
Fi(q)ui t − nki + C(q)

D(q)e(t)

where nu is the number of input channels.

The orders of Box-Jenkins model are defined as follows:

nb: B(q) = b1 + b2q−1 + ... + bnbq−nb + 1

nc: C(q) = 1 + c1q−1 + ... + cncq−nc

nd: D(q) = 1 + d1q−1 + ... + dndq−nd

nf : F(q) = 1 + f1q−1 + ... + fnfq−nf

Alternatives
To estimate a continuous-time model, use:

• tfest — returns a transfer function model
• ssest — returns a state-space model
• bj to first estimate a discrete-time model and convert it a continuous-time model using d2c.

1 Functions

1-120

Version History
Introduced before R2006a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Estimate and apply initial conditions

Initial-condition estimation was added for all estimated linear models, including transfer function and
polynomial models. This capability eliminates the need to first convert models into state-space models
to obtain and account for initial conditions when simulating the model. For more information, see the
[sys,ic] = bj(__) syntax and the ic output argument descriptions.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

References
[1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR,

1999.

See Also
bjOptions | tfest | arx | armax | iv4 | ssest | oe | polyest | idpoly | iddata | d2c |
forecast | sim | compare

Topics
“Regularized Estimates of Model Parameters”
“Apply Initial Conditions When Simulating Identified Linear Models”

 bj

1-121

bjOptions
Option set for bj

Syntax
opt = bjOptions
opt = bjOptions(Name,Value)

Description
opt = bjOptions creates the default options set for bj.

opt = bjOptions(Name,Value) creates an option set with the options specified by one or more
Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate' | 'backcast'

Handling of initial conditions during estimation, specified as one of the following values:

• 'zero' — The initial conditions are set to zero.
• 'estimate' — The initial conditions are treated as independent estimation parameters.
• 'backcast' — The initial conditions are estimated using the best least squares fit.
• 'auto' — The software chooses the method to handle initial conditions based on the estimation

data.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

1 Functions

1-122

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh], where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

 bjOptions

1-123

• 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as a structure with the fields in the
following table. For more information on regularization, see “Regularized Estimates of Model
Parameters”.

Field Name Description Default
Lambda Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the
estimation cost.

The default value of 0 implies no regularization.

0

1 Functions

1-124

Field Name Description Default
R Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-
definite matrix. The length must be equal to the number of free
parameters of the model.

For black-box models, using the default value is recommended. For
structured and grey-box models, you can also specify a vector of np
positive numbers such that each entry denotes the confidence in the
value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where
npfree is the number of free parameters.

1

Nominal The nominal value towards which the free parameters are pulled
during estimation.

The default value of 0 implies that the parameter values are pulled
towards zero. If you are refining a model, you can set the value to
'model' to pull the parameters towards the parameter values of the
initial model. The initial parameter values must be finite for this
setting to work.

0

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

 bjOptions

1-125

SearchMethod Description
'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

1 Functions

1-126

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

 bjOptions

1-127

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

1 Functions

1-128

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

 bjOptions

1-129

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

1 Functions

1-130

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight
in the loss function. The standard deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors, divided by 0.7. For more information on
robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic loss function.
When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For
time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
• MaxSize — Specifies the maximum number of elements in a segment when input-output data is

split into segments.

MaxSize must be a positive integer.

Default: 250000
• StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

• s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0
• z — Specifies the maximum distance of all poles from the origin to test stability of discrete-

time models. A model is considered stable if all poles are within the distance z from the origin.

 bjOptions

1-131

Default: 1+sqrt(eps)
• AutoInitThreshold — Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

yp, z − ymeas
yp, e− ymeas

> AutoInitThreshold

• ymeas is the measured output.
• yp,z is the predicted output of a model estimated using zero initial states.
• yp,e is the predicted output of a model estimated using estimated initial states.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output Arguments
opt — Options set for bj
bjOptions option set

Option set for bj, returned as an bjOptions option set.

Examples

Create Default Options Set for Box-Jenkins Estimation

opt = bjOptions;

Specify Options for Box-Jenkins Estimation

Create an options set for bj using zero initial conditions for estimation. Set Display to 'on'.

opt = bjOptions('InitialCondition','zero','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = bjOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';

Version History
Introduced in R2012a

Renaming of Estimation and Analysis Options

1 Functions

1-132

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References

[1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates”. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3–8,
2005. Oxford, UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

See Also
bj | idfilt

Topics
“Loss Function and Model Quality Metrics”

 bjOptions

1-133

blkdiag
Block-diagonal concatenation of models

Syntax
sys = blkdiag(sys1,sys2,...,sysN)

Description
sys = blkdiag(sys1,sys2,...,sysN) produces the aggregate system

sys1 0 .. 0
0 sys2 . :
: . . 0
0 .. 0 sysN

blkdiag is equivalent to append.

Examples

Perform Block-Diagonal Concatenation

Perform block-diagonal concatenation of a transfer function model and a state-space model.

Create the SISO continuous-time transfer function model, 1/s.

sys1 = tf(1,[1 0]);

Create a SISO continuous-time state-space model with state-space matrices 1,2,3, and 4.

sys2 = ss(1,2,3,4);

Concatenate sys1, a SISO static gain system, and sys2. The resulting model is a 3-input, 3-output
state-space model.

sys = blkdiag(sys1,10,sys2)

sys =

 A =
 x1 x2
 x1 0 0
 x2 0 1

 B =
 u1 u2 u3
 x1 1 0 0
 x2 0 0 2

 C =

1 Functions

1-134

 x1 x2
 y1 1 0
 y2 0 0
 y3 0 3

 D =
 u1 u2 u3
 y1 0 0 0
 y2 0 10 0
 y3 0 0 4

Continuous-time state-space model.

Alternatively, use the append command.

sys = append(sys1,10,sys2);

Version History
Introduced in R2009a

See Also
append | series | parallel | feedback

 blkdiag

1-135

bode
Bode plot of frequency response, or magnitude and phase data

Syntax
bode(sys)
bode(sys1,sys2,...,sysN)
bode(sys1,LineSpec1,...,sysN,LineSpecN)
bode(___ ,w)

[mag,phase,wout] = bode(sys)
[mag,phase,wout] = bode(sys,w)
[mag,phase,wout,sdmag,sdphase] = bode(sys,w)

Description
bode(sys) creates a Bode plot of the frequency response of a dynamic system model sys. The plot
displays the magnitude (in dB) and phase (in degrees) of the system response as a function of
frequency. bode automatically determines frequencies to plot based on system dynamics.

If sys is a multi-input, multi-output (MIMO) model, then bode produces an array of Bode plots, each
plot showing the frequency response of one I/O pair.

If sys is a model with complex coefficients, then in:

• Log frequency scale, the plot shows two branches, one for positive frequencies and one for
negative frequencies. The plot also shows arrows to indicate the direction of increasing frequency
values for each branch. See “Bode Plot of Model with Complex Coefficients” on page 1-145.

• Linear frequency scale, the plot shows a single branch with a symmetric frequency range centered
at a frequency value of zero.

bode(sys1,sys2,...,sysN) plots the frequency response of multiple dynamic systems on the
same plot. All systems must have the same number of inputs and outputs.

bode(sys1,LineSpec1,...,sysN,LineSpecN) specifies a color, line style, and marker for each
system in the plot.

bode(___ ,w) plots system responses for frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then bode plots the response at frequencies ranging
between wmin and wmax.

• If w is a vector of frequencies, then bode plots the response at each specified frequency. The
vector w can contain both negative and positive frequencies.

You can use w with any of the input-argument combinations in previous syntaxes.

[mag,phase,wout] = bode(sys) returns the magnitude and phase of the response at each
frequency in the vector wout. The function automatically determines frequencies in wout based on
system dynamics. This syntax does not draw a plot.

1 Functions

1-136

[mag,phase,wout] = bode(sys,w) returns the response data at the frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then wout contains frequencies ranging between
wmin and wmax.

• If w is a vector of frequencies, then wout = w.

[mag,phase,wout,sdmag,sdphase] = bode(sys,w) also returns the estimated standard
deviation of the magnitude and phase values for the identified model sys. If you omit w, then the
function automatically determines frequencies in wout based on system dynamics.

Examples

Bode Plot of Dynamic System

Create a Bode plot of the following continuous-time SISO dynamic system.

H(s) = s2 + 0 . 1s + 7 . 5
s4 + 0 . 12s3 + 9s2 .

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode(H)

bode automatically selects the plot range based on the system dynamics.

 bode

1-137

Bode Plot at Specified Frequencies

Create a Bode plot over a specified frequency range. Use this approach when you want to focus on
the dynamics in a particular range of frequencies.

H = tf([-0.1,-2.4,-181,-1950],[1,3.3,990,2600]);
bode(H,{1,100})
grid on

The cell array {1,100} specifies the minimum and maximum frequency values in the Bode plot.
When you provide frequency bounds in this way, the function selects intermediate points for
frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency
response.

w = [1 5 10 15 20 23 31 40 44 50 85 100];
bode(H,w,'.-')
grid on

1 Functions

1-138

bode plots the frequency response at the specified frequencies only.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized system on
the same Bode plot.

Create continuous-time and discrete-time dynamic systems.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');

Create a Bode plot that displays both systems.

bode(H,Hd)

 bode

1-139

The Bode plot of a discrete-time system includes a vertical line marking the Nyquist frequency of the
system.

Bode Plot with Specified Line Attributes

Specify the line style, color, or marker for each system in a Bode plot using the LineSpec input
argument.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');
bode(H,'r',Hd,'b--')

1 Functions

1-140

The first LineSpec, 'r', specifies a solid red line for the response of H. The second LineSpec,
'b--', specifies a dashed blue line for the response of Hd.

Obtain Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a SISO system.

If you do not specify frequencies, bode chooses frequencies based on the system dynamics and
returns them in the third output argument.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
[mag,phase,wout] = bode(H);

Because H is a SISO model, the first two dimensions of mag and phase are both 1. The third
dimension is the number of frequencies in wout.

size(mag)

ans = 1×3

 1 1 41

length(wout)

 bode

1-141

ans = 41

Thus, each entry along the third dimension of mag gives the magnitude of the response at the
corresponding frequency in wout.

Magnitude and Phase of MIMO System

For this example, create a 2-output, 3-input system.

rng(0,'twister'); % For reproducibility
H = rss(4,2,3);

For this system, bode plots the frequency responses of each I/O channel in a separate plot in a single
figure.

bode(H)

Compute the magnitude and phase of these responses at 20 frequencies between 1 and 10 radians.

w = logspace(0,1,20);
[mag,phase] = bode(H,w);

mag and phase are three-dimensional arrays, in which the first two dimensions correspond to the
output and input dimensions of H, and the third dimension is the number of frequencies. For instance,
examine the dimensions of mag.

1 Functions

1-142

size(mag)

ans = 1×3

 2 3 20

Thus, for example, mag(1,3,10) is the magnitude of the response from the third input to the first
output, computed at the 10th frequency in w. Similarly, phase(1,3,10) contains the phase of the
same response.

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified from input/output data, to a
nonparametric model identified using the same data.

Identify parametric and nonparametric models based on data.

load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);

Using the spa and tfest commands requires System Identification Toolbox™ software.

sys_np is a nonparametric identified model. sys_p is a parametric identified model.

Create a Bode plot that includes both systems.

bode(sys_np,sys_p,w);
legend('sys-np','sys-p')

 bode

1-143

You can display the confidence region on the Bode plot by right-clicking the plot and selecting
Characteristics > Confidence Region.

Obtain Magnitude and Phase Standard Deviation Data of Identified Model

Compute the standard deviation of the magnitude and phase of an identified model. Use this data to
create a 3σ plot of the response uncertainty.

Identify a transfer function model based on data. Obtain the standard deviation data for the
magnitude and phase of the frequency response.

load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(0,10*pi,128);
[mag,ph,w,sdmag,sdphase] = bode(sys_p,w);

Using the tfest command requires System Identification Toolbox™ software.

sys_p is an identified transfer function model. sdmag and sdphase contain the standard deviation
data for the magnitude and phase of the frequency response, respectively.

Use the standard deviation data to create a 3σ plot corresponding to the confidence region.

1 Functions

1-144

mag = squeeze(mag);
sdmag = squeeze(sdmag);
semilogx(w,mag,'b',w,mag+3*sdmag,'k:',w,mag-3*sdmag,'k:');

Bode Plot of Model with Complex Coefficients

Create a Bode plot of a model with complex coefficients and a model with real coefficients on the
same plot.

rng(0)
A = [-3.50,-1.25-0.25i;2,0];
B = [1;0];
C = [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Gc = ss(A,B,C,D);
Gr = rss(5);
bode(Gc,Gr)
legend('Complex-coefficient model','Real-coefficient model','Location','southwest')

 bode

1-145

In log frequency scale, the plot shows two branches for complex-coefficient models, one for positive
frequencies, with a right-pointing arrow, and one for negative frequencies, with a left-pointing arrow.
In both branches, the arrows indicate the direction of increasing frequencies. The plots for real-
coefficient models always contain a single branch with no arrows.

You can change the frequency scale of the Bode plot by right-clicking the plot and selecting
Properties. In the Property Editor dialog, on the Units tab, set the frequency scale to linear
scale. Alternatively, you can use the bodeplot function with a bodeoptions object to create a
customized plot.

opt = bodeoptions;
opt.FreqScale = 'Linear';

Create the plot with customized options.

bodeplot(Gc,Gr,opt)
legend('Complex-coefficient model','Real-coefficient model','Location','southwest')

1 Functions

1-146

In linear frequency scale, the plot shows a single branch with a symmetric frequency range centered
at a frequency value of zero. The plot also shows the negative-frequency response of a real-coefficient
model when you plot the response along with a complex-coefficient model.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox™ software.)

• For tunable control design blocks, the function evaluates the model at its current value for
both plotting and returning frequency response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model. When you use output arguments, the function returns frequency response data
for the nominal model only.

• Frequency-response data models such as frd models. For such models, the function plots the
response at frequencies defined in the model.

 bode

1-147

• Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can
also plot confidence intervals and return standard deviations of the frequency response. See
“Bode Plot of Identified Model” on page 1-143.

If sys is an array of models, the function plots the frequency responses of all models in the array on
the same axes.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute and plot frequency response, specified as the cell array
{wmin,wmax} or as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the response at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the response at each specified
frequency. For example, use logspace to generate a row vector with logarithmically spaced
frequency values. The vector w can contain both positive and negative frequencies.

For models with complex coefficients, if you specify a frequency range of [wmin,wmax] for your plot,
then in:

• Log frequency scale, the plot frequency limits are set to [wmin,wmax] and the plot shows two
branches, one for positive frequencies [wmin,wmax] and one for negative frequencies [–wmax,–wmin].

• Linear frequency scale, the plot frequency limits are set to [–wmax,wmax] and the plot shows a
single branch with a symmetric frequency range centered at a frequency value of zero.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

Output Arguments
mag — Magnitude of system response
3-D array

Magnitude of the system response in absolute units, returned as a 3-D array. The dimensions of this
array are (number of system outputs) × (number of system inputs) × (number of frequency points).

• For SISO systems, mag(1,1,k) gives the magnitude of the response at the kth frequency in w or
wout. For an example, see “Obtain Magnitude and Phase Data” on page 1-141.

1 Functions

1-148

• For MIMO systems, mag(i,j,k) gives the magnitude of the response at the kth frequency from
the jth input to the ith output. For an example, see “Magnitude and Phase of MIMO System” on
page 1-142.

To convert the magnitude from absolute units to decibels, use:

magdb = 20*log10(mag)

phase — Phase of system response
3-D array

Phase of the system response in degrees, returned as a 3-D array. The dimensions of this array are
(number of outputs) × (number of inputs) × (number of frequency points).

• For SISO systems, phase(1,1,k) gives the phase of the response at the kth frequency in w or
wout. For an example, see “Obtain Magnitude and Phase Data” on page 1-141.

• For MIMO systems, phase(i,j,k) gives the phase of the response at the kth frequency from the
jth input to the ith output. For an example, see “Magnitude and Phase of MIMO System” on page
1-142.

wout — Frequencies
vector

Frequencies at which the function returns the system response, returned as a column vector. The
function chooses the frequency values based on the model dynamics, unless you specify frequencies
using the input argument w.

wout also contains negative frequency values for models with complex coefficients.

Frequency values are in radians/TimeUnit, where TimeUnit is the value of the TimeUnit property
of sys.

sdmag — Standard deviation of magnitude
3-D array | []

Estimated standard deviation of the magnitude of the response at each frequency point, returned as a
3-D array. sdmag has the same dimensions as mag.

If sys is not an identified LTI model, sdmag is [].

sdphase — Standard deviation of phase
3-D array | []

Estimated standard deviation of the phase of the response at each frequency point, returned as a 3-D
array. sdphase has the same dimensions as phase.

If sys is not an identified LTI model, sdphase is [].

Tips
• When you need additional plot customization options, use bodeplot instead.

 bode

1-149

Algorithms
bode computes the frequency response as follows:

1 Compute the zero-pole-gain (zpk) representation of the dynamic system.
2 Evaluate the gain and phase of the frequency response based on the zero, pole, and gain data for

each input/output channel of the system.

• For continuous-time systems, bode evaluates the frequency response on the imaginary axis s
= jω and considers only positive frequencies.

• For discrete-time systems, bode evaluates the frequency response on the unit circle. To
facilitate interpretation, the command parameterizes the upper half of the unit circle as:

z = e jωTs, 0 ≤ ω ≤ ωN = π
Ts

,

where Ts is the sample time and ωN is the Nyquist frequency. The equivalent continuous-time
frequency ω is then used as the x-axis variable. Because H e jωTs is periodic with period 2ωN,
bode plots the response only up to the Nyquist frequency ωN. If sys is a discrete-time model
with unspecified sample time, bode uses Ts = 1.

Version History
Introduced before R2006a

See Also
bodeplot | freqresp | nyquist | spectrum | step

Topics
“Plot Bode and Nyquist Plots at the Command Line”
“Dynamic System Models”

External Websites
Transfer Function Analysis of Dynamic Systems (MathWorks Teaching Resources)

1 Functions

1-150

https://www.mathworks.com/matlabcentral/fileexchange/94635-transfer-function-analysis-of-dynamic-systems

bodemag
Magnitude-only Bode plot of frequency response

Syntax
bodemag(sys)
bodemag(sys1,sys2,...,sysN)
bodemag(sys1,LineSpec1,...,sysN,LineSpecN)
bodemag(___ ,w)

Description
bodemag enables you to generate magnitude-only plots to visualize the magnitude frequency
response of a dynamic system.

For a more comprehensive function, see bode. bode provides magnitude and phase information. If
you have System Identification toolbox, bode also returns the computed values, including statistical
estimates.

For more customizable plotting options, see bodeplot.

bodemag(sys) creates a Bode magnitude plot of the frequency response of the dynamic system
model sys. The plot displays the magnitude (in dB) of the system response as a function of frequency.
bodemag automatically determines frequencies to plot based on system dynamics.

If sys is a multi-input, multi-output (MIMO) model, then bodemag produces an array of Bode
magnitude plots in which each plot shows the frequency response of one I/O pair.

bodemag(sys1,sys2,...,sysN) plots the frequency response of multiple dynamic systems on the
same plot. All systems must have the same number of inputs and outputs.

bodemag(sys1,LineSpec1,...,sysN,LineSpecN) specifies a color, line style, and marker for
each system in the plot.

bodemag(___ ,w) plots system responses for frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then bodemag plots the response at frequencies
ranging between wmin and wmax.

• If w is a vector of frequencies, then bodemag plots the response at each specified frequency.

You can use this syntax with any of the input-argument combinations in previous syntaxes.

Examples

Bode Magnitude Plot of Dynamic System

Create a Bode magnitude plot of the following continuous-time SISO dynamic system.

H s = s2 + 0 . 1s + 7 . 5
s4 + 0 . 12s3 + 9s2

 bodemag

1-151

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bodemag(H)

bodemag automatically selects the plot range based on the system dynamics.

Bode Magnitude Plot at Specified Frequencies

Create a Bode magnitude plot over a specified frequency range. Use this approach when you want to
focus on the dynamics in a particular range of frequencies.

H = tf([-0.1,-2.4,-181,-1950],[1,3.3,990,2600]);
bodemag(H,{1,100})
grid on

1 Functions

1-152

The cell array {1,100} specifies the minimum and maximum frequency values in the Bode
magnitude plot. When you provide frequency bounds in this way, the function selects intermediate
points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency
response.

w = [1 5 10 15 20 23 31 40 44 50 85 100];
bodemag(H,w,'.-')
grid on

 bodemag

1-153

bodemag plots the frequency response at the specified frequencies only.

Compare Bode Magnitude Plots of Several Dynamic Systems

Compare the magnitude of the frequency response of a continuous-time system to an equivalent
discretized system on the same Bode plot.

Create continuous-time and discrete-time dynamic systems.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');

Create a Bode magnitude plot that displays the responses of both systems.

bodemag(H,Hd)

1 Functions

1-154

The Bode magnitude plot of a discrete-time system includes a vertical line marking the Nyquist
frequency of the system.

Bode Magnitude Plot with Specified Line and Marker Attributes

Specify the color, linestyle, or marker for each system in a Bode magnitude plot using the LineSpec
input arguments.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');
bodemag(H,'r',Hd,'b--')

 bodemag

1-155

The first LineSpec argument 'r' specifies a solid red line for the response of H. The second
LineSpec argument 'b--' specifies a dashed blue line for the response of Hd.

Magnitude of MIMO System

For this example, create a 2-output, 3-input system.

rng(0,'twister'); % For reproducibility
H = rss(4,2,3);

For this system, bodemag plots the magnitude-only frequency responses of each I/O channel in a
separate plot in a single figure.

bodemag(H)

1 Functions

1-156

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value for
both plotting and returning frequency response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model. When you use output arguments, the function returns frequency response data
for the nominal model only.

• Frequency-response data models such as frd models. For such models, the function plots the
response at frequencies defined in the model.

• Identified LTI models, such as idtf, idss, or idproc models.

If sys is an array of models, the function plots the frequency responses of all models in the array on
the same axes.

 bodemag

1-157

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute and plot frequency response, specified as the cell array
{wmin,wmax} or as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the index at frequencies
ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the index at each specified frequency.
For example, use logspace to generate a row vector with logarithmically spaced frequency
values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

Algorithms
bodemag computes the frequency response as follows:

1 Compute the zero-pole-gain (zpk) representation of the dynamic system.
2 Evaluate the gain and phase of the frequency response based on the zero, pole, and gain data for

each input/output channel of the system.

• For continuous-time systems, bodemag evaluates the frequency response on the imaginary
axis s = jω and considers only positive frequencies.

• For discrete-time systems, bodemag evaluates the frequency response on the unit circle. To
facilitate interpretation, the command parameterizes the upper half of the unit circle as:

z = e jωTs, 0 ≤ ω ≤ ωN = π
Ts

,

where Ts is the sample time and ωN is the Nyquist frequency. The equivalent continuous-time
frequency ω is then used as the x-axis variable. Because H e jωTs is periodic with period 2ωN,
bodemag plots the response only up to the Nyquist frequency ωN. If sys is a discrete-time
model with unspecified sample time, bodemag uses Ts = 1.

1 Functions

1-158

Version History
Introduced in R2012a

See Also
bode | bodeplot | freqresp | nyquist | spectrum | step

Topics
“Plot Bode and Nyquist Plots at the Command Line”
“Dynamic System Models”

 bodemag

1-159

bodeoptions
Create list of Bode plot options

Description
Use the bodeoptions command to create a BodeOptions object to customize Bode plot
appearance. You can also use the command to override the plot preference settings in the MATLAB
session in which you create the Bode plots.

Creation

Syntax
plotoptions = bodeoptions
plotoptions = bodeoptions('cstprefs')

Description

plotoptions = bodeoptions returns a default set of plot options for use with the bodeplot
command. You can use these options to customize the Bode plot appearance using the command line.
This syntax is useful when you want to write a script to generate plots that look the same regardless
of the preference settings of the MATLAB session in which you run the script.

plotoptions = bodeoptions('cstprefs') initializes the plot options with the options you
selected in the Control System Toolbox and System Identification Toolbox Preferences Editor. For
more information about the editor, see “Toolbox Preferences Editor”. This syntax is useful when you
want to change a few plot options but otherwise use your default preferences. A script that uses this
syntax may generate results that look different when run in a session with different preferences.

Properties
FreqUnits — Frequency units
'rad/s' (default)

Frequency units, specified as one of the following values:

• 'Hz'
• 'rad/second'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'

1 Functions

1-160

• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

FreqScale — Frequency scale
'log' (default) | 'linear'

Frequency scale, specified as either 'log' or 'linear' .

MagUnits — Magnitude units
'dB' (default) | 'abs'

Magnitude units, specified as either 'dB' or absolute value 'abs'.

MagScale — Magnitude scale
'linear' (default) | 'log'

Magnitude scale, specified as either 'log' or 'linear'.

MagVisible — Toggle magnitude plot visibility
'on' (default) | 'off'

Toggle magnitude plot visibility, specified as either 'on' or 'off'.

MagLowerLimMode — Lower magnitude limit mode
'auto' (default) | 'manual'

Lower magnitude limit mode, specified as either 'auto' or 'manual'.

MagLowerLim — Lower magnitude limit value
'-inf' (default) | scalar

Lower magnitude limit value, specified as a scalar.

PhaseUnits — Phase units
'deg' (default) | 'rad'

Phase units, specified as either 'deg' or 'rad' to change to degrees or radians, respectively.

 bodeoptions

1-161

PhaseVisible — Toggle phase plot visibility
'on' (default) | 'off'

Toggle phase plot visibility, specified as either 'on' or 'off'.

PhaseWrapping — Enable phase wrapping
'off' (default) | 'on'

Enable phase wrapping, specified as either 'on' or 'off'. When you set PhaseWrapping to 'on', the
plot wraps accumulated phase at the value specified by the PhaseWrappingBranch property.

PhaseWrappingBranch — Phase wrapping value
-180 (default) | integer

Phase wrapping value at which the plot wraps accumulated phase when PhaseWrapping is set to
'on'. By default, phase wraps into the interval [-180°,180°].

PhaseMatching — Enable phase matching
'off' (default) | 'on'

Enable phase matching, specified as either 'on' or 'off'. Turning PhaseMatching 'on' matches the
phase to the value specified in PhaseMatchingValue at the frequency specified in
PhaseMatchingFreq

PhaseMatchingFreq — Phase matching frequency
0 (default) | scalar

Phase matching frequency, specified as a scalar.

PhaseMatchingValue — Phase matching response value
0 (default) | scalar

Phase matching response value, specified as a scalar.

ConfidenceRegionNumberSD — Number of standard deviations to use to plot the confidence
region
1 (default) | scalar

Number of standard deviations to use to plot the confidence region, specified as a scalar. This is
applicable to identified models only.

IOGrouping — Grouping of input-output pairs
'none' (default) | 'inputs' | 'outputs' | 'all'

Grouping of input-output (I/O) pairs, specified as one of the following:

• 'none' — No input-output grouping.
• 'inputs' — Group only the inputs.
• 'outputs' — Group only the outputs.
• 'all' — Group all the I/O pairs.

InputLabels — Input label style
structure (default)

Input label style, specified as a structure with the following fields:

1 Functions

1-162

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet
[0.4,0.4,0.4].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

OutputLabels — Output label style
structure (default)

Output label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet
[0.4,0.4,0.4].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

InputVisible — Toggle display of inputs
{'on'} (default) | {'off'} | cell array

Toggle display of inputs, specified as either {'on'}, {'off'} or a cell array with multiple elements .

OutputVisible — Toggle display of outputs
{'on'} (default) | {'off'} | cell array

Toggle display of outputs, specified as either {'on'}, {'off'} or a cell array with multiple
elements.

Title — Title text and style
structure (default)

 bodeoptions

1-163

Title text and style, specified as a structure with the following fields:

• String — Label text, specified as a character vector. By default, the plot is titled 'Bode Diagram'.
• FontSize — Font size, specified as a scalar value greater than zero in point units. The default

font size depends on the specific operating system and locale. One point equals 1/72 inch.
• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the

FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

XLabel — X-axis label text and style
structure (default)

X-axis label text and style, specified as a structure with the following fields:

• String — Label text, specified as a character vector. By default, the axis is titled based on the
frequency units FreqUnits.

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

YLabel — Y-axis label text and style
structure (default)

Y-axis label text and style, specified as a structure with the following fields:

• String — Label text, specified as a cell array of character vectors. By default, the axis label is a
1x2 cell array with 'Magnitude' and 'Phase'.

1 Functions

1-164

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TickLabel — Tick label style
structure (default)

Tick label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

Grid — Toggle grid display
'off' (default) | 'on'

Toggle grid display on the plot, specified as either 'off' or 'on'.

GridColor — Color of the grid lines
[0.15,0.15,0.15] (default) | RGB triplet

Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB
triplet [0.15,0.15,0.15].

XLimMode — X-axis limit selection mode
'auto' (default) | 'manual' | cell array

Selection mode for the x-axis limits, specified as one of these values:

• 'auto' — Enable automatic limit selection, which is based on the total span of the plotted data.
• 'manual' — Manually specify the axis limits. To specify the axis limits, set the XLim property.

YLimMode — Y-axis limit selection mode
'auto' (default) | 'manual' | cell array

 bodeoptions

1-165

Selection mode for the y-axis limits, specified as one of these values:

• 'auto' — Enable automatic limit selection, which is based on the total span of the plotted data.
• 'manual' — Manually specify the axis limits. To specify the axis limits, set the YLim property.

XLim — X-axis limits
'{[1,10]}' (default) | cell array of two-element vector of the form [min,max] | cell array

X-axis limits, specified as a cell array of two-element vector of the form [min,max].

YLim — Y-axis limits
'{[1,10]}' (default) | cell array of two-element vector of the form [min,max] | cell array

Y-axis limits, specified as a cell array of two-element vector of the form [min,max].

Object Functions
bode Bode plot of frequency response, or magnitude and phase data
bodeplot Plot Bode frequency response with additional plot customization options
getoptions Return plot options handle or plot options property
setoptions Set plot options handle or plot options property

Examples

Custom Bode Plot Settings Independent of Preferences

For this example, create a Bode plot that uses 15-point red text for the title. This plot should look the
same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set using bodeoptions.

opts = bodeoptions;

Next, change the required properties of the options set opts.

opts.Title.FontSize = 15;
opts.Title.Color = [1 0 0];
opts.FreqUnits = 'Hz';

Now, create a Bode plot using the options set opts.

bodeplot(tf(1,[1,1]),opts);

1 Functions

1-166

Because opts begins with a fixed set of options, the plot result is independent of the toolbox
preferences of the MATLAB session.

Create Bode Plot with Custom Settings

Create a Bode plot that suppresses the phase plot and uses frequency units Hz instead of the default
radians/second. Otherwise, the plot uses the settings that are saved in the toolbox preferences.

First, create an options set based on the toolbox preferences.

opts = bodeoptions('cstprefs');

Change properties of the options set.

opts.PhaseVisible = 'off';
opts.FreqUnits = 'Hz';

Create a plot using the options.

h = bodeplot(tf(1,[1,1]),opts);

 bodeoptions

1-167

Depending on your own toolbox preferences, the plot you obtain might look different from this plot.
Only the properties that you set explicitly, in this example PhaseVisible and FreqUnits, override
the toolbox preferences.

Version History
Introduced in R2012a

See Also
bode | bodeplot | getoptions | setoptions | showConfidence

Topics
“Toolbox Preferences Editor”

1 Functions

1-168

bodeplot
Plot Bode frequency response with additional plot customization options

Syntax
h = bodeplot(sys)
h = bodeplot(sys1,sys2,...,sysN)
h = bodeplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = bodeplot(AX, ___)
h = bodeplot(___ ,plotoptions)
h = bodeplot(___ ,w)

Description
bodeplot lets you plot the Bode magnitude and phase of a dynamic system model with a broader
range of plot customization options than bode. You can use bodeplot to obtain the plot handle and
use it to customize the plot, such as modify the axes labels, limits and units. You can also use
bodeplot to draw a Bode response plot on an existing set of axes represented by an axes handle. To
customize an existing Bode plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox). To create Bode plots with default options or to extract the frequency response data, use
bode.

h = bodeplot(sys) plots the Bode magnitude and phase of the dynamic system model sys and
returns the plot handle h to the plot. You can use this handle h to customize the plot with the
getoptions and setoptions commands. If sys is a multi-input, multi-output (MIMO) model, then
bodeplot produces a grid of Bode plots, each plot displaying the frequency response of one I/O pair.

h = bodeplot(sys1,sys2,...,sysN) plots the frequency response of multiple dynamic systems
sys1,sys2,…,sysN on the same plot. All systems must have the same number of inputs and outputs
to use this syntax.

h = bodeplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and
color for the Bode response of each system. All systems must have the same number of inputs and
outputs to use this syntax.

h = bodeplot(AX, ___) plots the Bode response on the Axes or UIAxes object in the current
figure with the handle AX. Use this syntax when creating apps using bodeplot in the App Designer.

h = bodeplot(___ ,plotoptions) plots the Bode frequency response with the options set
specified in plotoptions. You can use these options to customize the Bode plot appearance using
the command line. Settings you specify in plotoptions overrides the preference settings in the
MATLAB session in which you run bodeplot. Therefore, this syntax is useful when you want to write
a script to generate multiple plots that look the same regardless of the local preferences.

 bodeplot

1-169

h = bodeplot(___ ,w) plots system responses for frequencies specified by the frequencies in w.

• If w is a cell array of the form {wmin,wmax}, then bodeplot plots the response at frequencies
ranging between wmin and wmax.

• If w is a vector of frequencies, then bodeplot plots the response at each specified frequency.

You can use w with any of the input-argument combinations in previous syntaxes.

See logspace to generate logarithmically spaced frequency vectors.

Examples

Customize Bode Plot using Plot Handle

For this example, use the plot handle to change the frequency units to Hz and turn off the phase plot.

Generate a random state-space model with 5 states and create the Bode plot with plot handle h.

rng("default")
sys = rss(5);
h = bodeplot(sys);

Change the units to Hz and suppress the phase plot. To do so, edit properties of the plot handle, h
using setoptions.

1 Functions

1-170

setoptions(h,'FreqUnits','Hz','PhaseVisible','off');

The Bode plot automatically updates when you call setoptions.

Alternatively, you can also use the bodeoptions command to specify the required plot options. First,
create an options set based on the toolbox preferences.

p = bodeoptions('cstprefs');

Change properties of the options set by setting the frequency units to Hz and hide the phase plot.

p.FreqUnits = 'Hz';
p.PhaseVisible = 'off';
bodeplot(sys,p);

 bodeplot

1-171

You can use the same option set to create multiple Bode plots with the same customization.
Depending on your own toolbox preferences, the plot you obtain might look different from this plot.
Only the properties that you set explicitly, in this example PhaseVisible and FreqUnits, override
the toolbox preferences.

Custom Bode Plot Settings Independent of Preferences

For this example, create a Bode plot that uses 15-point red text for the title. This plot should look the
same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set using bodeoptions.

opts = bodeoptions;

Next, change the required properties of the options set opts.

opts.Title.FontSize = 15;
opts.Title.Color = [1 0 0];
opts.FreqUnits = 'Hz';

Now, create a Bode plot using the options set opts.

bodeplot(tf(1,[1,1]),opts);

1 Functions

1-172

Because opts begins with a fixed set of options, the plot result is independent of the toolbox
preferences of the MATLAB session.

Customized Bode Plot of Transfer Function

For this example, create a Bode plot of the following continuous-time SISO dynamic system. Then,
turn the grid on, rename the plot and change the frequency scale.

sys(s) = s2 + 0 . 1s + 7 . 5
s4 + 0 . 12s3 + 9s2 .

Create the transfer function sys.

sys = tf([1 0.1 7.5],[1 0.12 9 0 0]);

Next, create the options set using bodeoptions and change the required plot properties.

plotoptions = bodeoptions;
plotoptions.Grid = 'on';
plotoptions.FreqScale = 'linear';
plotoptions.Title.String = 'Bode Plot of Transfer Function';

Now, create the Bode plot with the custom option set plotoptions.

bodeplot(sys,plotoptions)

 bodeplot

1-173

bodeplot automatically selects the plot range based on the system dynamics.

Bode Plot with Specified Frequency Scale and Units

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a
Bode plot with linear frequency scale, specify frequency units in Hz and turn the grid on.

Create the MIMO state-space model sys_mimo.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

Create a Bode plot with plot handle h and use getoptions for a list of the options available.

h = bodeplot(sys_mimo);
p = getoptions(h)

1 Functions

1-174

p =

 FreqUnits: 'rad/s'
 FreqScale: 'log'
 MagUnits: 'dB'
 MagScale: 'linear'
 MagVisible: 'on'
 MagLowerLimMode: 'auto'
 PhaseUnits: 'deg'
 PhaseVisible: 'on'
 PhaseWrapping: 'off'
 PhaseMatching: 'off'
 PhaseMatchingFreq: 0
 ConfidenceRegionNumberSD: 1
 MagLowerLim: 0
 PhaseMatchingValue: 0
 PhaseWrappingBranch: -180
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {6x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {6x1 cell}

Use setoptions to update the plot with the requires customization.

setoptions(h,'FreqScale','linear','FreqUnits','Hz','Grid','on');

 bodeplot

1-175

The Bode plot automatically updates when you call setoptions. For MIMO models, bodeplot
produces an array of Bode plots, each plot displaying the frequency response of one I/O pair.

Match Phase at Specified Frequency

For this example, match the phase of your system response such that the phase at 1 rad/sec is 150
degrees.

First, create a Bode plot of transfer function system with plot handle h.

sys = tf(1,[1 1]);
h = bodeplot(sys);

Use getoptions to obtain the plot properties. Change the properties PhaseMatchingFreq and
PhaseMatchingValue to match a phase to a specified frequency.

p = getoptions(h);
p.PhaseMatching = 'on';
p.PhaseMatchingFreq = 1;
p.PhaseMatchingValue = 150;

Update the plot using setoptions.

setoptions(h,p);

1 Functions

1-176

The first bode plot has a phase of -45 degrees at a frequency of 1 rad/s. Setting the phase matching
options so that at 1 rad/s the phase is near 150 degrees yields the second Bode plot. Note that,
however, the phase can only be -45 + N*360, where N is an integer. So the plot is set to the nearest
allowable phase, namely 315 degrees (or 1 * 360− 45 = 315o).

Display Confidence Regions of Identified Models

For this example, compare the frequency responses of two identified state-space models with 2 and 6
states along with their 2 σ confidence regions.

Load the identified state-space model data and estimate the two models using n4sid. Using n4sid
requires a System Identification Toolbox license.

load iddata1
sys1 = n4sid(z1,2);
sys2 = n4sid(z1,6);

Create a Bode plot of the two systems.

bodeplot(sys1,'r',sys2,'b');
legend('sys1','sys2');

 bodeplot

1-177

From the plot, observe that both models produce about 70% fit to data. However, sys2 shows higher
uncertainty in its frequency response, especially close to the Nyquist frequency. Now, use linspace
to create a vector of frequencies and plot the Bode response using the frequency vector w.

w = linspace(8,10*pi,256);
h = bodeplot(sys1,sys2,w);
legend('sys1','sys2');

Use setoptions to turn on phase matching and to specify the standard deviation of the confidence
region.

setoptions(h,'PhaseMatching','on','ConfidenceRegionNumberSD',2);

1 Functions

1-178

You can use the showconfidence command to display the confidence regions on the Bode plot.

showConfidence(h)

Frequency Response of Identified Parametric and Nonparametric Models

For this example, compare the frequency response of a parametric model, identified from input/
output data, to a non-parametric model identified using the same data. Identify parametric and non-
parametric models based on the data.

Load the data and create the parametric and non-parametric models using tfest and spa,
respectively.

load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);

spa and tfest require System Identification Toolbox™ software. The model sys_np is a non-
parametric identified model while, sys_p is a parametric identified model.

Create an options set to turn phase matching and the grid on. Then, create a Bode plot that includes
both systems using this options set.

 bodeplot

1-179

plotoptions = bodeoptions;
plotoptions.PhaseMatching = 'on';
plotoptions.Grid = 'on';
bodeplot(sys_p,sys_np,w,plotoptions);
legend('Parametric Model','Non-Parametric model');

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Sparse state-space models, such as sparss or mechss models. Frequency grid w must be
specified for sparse models.

• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models
requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value to plot
the frequency response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model.

1 Functions

1-180

• Frequency-response data models such as frd models. For such models, the function plots the
response at frequencies defined in the model.

• Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can
also plot confidence intervals and return standard deviations of the frequency response. See
“Bode Plot of Identified Model” on page 1-143.

If sys is an array of models, the function plots the frequency responses of all models in the array on
the same axes.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Pentagram
'h' Hexagram

Color Description
y yellow

 bodeplot

1-181

Color Description
m magenta
c cyan
r red
g green
b blue
w white
k black

AX — Target axes
Axes object | UIAxes object

Target axes, specified as an Axes or UIAxes object. If you do not specify the axes and if the current
axes are Cartesian axes, then bodeplot plots on the current axes. Use AX to plot into specific axes
when creating apps in the App Designer.

plotoptions — Bode plot options set
BodePlotOptions object

Bode plot options set, specified as a BodePlotOptions object. You can use this option set to
customize the Bode plot appearance. Use bodeoptions to create the option set. Settings you specify
in plotoptions overrides the preference settings in the MATLAB session in which you run
bodeplot. Therefore, plotoptions is useful when you want to write a script to generate multiple
plots that look the same regardless of the local preferences.

For the list of available options, see bodeoptions.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute and plot frequency response, specified as the cell array
{wmin,wmax} or as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the response at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the response at each specified
frequency. For example, use logspace to generate a row vector with logarithmically spaced
frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

Output Arguments
h — Plot handle
handle object

Plot handle, returned as a handle object. Use the handle h to get and set the properties of the Bode
plot using getoptions and setoptions. For the list of available options, see the Properties and
Values Reference section in “Customizing Response Plots from the Command Line” (Control System
Toolbox).

1 Functions

1-182

Version History
Introduced before R2006a

See Also
bode | bodeoptions | getoptions | setoptions | showConfidence

Topics
“Customizing Response Plots from the Command Line” (Control System Toolbox)

 bodeplot

1-183

c2d
Convert model from continuous to discrete time

Syntax
sysd = c2d(sysc,Ts)
sysd = c2d(sysc,Ts,method)
sysd = c2d(sysc,Ts,opts)
[sysd,G] = c2d(___)

Description
sysd = c2d(sysc,Ts) discretizes the continuous-time dynamic system model sysc using zero-
order hold on the inputs and a sample time of Ts.

sysd = c2d(sysc,Ts,method) specifies the discretization method.

sysd = c2d(sysc,Ts,opts) specifies additional options for the discretization.

[sysd,G] = c2d(___), where sysc is a state-space model, returns a matrix, G that maps the
continuous initial conditions x0 and u0 of the state-space model to the discrete-time initial state vector
x[0].

Examples

Discretize a Transfer Function

Discretize the following continuous-time transfer function:

H s = e−0 . 3s s− 1
s2 + 4s + 5

.

This system has an input delay of 0.3 s. Discretize the system using the triangle (first-order-hold)
approximation with sample time Ts = 0.1 s.

H = tf([1 -1],[1 4 5],'InputDelay', 0.3);
Hd = c2d(H,0.1,'foh');

Compare the step responses of the continuous-time and discretized systems.

step(H,'-',Hd,'--')

1 Functions

1-184

Discretize Model with Fractional Delay Absorbed into Coefficients

Discretize the following delayed transfer function using zero-order hold on the input, and a 10-Hz
sampling rate.

H s = e−0 . 25s 10
s2 + 3s + 10

.

h = tf(10,[1 3 10],'IODelay',0.25);
hd = c2d(h,0.1)

hd =

 0.01187 z^2 + 0.06408 z + 0.009721
 z^(-3) * ----------------------------------
 z^2 - 1.655 z + 0.7408

Sample time: 0.1 seconds
Discrete-time transfer function.

In this example, the discretized model hd has a delay of three sampling periods. The discretization
algorithm absorbs the residual half-period delay into the coefficients of hd.

Compare the step responses of the continuous-time and discretized models.

 c2d

1-185

step(h,'--',hd,'-')

Discretize Model With Approximated Fractional Delay

Create a continuous-time state-space model with two states and an input delay.

sys = ss(tf([1,2],[1,4,2]));
sys.InputDelay = 2.7

sys =

 A =
 x1 x2
 x1 -4 -2
 x2 1 0

 B =
 u1
 x1 2
 x2 0

 C =
 x1 x2
 y1 0.5 1

1 Functions

1-186

 D =
 u1
 y1 0

 Input delays (seconds): 2.7

Continuous-time state-space model.

Discretize the model using the Tustin discretization method and a Thiran filter to model fractional
delays. The sample time Ts = 1 second.

opt = c2dOptions('Method','tustin','FractDelayApproxOrder',3);
sysd1 = c2d(sys,1,opt)

sysd1 =

 A =
 x1 x2 x3 x4 x5
 x1 -0.4286 -0.5714 -0.00265 0.06954 2.286
 x2 0.2857 0.7143 -0.001325 0.03477 1.143
 x3 0 0 -0.2432 0.1449 -0.1153
 x4 0 0 0.25 0 0
 x5 0 0 0 0.125 0

 B =
 u1
 x1 0.002058
 x2 0.001029
 x3 8
 x4 0
 x5 0

 C =
 x1 x2 x3 x4 x5
 y1 0.2857 0.7143 -0.001325 0.03477 1.143

 D =
 u1
 y1 0.001029

Sample time: 1 seconds
Discrete-time state-space model.

The discretized model now contains three additional states x3, x4, and x5 corresponding to a third-
order Thiran filter. Since the time delay divided by the sample time is 2.7, the third-order Thiran filter
('FractDelayApproxOrder' = 3) can approximate the entire time delay.

Discretize Identified Model

Estimate a continuous-time transfer function, and discretize it.

load iddata1
sys1c = tfest(z1,2);
sys1d = c2d(sys1c,0.1,'zoh');

Estimate a second order discrete-time transfer function.

 c2d

1-187

sys2d = tfest(z1,2,'Ts',0.1);

Compare the response of the discretized continuous-time transfer function model, sys1d, and the
directly estimated discrete-time model, sys2d.

compare(z1,sys1d,sys2d)

The two systems are almost identical.

Build Predictor Model

Discretize an identified state-space model to build a one-step ahead predictor of its response.

Create a continuous-time identified state-space model using estimation data.

load iddata2
sysc = ssest(z2,4);

Predict the 1-step ahead predicted response of sysc.

predict(sysc,z2)

1 Functions

1-188

Discretize the model.

sysd = c2d(sysc,0.1,'zoh');

Build a predictor model from the discretized model, sysd.

[A,B,C,D,K] = idssdata(sysd);
Predictor = ss(A-K*C,[K B-K*D],C,[0 D],0.1);

Predictor is a two-input model which uses the measured output and input signals ([z1.y z1.u])
to compute the 1-step predicted response of sysc.

Simulate the predictor model to get the same response as the predict command.

lsim(Predictor,[z2.y,z2.u])

 c2d

1-189

The simulation of the predictor model gives the same response as predict(sysc,z2).

Input Arguments
sysc — Continuous-time dynamic system
dynamic system model

Continuous-time model, specified as a dynamic system model such as idtf, idss, or idpoly. sysc
cannot be a frequency response data model. sysc can be a SISO or MIMO system, except that the
'matched' discretization method supports SISO systems only.

sysc can have input/output or internal time delays; however, the 'matched', 'impulse', and
'least-squares' methods do not support state-space models with internal time delays.

The following identified linear systems cannot be discretized directly:

• idgrey models whose FunctionType is 'c'. Convert to idss model first.
• idproc models. Convert to idtf or idpoly model first.

Ts — Sample time
positive scalar

Sample time, specified as a positive scalar that represents the sampling period of the resulting
discrete-time system. Ts is in TimeUnit, which is the sysc.TimeUnit property.

1 Functions

1-190

method — Discretization method
'zoh' (default) | 'foh' | 'impulse' | 'tustin' | 'matched' | 'least-squares'

Discretization method, specified as one of the following values:

• 'zoh' — Zero-order hold (default). Assumes the control inputs are piecewise constant over the
sample time Ts.

• 'foh' — Triangle approximation (modified first-order hold). Assumes the control inputs are
piecewise linear over the sample time Ts.

• 'impulse' — Impulse invariant discretization
• 'tustin' — Bilinear (Tustin) method. To specify this method with frequency prewarping

(formerly known as the 'prewarp' method), use the PrewarpFrequency option of c2dOptions.
• 'matched' — Zero-pole matching method
• 'least-squares' — Least-squares method
• 'damped' — Damped Tustin approximation based on the TRBDF2 formula for sparse models only.

For information about the algorithms for each conversion method, see “Continuous-Discrete
Conversion Methods”.

opts — Discretization options
c2dOptions object

Discretization options, specified as a c2dOptions object. For example, specify the prewarp
frequency, order of the Thiran filter or discretization method as an option.

Output Arguments
sysd — Discrete-time model
dynamic system model

Discrete-time model, returned as a dynamic system model of the same type as the input system sysc.

When sysc is an identified (IDLTI) model, sysd:

• Includes both measured and noise components of sysc. The innovations variance λ of the
continuous-time identified model sysc, stored in its NoiseVarianceproperty, is interpreted as
the intensity of the spectral density of the noise spectrum. The noise variance in sysd is thus λ/Ts.

• Does not include the estimated parameter covariance of sysc. If you want to translate the
covariance while discretizing the model, use translatecov.

G — Mapping of continuous initial conditions of state-space model to discrete-time initial
state vector
matrix

Mapping of continuous-time initial conditions x0 and u0 of the state-space model sysc to the discrete-
time initial state vector x[0], returned as a matrix. The mapping of initial conditions to the initial state
vector is as follows:

x 0 = G ⋅
x0
u0

 c2d

1-191

For state-space models with time delays, c2d pads the matrix G with zeroes to account for additional
states introduced by discretizing those delays. See “Continuous-Discrete Conversion Methods” for a
discussion of modeling time delays in discretized systems.

Version History
Introduced before R2006a

See Also
c2dOptions | d2c | d2d | thiran | translatecov

Topics
“Dynamic System Models”
“Transforming Between Discrete-Time and Continuous-Time Representations”
“Continuous-Discrete Conversion Methods”

1 Functions

1-192

c2dOptions
Create option set for continuous- to discrete-time conversions

Syntax
opts = c2dOptions
opts = c2dOptions('OptionName', OptionValue)

Description
opts = c2dOptions returns the default options for c2d.

opts = c2dOptions('OptionName', OptionValue) accepts one or more comma-separated
name/value pairs that specify options for the c2d command. Specify OptionName inside single
quotes.

Input Arguments
Name-Value Pair Arguments

Method

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where c2d assumes the control inputs are piecewise constant
over the sample time Ts.

'foh' Triangle approximation (modified first-order hold), where c2d assumes the
control inputs are piecewise linear over the sample time Ts. (See [1] on page
1-194, p. 228.)

'impulse' Impulse-invariant discretization.
'tustin' Bilinear (Tustin) approximation. By default, c2d discretizes with no prewarp

and rounds any fractional time delays to the nearest multiple of the sample
time. To include prewarp, use the PrewarpFrequency option. To approximate
fractional time delays, use theFractDelayApproxOrder option.

'matched' Zero-pole matching method. (See [1] on page 1-194, p. 224.) By default, c2d
rounds any fractional time delays to the nearest multiple of the sample time.
To approximate fractional time delays, use the FractDelayApproxOrder
option.

'least-squares' Least-squares method. Minimize the error between the frequency responses
of the continuous-time and discrete-time systems up to the Nyquist frequency.

For information about the algorithms for each conversion method, see “Continuous-Discrete
Conversion Methods”.

Default: 'zoh'

 c2dOptions

1-193

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time
units, specified in the TimeUnit property, of the discretized system. Takes positive scalar values. A
value of 0 corresponds to the standard 'tustin' method without prewarp.

Default: 0

FitOrder

Fit order for 'least-squares' method, specified as an integer. Specifies the order of the discrete-
time model to be fitted to the continuous-time frequency response. Leave the default option 'auto' to
use the order of the continuous-time model, and change it to an integer N to use an Nth-order fit.
Reducing the order helps with unstable poles or pole/zero cancellations at z = -1.

Default: 'auto'

FractDelayApproxOrder

Maximum order of the Thiran filter used to approximate fractional delays in the 'tustin' and
'matched' methods. Takes integer values. A value of 0 means that c2d rounds fractional delays to
the nearest integer multiple of the sample time.

Default: 0

Examples

Discretize Two Models Using Tustin Discretization Method

Generate two random continuous-time state-space models.

sys1 = rss(3,2,2);
sys2 = rss(4,4,1);

Create an option set for c2d to use the Tustin discretization method and 3.4 rad/s prewarp frequency.

opt = c2dOptions('Method','tustin','PrewarpFrequency',3.4);

Discretize the models, sys1 and sys2, using the same option set, but different sample times.

dsys1 = c2d(sys1,0.1,opt);
dsys2 = c2d(sys2,0.2,opt);

Version History
Introduced in R2012a

References

[1] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition),
Prentice Hall, 1997.

1 Functions

1-194

See Also
c2d

 c2dOptions

1-195

canon
Canonical state-space realization

Syntax
csys = canon(sys,type)
csys = canon(sys,'modal',condt)

[csys,T]= canon(___)

Description
csys = canon(sys,type) transforms the linear model sys into a canonical state-space model
csys. type specifies whether csys is in modal or companion form.

For information on controllable and observable canonical forms, see “State-Space Realizations”.

csys = canon(sys,'modal',condt) specifies an upper bound condt on the condition number of
the block-diagonalizing transformation. Use condt if you have close lying eigenvalues in csys.

[csys,T]= canon(___) also returns the state-coordinate transformation matrix T that relates the
states of the state-space model sys to the states of csys.

Examples

Convert State-Space Model to Companion Canonical Form

aircraftPitchSSModel.mat contains the state-space matrices of an aircraft where the input is
elevator deflection angle δ and the output is the aircraft pitch angle θ.

α̇
q̇
θ̇

=
−0 . 313 56 . 7 0
−0 . 0139 −0 . 426 0

0 56 . 7 0

α
q
θ

+
0 . 232
0 . 0203

0
δ

y = 0 0 1
α
q
θ

+ 0 δ

Load the model data to the workspace and create the state-space model sys.

load('aircraftPitchSSModel.mat');
sys = ss(A,B,C,D)

sys =

 A =
 x1 x2 x3
 x1 -0.313 56.7 0
 x2 -0.0139 -0.426 0

1 Functions

1-196

 x3 0 56.7 0

 B =
 u1
 x1 0.232
 x2 0.0203
 x3 0

 C =
 x1 x2 x3
 y1 0 0 1

 D =
 u1
 y1 0

Continuous-time state-space model.

Convert the resultant state-space model sys to companion canonical form.

csys = canon(sys,'companion')

csys =

 A =
 x1 x2 x3
 x1 0 0 -1.709e-16
 x2 1 0 -0.9215
 x3 0 1 -0.739

 B =
 u1
 x1 1
 x2 0
 x3 0

 C =
 x1 x2 x3
 y1 0 1.151 -0.6732

 D =
 u1
 y1 0

Continuous-time state-space model.

csys is the companion canonical form of sys.

Convert State-Space Model to Modal Canonical Form

pendulumCartSSModel.mat contains the state-space model of an inverted pendulum on a cart
where the outputs are the cart displacement x and the pendulum angle θ. The control input u is the
horizontal force on the cart.

 canon

1-197

ẋ
ẍ
θ̇
θ̈

=

0 1 0 0
0 −0 . 1 3 0
0 0 0 1
0 −0 . 5 30 0

x
ẋ
θ
θ̇

+

0
2
0
5

u

y =
1 0 0 0
0 0 1 0

x
ẋ
θ
θ̇

+
0
0

u

First, load the state-space model sys to the workspace.

load('pendulumCartSSModel.mat','sys');

Convert sys to modal canonical form and extract the transformation matrix.

[csys,T] = canon(sys,'modal')

csys =

 A =
 x1 x2 x3 x4
 x1 0 0 0 0
 x2 0 -0.05 0 0
 x3 0 0 -5.503 0
 x4 0 0 0 5.453

 B =
 u1
 x1 1.875
 x2 6.298
 x3 12.8
 x4 12.05

 C =
 x1 x2 x3 x4
 y1 16 -4.763 -0.003696 0.003652
 y2 0 0.003969 -0.03663 0.03685

 D =
 u1
 y1 0
 y2 0

Continuous-time state-space model.

T = 4×4

 0.0625 1.2500 -0.0000 -0.1250
 0 4.1986 0.0210 -0.4199
 0 0.2285 -13.5873 2.4693
 0 -0.2251 13.6287 2.4995

csys is the modal canonical form of sys, while T represents the transformation between the state
vectors of sys and csys.

1 Functions

1-198

Convert Zero-Pole-Gain Model to Modal Canonical Form

For this example, consider the following system with doubled poles and clusters of close poles:

sys s = 100 s− 1 s + 1
s s + 10 s + 10 . 0001 s− 1 + i 2 s− 1− i 2

Create a zpk model of this system and convert it to modal canonical form using the string 'modal'.

sys = zpk([1 -1],[0 -10 -10.0001 1+1i 1-1i 1+1i 1-1i],100);
csys1 = canon(sys,'modal');
csys1.A

ans = 7×7

 0 0 0 0 0 0 0
 0 1.0000 2.1220 0 0 0 0
 0 -0.4713 1.0000 1.5296 0 0 0
 0 0 0 1.0000 1.8439 0 0
 0 0 0 -0.5423 1.0000 0 0
 0 0 0 0 0 -10.0000 4.0571
 0 0 0 0 0 0 -10.0001

csys1.B

ans = 7×1

 0.1600
 -0.0052
 0.0201
 -0.0975
 0.2884
 0
 4.0095

sys has a pair of poles at s = -10 and s = -10.0001, and two complex poles of multiplicity 2 at s =
1+i and s = 1-i. As a result, the modal form csys1 is a state-space model with a block of size 2 for
the two poles near s = -10, and a block of size 4 for the complex eigenvalues.

Now, separate the two poles near s = -10 by increasing the value of the condition number of the
block-diagonalizing transformation. Use a value of 1e10 for this example.

csys2 = canon(sys,'modal',1e10);
csys2.A

ans = 7×7

 0 0 0 0 0 0 0
 0 1.0000 2.1220 0 0 0 0
 0 -0.4713 1.0000 1.5296 0 0 0
 0 0 0 1.0000 1.8439 0 0
 0 0 0 -0.5423 1.0000 0 0
 0 0 0 0 0 -10.0000 0

 canon

1-199

 0 0 0 0 0 0 -10.0001

format shortE
csys2.B

ans = 7×1

 1.6000e-01
 -5.1885e-03
 2.0117e-02
 -9.7508e-02
 2.8844e-01
 1.6267e+05
 1.6267e+05

The A matrix of csys2 includes separate diagonal elements for the poles near s = -10. Increasing the
condition number results in some very large values in the B matrix.

Convert System to Companion Canonical Form

The file icEngine.mat contains one data set with 1500 input-output samples collected at the a
sampling rate of 0.04 seconds. The input u(t) is the voltage (V) controlling the By-Pass Idle Air Valve
(BPAV), and the output y(t) is the engine speed (RPM/100).

Use the data in icEngine.mat to create a state-space model with identifiable parameters.

load icEngine.mat
z = iddata(y,u,0.04);
sys = n4sid(z,4,'InputDelay',2);

Convert the identified state-space model sys to companion canonical form.

csys = canon(sys,'companion');

Obtain the covariance of the resulting form by running a zero-iteration update to model parameters.

opt = ssestOptions;
opt.SearchOptions.MaxIterations = 0;
csys = ssest(z,csys,opt);

Compare frequency response confidence bounds of sys to csys.

h = bodeplot(sys,csys,'r.');
showConfidence(h)

1 Functions

1-200

The frequency response confidence bounds are identical.

Input Arguments
sys — Dynamic system
dynamic system model

Dynamic system, specified as a SISO, or MIMO dynamic system model. Dynamic systems that you can
use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.)

The resulting canonical state-space model assumes

• current values of the tunable components for tunable control design blocks.
• nominal model values for uncertain control design blocks.

• Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models.

You cannot use frequency-response data models such as frd models.

type — Transformation type
'modal' (default) | 'companion'

 canon

1-201

Transformation type, specified as either 'modal' or 'companion'. If type is unspecified, then
canon converts the specified dynamic system model to modal canonical form by default.

The companion canonical form is the same as the observable canonical form. For information on
controllable and observable canonical forms, see “State-Space Realizations”.

• Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues
and 2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of
nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (λ1, σ ± jω, λ2), the modal A matrix is of the form

Am =

λ1 0 0 0
0 σ ω 0
0 −ω σ 0
0 0 0 λ2

.

• Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the
rightmost column of the A matrix. For a system with characteristic polynomial

P(s) = sn + αn− 1sn− 1 + αn− 2sn− 2 + … + α1s + α0,

the corresponding companion A matrix is

Accom =

0
1
0
0
⋮
0

0
0
1
0
⋮
0

0
0
0
1
⋮
0

…
…
…
…
⋱
…

0
0
0
0
⋮
1

−α0
−α1
−α2
−α3

 ⋮
−αn− 1

, Bccom =

1
0
⋮
0

.

The companion transformation requires that the system is controllable from the first input. The
transformation to companion form is based on the controllability matrix which is almost always
numerically singular for mid-range orders. Hence, avoid using it when possible.

The companion canonical form is the same as the observable canonical form. For more
information on observable and controllable canonical forms, see “State-Space Realizations”.

condt — Upper bound on the condition number of the block-diagonalizing transformation
1e4 (default) | positive scalar

Upper bound on the condition number of the block-diagonalizing transformation, specified as a
positive scalar. This argument is available only when type is set to 'modal'.

Increase condt to reduce the size of the eigenvalue clusters in the A matrix of csys. Setting condt
= Inf diagonalizes matrix A.

1 Functions

1-202

Output Arguments
csys — Canonical state-space form of the dynamic model
ss model object

Canonical state-space form of the dynamic model, returned as an ss model object. csys is a state-
space realization of sys in the canonical form specified by type.

T — Transformation matrix
matrix

Transformation matrix, returned as an n-by-n matrix, where n is the number of states. T is the
transformation between the state vector x of the state-space model sys and the state vector xc of
csys:

xc = Tx

.

This argument is available only when sys is an ss model object.

Limitations
• You cannot use frequency-response data models to convert to canonical state-space form.
• The companion form is poorly conditioned for most state-space computations, that is, the

transformation to companion form is based on the controllability matrix which is almost always
numerically singular for mid-range orders. Hence, avoid using it when possible.

Algorithms
The canon command uses the bdschur command to convert sys into modal form and to compute
the transformation T. If sys is not a state-space model, canon first converts it to state space using
ss.

The reduction to companion form uses a state similarity transformation based on the controllability
matrix [1].

Version History
Introduced before R2006a

Default value of condt input argument changed
Behavior changed in R2022a

The default value of condt input argument is now 1e4. Previously, the default value was 1e8.
Increasing condt reduces the size of the eigenvalue clusters in the transformed model but also
decreases the accuracy of the transformation. The new default value balances conditioning and
transformation accuracy. If you have code that relies on the default value of condt being 1e8, update
your code to explicitly set this input argument.

 canon

1-203

References
[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also
ctrb | ctrbf | ss2ss | tf | zpk | ss | pid | genss | uss | idtf | idss | idproc | idpoly | idgrey

Topics
“State-Space Realizations”

1 Functions

1-204

chgFreqUnit
Change frequency units of frequency-response data model

Syntax
sys_new = chgFreqUnit(sys,newfrequnits)

Description
sys_new = chgFreqUnit(sys,newfrequnits) changes units of the frequency points in sys to
newfrequnits. Both Frequency and FrequencyUnit properties of sys adjust so that the
frequency responses of sys and sys_new match.

Input Arguments
sys

Frequency-response data (frd, idfrd, or genfrd) model.

newfrequnits

New units of frequency points, specified as one of the following values:

• 'rad/TimeUnit'
• 'cycles/TimeUnit'
• 'rad/s'
• 'Hz'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rpm'

rad/TimeUnit and cycles/TimeUnit express frequency units relative to the system time units
specified in the TimeUnit property.

Default: 'rad/TimeUnit'

Output Arguments
sys_new

Frequency-response data model of the same type as sys with new units of frequency points. The
frequency response of sys_new is same as sys.

Examples

 chgFreqUnit

1-205

Change Frequency Units of Frequency-Response Data Model

Create a frequency-response data model.

load('AnalyzerData');
sys = frd(resp,freq);

The data file AnalyzerData has column vectors freq and resp. These vectors contain 256 test
frequencies and corresponding complex-valued frequency response points, respectively. The default
frequency units of sys is rad/TimeUnit, where TimeUnit is the system time units.

Change the frequency units.

sys1 = chgFreqUnit(sys,'rpm');

The FrequencyUnit property of sys1 is rpm.

Compare the Bode responses of sys and sys1.

bodeplot(sys,'r',sys1,'y--');
legend('sys','sys1')

The magnitude and phase of sys and sys1 match because chgFreqUnit command changes the
units of frequency points in sys without modifying system behavior.

Change the FrequencyUnit property of sys to compare the Bode response with the original system.

sys2 = sys;
sys2.FrequencyUnit = 'rpm';

1 Functions

1-206

bodeplot(sys,'r',sys2,'gx');
legend('sys','sys2');

Changing the FrequencyUnit property changes the system behavior. Therefore, the Bode responses
of sys and sys2 do not match. For example, the original corner frequency at about 2 rad/s changes
to approximately 2 rpm (or 0.2 rad/s).

Tips
• Use chgFreqUnit to change the units of frequency points without modifying system behavior.

Version History
Introduced in R2012a

See Also
chgTimeUnit | frd | idfrd

Topics
“Specify Frequency Units of Frequency-Response Data Model” (Control System Toolbox)

 chgFreqUnit

1-207

chgTimeUnit
Change time units of dynamic system

Syntax
sys_new = chgTimeUnit(sys,newtimeunits)

Description
sys_new = chgTimeUnit(sys,newtimeunits) changes the time units of sys to newtimeunits.
The time- and frequency-domain characteristics of sys and sys_new match.

Input Arguments
sys

Dynamic system model

newtimeunits

New time units, specified as one of the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Default: 'seconds'

Output Arguments
sys_new

Dynamic system model of the same type as sys with new time units. The time response of sys_new is
same as sys.

If sys is an identified linear model, both the model parameters as and their minimum and maximum
bounds are scaled to the new time units.

1 Functions

1-208

Examples

Change Time Units of Dynamic System Model

Create a transfer function model.

num = [4 2];
den = [1 3 10];
sys = tf(num,den);

By default, the time unit of sys is 'seconds'. Create a new model with the time units changed to
minutes.

sys1 = chgTimeUnit(sys,'minutes');

This command sets the TimeUnit property of sys1 to 'minutes', without changing the dynamics.
To confirm that the dynamics are unchanged, compare the step responses of sys and sys1.

stepplot(sys,'r',sys1,'y--');
legend('sys','sys1');

The step responses are the same.

If you change the TimeUnit property of the system instead of using chgTimeUnit, the dynamics of
the system do change. To see this, change the TimeUnit property of a copy of sys and compare the
step response with the original system.

 chgTimeUnit

1-209

sys2 = sys;
sys2.TimeUnit = 'minutes';
stepplot(sys,'r',sys2,'gx');
legend('sys','sys2');

The step responses of sys and sys2 do not match. For example, the original rise time of 0.04 seconds
changes to 0.04 minutes.

Tips
• Use chgTimeUnit to change the time units without modifying system behavior.

Version History
Introduced in R2012a

See Also
chgFreqUnit | tf | zpk | ss | frd | pid | idss | idpoly | idtf | idproc

Topics
“Specify Model Time Units” (Control System Toolbox)

1 Functions

1-210

clone
Copy online parameter estimation System object

Syntax
obj_clone = clone(obj)

Description
obj_clone = clone(obj) creates a copy of the online parameter estimation System object™, obj,
with the same property values. If the object you clone is locked, the new object is also locked.

clone is not supported for code generation using MATLAB Coder™.

Note If you want to copy an existing System object and then modify properties of the copied object,
use the clone command. Do not create additional objects using syntax obj2 = obj. Any changes
made to the properties of the new System object created this way (obj2) also change the properties
of the original System object (obj).

Examples

Clone an Online Estimation System Object

Create a System object™ for online estimation of an ARX model with default properties.

obj = recursiveARX

obj =
 recursiveARX with properties:

 A: []
 B: []
 InitialA: [1 2.2204e-16]
 InitialB: [0 2.2204e-16]
 ParameterCovariance: []
 InitialParameterCovariance: [2x2 double]
 EstimationMethod: 'ForgettingFactor'
 ForgettingFactor: 1
 EnableAdaptation: true
 History: 'Infinite'
 InputProcessing: 'Sample-based'
 DataType: 'double'

Use clone to generate an object with the same properties as the original object.

obj2 = clone(obj)

obj2 =
 recursiveARX with properties:

 clone

1-211

 A: []
 B: []
 InitialA: [1 2.2204e-16]
 InitialB: [0 2.2204e-16]
 ParameterCovariance: []
 InitialParameterCovariance: [2x2 double]
 EstimationMethod: 'ForgettingFactor'
 ForgettingFactor: 1
 EnableAdaptation: true
 History: 'Infinite'
 InputProcessing: 'Sample-based'
 DataType: 'double'

Input Arguments
obj — System object for online parameter estimation
recursiveAR object | recursiveARMA object | recursiveARX object | recursiveARMAX object |
recursiveOE object | recursiveBJ object | recursiveLS object

System object for online parameter estimation, created using one of the following commands:

• recursiveAR
• recursiveARMA
• recursiveARX
• recursiveARMAX
• recursiveOE
• recursiveBJ
• recursiveLS

Output Arguments
obj_clone — Copy of online estimation System object
System object

Copy of online estimation System object, obj, returned as a System object with the same properties
as obj.

Version History
Introduced in R2015b

See Also
step | release | reset | isLocked | recursiveAR | recursiveARX | recursiveARMA |
recursiveARMAX | recursiveBJ | recursiveOE | recursiveLS

Topics
“What Is Online Estimation?”

1 Functions

1-212

clone
Copy online state estimation object

Syntax
obj_clone = clone(obj)

Description
obj_clone = clone(obj) creates a copy of the online state estimation object obj with the same
property values.

If you want to copy an existing object and then modify properties of the copied object, use the clone
command. Do not create additional objects using syntax obj2 = obj. Any changes made to the
properties of the new object created in this way (obj2) also change the properties of the original
object (obj).

Examples

Clone an Online State Estimation Object

Create an extended Kalman filter object for a van der Pol oscillator with two states and one output. To
create the object, use the previously written and saved state transition and measurement functions,
vdpStateFcn.m and vdpMeasurementFcn.m. Specify the initial state values for the two states as
[2;0].

obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0])

obj =
 extendedKalmanFilter with properties:

 HasAdditiveProcessNoise: 1
 StateTransitionFcn: @vdpStateFcn
 HasAdditiveMeasurementNoise: 1
 MeasurementFcn: @vdpMeasurementFcn
 StateTransitionJacobianFcn: []
 MeasurementJacobianFcn: []
 State: [2x1 double]
 StateCovariance: [2x2 double]
 ProcessNoise: [2x2 double]
 MeasurementNoise: 1
 HasMeasurementWrapping: 0

Use clone to generate an object with the same properties as the original object.

obj2 = clone(obj)

obj2 =
 extendedKalmanFilter with properties:

 clone

1-213

 HasAdditiveProcessNoise: 1
 StateTransitionFcn: @vdpStateFcn
 HasAdditiveMeasurementNoise: 1
 MeasurementFcn: @vdpMeasurementFcn
 StateTransitionJacobianFcn: []
 MeasurementJacobianFcn: []
 State: [2x1 double]
 StateCovariance: [2x2 double]
 ProcessNoise: [2x2 double]
 MeasurementNoise: 1
 HasMeasurementWrapping: 0

Modify the MeasurementNoise property of obj2.

obj2.MeasurementNoise = 2;

Verify that the MeasurementNoise property of original object obj remains unchanged and equals 1.

obj.MeasurementNoise

ans = 1

Input Arguments
obj — Object for online state estimation
extendedKalmanFilter object | unscentedKalmanFilter object | particleFilter object

Object for online state estimation of a nonlinear system, created using one of the following
commands:

• extendedKalmanFilter
• unscentedKalmanFilter
• particleFilter

Output Arguments
obj_clone — Clone of online state estimation object
extendedKalmanFilter object | unscentedKalmanFilter object | particleFilter object

Clone of online state estimation object obj, returned as an extendedKalmanFilter,
unscentedKalmanFilter or particleFilter object with the same properties as obj.

Version History
Introduced in R2016b

See Also
predict | correct | extendedKalmanFilter | unscentedKalmanFilter | particleFilter |
initialize

1 Functions

1-214

Topics
“What Is Online Estimation?”

 clone

1-215

compare
Compare identified model output with measured output

Syntax
compare(data,sys)
compare(data,LineSpec)
compare(data,sys1,...,sysN)
compare(data,sys1,LineSpec1,...,sysN,LineSpecN)

compare(___ ,kstep)

compare(___ ,opt)

[ymod,fit,ic] = compare(___)

Description
Plot Simulated and Measured Outputs

compare(data,sys) simulates the response of a dynamic system model, and superimposes that
response over the plotted input/output measurement data contained in data. The plot also displays
the normalized root mean square (NRMSE) measure of the goodness of the fit between simulated
response and measurement data. data can be a timetable, an input/output matrix pair, or a data
object such as an iddata object or an idfrd object. For timetables and data objects, compare
matches the input/output channels based on the channel names and ignores nonmatching channels.
Use this function when you want to evaluate a set of candidate models identified from the same
measurement data, or when you want to validate a model you have selected.

compare(data,LineSpec) also specifies the line type, marker symbol, and color for the model
response.

compare(data,sys1,...,sysN) compares the responses of multiple dynamic systems on the same
axes. compare automatically chooses the line specifications.

compare(data,sys1,LineSpec1,...,sysN,LineSpecN) compares the responses of multiple
systems on the same axes using the line type, marker symbol, and color specified for each system.

Predict Model Output

compare(___ ,kstep) predicts the response of sys, using a prediction horizon specified by kstep.
Prediction uses output measurements as well as input measurements to project a future response.
kstep represents the number of time samples between the timepoint of each output measurement
and the timepoint of the resulting predicted response. For more information on prediction, see
“Simulate and Predict Identified Model Output”. You can use this syntax with any of the previous
input-output combinations.

Specify Additional Options

compare(___ ,opt) configures the comparison using an option set. Options include initial condition
handling, data offsets, and data selection.

1 Functions

1-216

Return Results

[ymod,fit,ic] = compare(___) returns the model response ymod, goodness of fit value fit,
and the initial conditions ic. This syntax does not generate a plot, so any line specifications are
ignored.

Examples

Compare Response of Estimated Model to Measured Data

Identify a linear model and visualize the simulated model response with the data from which it was
generated.

Load input/output measurements z1, and identify a third-order state-space model sys.

load iddata1 z1;
sys = ssest(z1,3);

sys is a continuous-time identified state-space (idss) model.

Use compare to simulate the sys response and plot it alongside the data z1.

figure
compare(z1,sys)

 compare

1-217

The plot illustrates the differences between the model response and the original data. The percentage
shown in the legend is the NRMSE fitness value. It represents how close the predicted model output
is to the data.

To change display options in the plot, right-click the plot to access the context menu. For example:

• To plot the error between the predicted output and measured output, select Error Plot.
• To view the confidence region for the simulated response, select Characteristics ->
ConfidenceRegion.

• To specify number of standard deviations to plot, double-click the plot and open the Property
Editor dialog box. In the Options tab, specify the number of standard deviations in Confidence
Region for Identified Models. The default value is 1 standard deviation.

Compare Predicted Response of Identified Time-Domain Model to Measured Data

Identify a linear model and visualize the predicted model response with the data from which it was
computed.

Identify a third-order state-space model using the input/output measurements in z1.

load iddata1 z1;
sys = ssest(z1,3);

sys is a continuous-time identified state-space (idss) model.

Now use compare to plot the predicted response. Prediction differs from simulation in that it uses
both measured input and measured output when computing the system response. The prediction
horizon defines how far in the future to predict, relative to your current measured output point. For
this example, set the prediction horizon kstep to 10 steps, and use compare to plot the predicted
response against the original measurement data.

kstep = 10;
compare(z1,sys,kstep)

1 Functions

1-218

In this plot, each sys data point represents the predicted output associated with output measurement
data that was taken at least 10 steps earlier. For instance, the point at t = 15s is based on output
measurements taken at or prior to t = 5s. The calculation of this t = 15s sys data point also uses
input measurements up to t = 15s, just as a simulation would.

The plot illustrates the differences between the model response and the original data. The percentage
shown in the legend is the NRMSE fitness value. It represents how closely the predicted model output
matches the data.

To change display and simulation options in the plot, right-click the plot to access the context menu.
For example, to plot the error between the predicted output and measured output, select Error Plot
from the context menu. To change the prediction horizon value, or to toggle between simulation and
prediction, select Prediction Horizon from the context menu.

Compare Multiple Identified Models to Measured Time-Domain Data

Identify several model types for the same data, and compare the results to see which best fits the
data.

Load the data, which contains iddata object z1 with single input and output.

load iddata1;

From z1, identify a model for each of the following linear forms:

 compare

1-219

• ARMAX (idpoly) of orders 2, 3, and 1, with dead time of 0
• State space (idss) with three states
• Transfer function (idtf) with three poles

sys_armax = armax(z1,[2 3 1 0]);
sys_ss = ssest(z1,3);
sys_tf = tfest(z1,3);

Using compare, plot the simulated responses for the three models with z1.

compare(z1,sys_armax,sys_ss,sys_tf)

For this set of data, along with the default settings for all the models, the transfer-function form has
the best NRMSE fit. However, the fits for all models are within about 1% of each other.

You can interactively control which model responses are displayed in the plot by right-clicking on the
plot and hovering over Systems.

Compare Multiple Estimated Models to Measured Frequency-Domain Data

Compare the outputs of multiple estimated models of differing types to measured frequency-domain
data.

1 Functions

1-220

For this example, estimate a process model and an output-error polynomial from frequency response
data.

load demofr % frequency response data
zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
data = idfrd(zfr,W,Ts);
sys1 = procest(data,'P2UDZ');
sys2 = oe(data,[2 2 1]);

sys1, an idproc model, is a continuous-time process model. sys2, an idpoly model, is a discrete-
time output-error model.

Compare the frequency response of the estimated models to data.

compare(data,sys1,'g',sys2,'r');

The two models have NRMSE fit values that are nearly equal with respect to the data from which
they were calculated.

Compare Estimated Model to Data and Specify Comparison Options

Modify default behavior when you compare an estimated model to measured data.

Estimate a transfer function for measured data.

 compare

1-221

load iddata1 z1;
sys = tfest(z1,3);

sys is a continuous-time identified transfer function (idtf) model.

Suppose you want your initial conditions to be zero. The default for compare is to estimate initial
conditions from the data.

Create an option set to specify the initial condition handling. To use zero for initial conditions, specify
'z' for the 'InitialCondition' option.

opt = compareOptions('InitialCondition','z');

Compare the estimated transfer function model output to the measured data using the comparison
option set.

compare(z1,sys,opt)

Obtain Initial Conditions

Load the data.

load iddata2 z2

Split the data into estimation and validation sets.

1 Functions

1-222

z2e = z2(1:200);
z2v = z2(201:400);
plot(z2e,z2v)

Estimate a state-space model and a transfer function model using the estimation data.

sys_ss = ssest(z2e,2);
sys_tf = tfest(z2e,2,1);

Use compare to obtain initial conditions for sys_ss.

[y_ss,fit_ss,ic_ss] = compare(z2e,sys_ss);
ic_ss

ic_ss = 2×1

 -0.0018
 0.0016

ic_ss is a numeric vector of initial states.

[y_tf,fit_tf,ic_tf] = compare(z2e,sys_tf);
ic_tf

ic_tf =
 initialCondition with properties:

 compare

1-223

 A: [2x2 double]
 X0: [2x1 double]
 C: [-1.6093 5.1442]
 Ts: 0

ic_tf is an initialCondition object that contains, in state-space form, a model of the free
response of sys_tf to the initial conditions. A and C contain the free-response information and X0
contains the initial states.

Now obtain initial conditions for both models at once using the validation data.

[y_sstf,fit_sstf,ic_sstf] = compare(z2v,sys_ss,sys_tf);
ic_sstf

ic_sstf=2×1 cell array
 {2x1 double }
 {1x1 initialCondition}

ic_sstf is a cell array that contains an initial state vector for sys_ss and an initialCondition
object for sys_tf.

compare can provide initial conditions for an existing model with any measurement data set.

Input Arguments
data — Validation data
timetable | matrices | cell array | iddata object | idfrd object | frd object

Validation data, specified as a timetable, a pair of input/output matrices, a cell array, or a data object.
The specification for data depends on the data type.

Timetable

For SISO, MISO, and MIMO systems, specify data as an Ns-by-(Nu+Ny) timetable, where Ns is the
number of data samples in each variable, Nu is the number of inputs, and Ny is the number of
outputs. data must have the same variable names as the original data from which each model sys
was estimated. The model properties include the names of the input and output variables. You
therefore do not need to explicitly specify which channels to use in the timetable.

For multiexperiment data, specify data as a 1-by-Ne cell array, where Ne is the number of
experiments. The sample times of all the experiments must match.

Matrices

For SISO, MISO, and MIMO systems, specify data as a pair of matrices with dimensions Ns-by-Nu for
the input matrix and Ns-by-Ny for the output matrix. The software uses the sample period in the Ts
property of sys.

For multiexperiment data, specify data as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match the sample time of sys.

Data Object

Specify data as an iddata, idfrd, or frd model object.

1 Functions

1-224

If sys is:

• A parametric model such as idss, then data can be an iddata, idfrd, or frd model object.
• A frequency-response data model (either an idfrd, or frd model object), then data must also be

a frequency-response data model.
• An iddata object, then data must be an iddata object with matching domain, number of

experiments and time or frequency vectors.

For examples, see:

• “Compare Predicted Response of Identified Time-Domain Model to Measured Data” on page 1-218
• “Compare Multiple Estimated Models to Measured Frequency-Domain Data” on page 1-220

.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

sys — Identified model
dynamic system model | iddata object | model array

Identified model, specified as a dynamic system model, an iddata object, or a model array.

When the time or frequency units of data do not match the units of sys, compare rescales sys to
match the units of data.

kstep — Prediction Horizon — steps ahead to predict
Inf (default) | integer

Prediction horizon, specified as one of the following:

• Inf — Compare simulated response of sys to data.
• Positive finite integer — Compare predicted response of sys to data, where each predicted

response point is based not only on measured input data up to that timepoint, but also on
measured output data up to kstep timepoints earlier.

compare ignores kstep when sys is an iddata object, an FRD model, or a dynamic system with no
noise component. compare also ignores kstep when using frequency response validation data.

If you specify kstep that is greater than the number of data samples, compare sets kstep to Inf
and provides a warning message.

For more information on simulation and prediction, see “Simulate and Predict Identified Model
Output”.

For an example, see “Compare Predicted Response of Identified Time-Domain Model to Measured
Data” on page 1-218.

LineSpec — Line style, marker, and color
character vector

Line style, marker, and color of both the line and marker, specified as a character vector, such as 'b'
or 'b+:'.

 compare

1-225

For more information about configuring LineSpec, see the Linespec input argument of plot. For
an example, see “Compare Multiple Estimated Models to Measured Frequency-Domain Data” on page
1-220.

opt — Comparison options
compareOptions option set

Comparison options, specified as an option set you create using compareOptions.

Available options include:

• Handling of initial conditions
• Sample range for computing fit numbers
• Data offsets
• Output weighting

For examples, see:

• “Compare Estimated Model to Data and Specify Comparison Options” on page 1-221
• “Resolve Fit Value Differences Between Model Identification and compare Command”

Output Arguments
ymod — Model response
timetable | matrix | iddata object | idfrd object | cell array | array

Model response, returned as a timetable, a matrix, an iddata object, an idfrd object, a cell array,
or an array. The output type depends on the models and data you provide, as follows:

• For a single model and single-experiment data set, ymod is a timetable, a matrix, an iddata
object, or idfrd object.

• For multimodel comparisons, ymod is a cell array with one timetable, matrix, iddata object, or
idfrd object entry for each input model.

• For multiexperiment data, ymod is a cell array with one entry for each experiment.
• For multimodel comparisons using multiexperiment data, ymod is an Nsys-by-Nexp cell array, where

Nsys is the number of models, and Nexp is the number of experiments.
• If sys is a model array, ymod is an array with an element corresponding to each model in sys and

experiment in data. For more information on model arrays, see stack

If kstep is not specified or is Inf, then compare returns the simulated response in ymod.

Otherwise, compare returns the predicted response. Measured output values in data up to time tn-
kstep are used to predict the output of sys at time tn. For more information on simulation and
prediction, see “Simulate and Predict Identified Model Output”.

The compare response computation requires a specification for initial condition handling. By default,
compare estimates the initial conditions to maximize the fit to data. See compareOptions for more
information on how compare determines the initial conditions to use.

fit — NRMSE fitness value
vector | matrix | cell array

1 Functions

1-226

NRMSE fitness value indicator of how well the simulated or predicted model response matches the
measurement data, returned as a vector, a matrix, or a cell array. The output depends on the models
and data you provide, as follows:

• If data is an iddata object, fit is a vector of length Ny, where Ny is the number of outputs
• If data is an FRD model, fit is an Ny-by-Nu matrix, where Nu is the number of inputs in data
• For a single model and single-experiment data set, fit is a vector or matrix
• For multimodel comparisons, fit is a cell array with one entry for each input model
• For multiexperiment data, fit is a cell array with one entry for each experiment
• For multimodel comparisons using multiexperiment data, fit is an Nsys-by-Nexp cell array, where

Nsys is the number of models, and Nexp is the number of experiments
• If sys is a model array, fit is an array with an element corresponding to each model in sys and

experiment in data

compare calculates fit (in percentage) using:

fit = 100 1− y − y
y −mean y ,

where y is the validation data output and y is the output of sys.

For FRD models — compare calculates fit by comparing the complex frequency response. The fits
of the magnitude and phase curves shown in the compare plot are not computed by compare
separately.

ic — Initial conditions used to compute system response
[] | vector | initialCondition object | cell array

Initial conditions used to compute system response, returned as an empty array, a vector, an
initialCondition object, or a cell array.

For a single model and single-experiment data, the form of the output depends on the model type.

• For state-space models, ic is a numeric vector that contains the initial states.
• For transfer function and polynomial models, ic is an initialCondition object. An

initialCondition represents, in state-space form, the free response of the model (A and C
matrices) to the estimated initial states (x0).

• When sys is an frd or iddata object, ic is the empty array [], because initial conditions cannot
be used with these objects.

For multiple model and/or experiments, the form of the output is as follows:

• For multimodel comparisons, ic is a cell or object array, with one vector, matrix, or
initialCondition entry for each input model.

• For multiexperiment data, ic is a cell or object array, with one entry for each experiment.
• For multimodel comparisons using multiexperiment data, ic is an Nsys-by-Nexp cell or object array,

where Nsys is the number of models and Nexp is the number of experiments.
• If sys is a model array, ic is an array with an element corresponding to each model in sys and

experiment in data.

By default, compare uses findstates to estimate the initial states in ic. To change this behavior,
set the 'InitialCondition' option in opt (see compareOptions). If you have input/output

 compare

1-227

history that immediately precedes your start point, you can set 'InitialCondition' to that history
data. compare then uses data2state to compute the end state of the history data, and thus the
start state for the simulation. Other choices include setting initial conditions to zero, or to specific
values that you determine previously. For more information about finding initial conditions, see
“Estimate Initial Conditions for Simulating Identified Models”.

If you are using an estimation model that does not explicitly use states, compare first converts the
model to its state-space representation and then maps the data to the initial states. compare then
packages the initial state vector and the A and C state-space matrices into an initialCondition
object. For an example of using compare with such a model, see “Obtain Initial Conditions” on page
1-222.

Tips
• The NRMSE fit result you obtain with compare may not precisely match the fit value reported in

model identification. These differences typically arise from mismatches in initial conditions, and in
the differences in the prediction horizon defaults for identification and for validation. The
differences are generally small, and should not impact your model selection and validation
workflow. For more information, see “Resolve Fit Value Differences Between Model Identification
and compare Command”.

• compare matches the input/output channels in data and sys based on the channel names. Thus,
it is possible to evaluate models that do not use all the input channels that are available in data.
This flexibility allows you to compare multiple models which were each identified independently
from different sets of input/output channels.

• The compare plot allows you to vary key parameters. For example, you can interactively control:

• Whether you generate a simulated or predicted response
• Prediction horizon value
• Initial condition handling
• Which experiment data you view
• Which system models you view

To access the controls, right-click the plot to bring up the options menu.

Version History
Introduced in R2006a

See Also
compareOptions | sim | predict | forecast | goodnessOfFit | chgTimeUnit | chgFreqUnit |
plot

Topics
“Compare Simulated Output with Measured Validation Data”
“Validating Models After Estimation”
“Model Validation”
“Estimate Initial Conditions for Simulating Identified Models”
“Apply Initial Conditions When Simulating Identified Linear Models”

1 Functions

1-228

compareOptions
Option set for compare

Syntax
opt = compareOptions
opt = compareOptions(Name,Value)

Description
opt = compareOptions creates the default options set for compare.

opt = compareOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Samples

Data for which compare calculates fit values.

Specify Samples as a vector containing the data sample indices. For multiexperiment data, use a cell
array of Ne vectors, where Ne is the number of experiments.

InitialCondition

Handling of initial conditions.

Specify InitialCondition as one of the following:

• 'z' — Zero initial conditions.
• 'e' — Estimate initial conditions such that the prediction error for observed output is minimized.

For nonlinear grey-box models, only those initial states i that are designated as free in the model
(sys.InitialStates(i).Fixed = false) are estimated. To estimate all the states of the
model, first specify all the Nx states of the idnlgrey model sys as free.

for i = 1:Nx
sys.InitialStates(i).Fixed = false;
end

Similarly, to fix all the initial states to values specified in sys.InitialStates, first specify all
the states as fixed in the sys.InitialStates property of the nonlinear grey-box model.

 compareOptions

1-229

• 'd' — Similar to 'e', but absorbs nonzero delays into the model coefficients. The delays are first
converted to explicit model states, and the initial values of those states are also estimated and
returned.

Use this option for linear models only.
• Vector or Matrix — Initial guess for state values, specified as a numerical column vector of length

equal to the number of states. For multiexperiment data, specify a matrix with Ne columns, where
Ne is the number of experiments. Otherwise, use a column vector to specify the same initial
conditions for all experiments. Use this option for state-space (idss and idgrey) and nonlinear
models (idnlarx, idnlhw, and idnlgrey) only.

• initialCondition object — initialCondition object that represents a model of the free
response of the system to initial conditions. For multiexperiment data, specify a 1-by-Ne array of
objects, where Ne is the number of experiments.

Use this option for individual linear models only. If you are analyzing more than one model and
want to specify an initialCondition object for each model, you must specify the object and
use compare for each model separately.

• Structure with the following fields, which contain the historical input and output values for a time
interval immediately before the start time of the data used by compare:

Field Description
Input Input history, specified as a matrix with Nu columns, where Nu is the number of

input channels. For time series models, use []. The number of rows must be
greater than or equal to the model order.

Output Output history, specified as a matrix with Ny columns, where Ny is the number of
output channels. The number of rows must be greater than or equal to the model
order.

For multiexperiment data, configure the initial conditions separately for each experiment by
specifying InitialCondition as a structure array with Ne elements. To specify the same initial
conditions for all experiments, use a single structure.

The software uses data2state to map the historical data to states. If your model is not idss,
idgrey, idnlgrey, or idnlarx, the software first converts the model to its state-space
representation and then maps the data to states. If conversion of your model to idss is not
possible, the estimated states are returned empty.

• x0obj — Specification object created using idpar. Use this object for discrete-time state-space
(idss and idgrey) and nonlinear grey-box (idnlgrey) models only. Use x0obj to impose
constraints on the initial states by fixing their value or specifying minimum or maximum bounds.

Default: 'e'

InputInterSample

Input-channel intersample behavior

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

1 Functions

1-230

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata
object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

InputOffset

Removes offset from time domain input data for model response computation.

Specify as a column vector of length Nu, where Nu is the number of inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix. Nu is the number of inputs
and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

Default: []

OutputOffset

Removes offset from time-domain output data for model response prediction.

Specify as a column vector of length Ny, where Ny is the number of outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is the number of outputs
and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data before
computing the model response. After computing the model response, the software adds the offset to
the response to give the final model response.

Default: []

OutputWeight

Weight of output for initial condition estimation.

OutputWeight requires one of the following values:

• [] — No weighting is used. This option is the same as using eye(Ny) for the output weight. Ny is
the number of outputs.

• 'noise' — Inverse of the noise variance stored with the model.
• Matrix of doubles — A positive semi-definite matrix of dimension Ny-by-Ny. Ny is the number of

outputs.

 compareOptions

1-231

Default: []

Output Arguments
opt

Option set containing the specified options for compare.

Examples

Create Default Options Set for Model Comparison

Create a default options set for compare.

opt = compareOptions;

Specify Options for Model Comparison

Create an options set for compare using zero initial conditions. Set the input offset to 5.

opt = compareOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = compareOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

Version History
Introduced in R2012a

InputInterSample option allows intersample behavior specification for continuous models
estimated from timetables or matrices.

iddata objects contain an InterSample property that describes the behavior of the signal between
sample points. The InputInterSample option implements a version of that property in
compareOptions so that intersample behavior can be specified also when estimation data is stored
in timetables or matrices.

See Also
compare

1 Functions

1-232

correct
Correct state and state estimation error covariance using extended or unscented Kalman filter, or
particle filter and measurements

Syntax
[CorrectedState,CorrectedStateCovariance] = correct(obj,y)
[CorrectedState,CorrectedStateCovariance] = correct(obj,y,Um1,...,Umn)

Description
The correct command updates the state and state estimation error covariance of an
extendedKalmanFilter, unscentedKalmanFilter or particleFilter object using measured
system outputs. To implement extended or unscented Kalman filter, or particle filter, use the correct
and predict commands together. If the current output measurement exists, you can use correct
and predict. If the measurement is missing, you can only use predict. For information about the
order in which to use the commands, see “Using predict and correct Commands” on page 1-240.

[CorrectedState,CorrectedStateCovariance] = correct(obj,y) corrects the state
estimate and state estimation error covariance of an extended or unscented Kalman filter, or particle
filter object obj using the measured output y.

You create obj using the extendedKalmanFilter, unscentedKalmanFilter or
particleFilter commands. You specify the state transition function and measurement function of
your nonlinear system in obj. You also specify whether the process and measurement noise terms are
additive or nonadditive in these functions. The State property of the object stores the latest
estimated state value. Assume that at time step k, obj.State is x [k k− 1]. This value is the state
estimate for time k, estimated using measured outputs until time k-1. When you use the correct
command with measured system output y[k], the software returns the corrected state estimate
x [k k] in the CorrectedState output. Where x [k k] is the state estimate at time k, estimated using
measured outputs until time k. The command returns the state estimation error covariance of x [k k]
in the CorrectedStateCovariance output. The software also updates the State and
StateCovariance properties of obj with these corrected values.

Use this syntax if the measurement function h that you specified in obj.MeasurementFcn has one of
the following forms:

• y(k) = h(x(k)) — for additive measurement noise.
• y(k) = h(x(k),v(k)) — for nonadditive measurement noise.

Where y(k), x(k), and v(k) are the measured output, states, and measurement noise of the system
at time step k. The only inputs to h are the states and measurement noise.

[CorrectedState,CorrectedStateCovariance] = correct(obj,y,Um1,...,Umn) specifies
additional input arguments, if the measurement function of the system requires these inputs. You can
specify multiple arguments.

Use this syntax if the measurement function h has one of the following forms:

 correct

1-233

• y(k) = h(x(k),Um1,...,Umn) — for additive measurement noise.
• y(k) = h(x(k),v(k),Um1,...,Umn) — for nonadditive measurement noise.

correct command passes these inputs to the measurement function to calculate the estimated
outputs.

Examples

Estimate States Online Using Extended Kalman Filter

Estimate the states of a van der Pol oscillator using an extended Kalman filter algorithm and
measured output data. The oscillator has two states and one output.

Create an extended Kalman filter object for the oscillator. Use previously written and saved state
transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. These
functions describe a discrete-approximation to a van der Pol oscillator with the nonlinearity
parameter mu equal to 1. The functions assume additive process and measurement noise in the
system. Specify the initial state values for the two states as [1;0]. This is the guess for the state value
at initial time k, based on knowledge of system outputs until time k-1, x[k |k− 1].

obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[1;0]);

Load the measured output data y from the oscillator. In this example, use simulated static data for
illustration. The data is stored in the vdp_data.mat file.

load vdp_data.mat y

Specify the process noise and measurement noise covariances of the oscillator.

obj.ProcessNoise = 0.01;
obj.MeasurementNoise = 0.16;

Initialize arrays to capture results of the estimation.

residBuf = [];
xcorBuf = [];
xpredBuf = [];

Implement the extended Kalman filter algorithm to estimate the states of the oscillator by using the
correct and predict commands. You first correct x[k |k− 1] using measurements at time k to get
x[k |k]. Then, you predict the state value at the next time step x[k + 1|k] using x[k |k], the state
estimate at time step k that is estimated using measurements until time k.

To simulate real-time data measurements, use the measured data one time step at a time. Compute
the residual between the predicted and actual measurement to assess how well the filter is
performing and converging. Computing the residual is an optional step. When you use residual,
place the command immediately before the correct command. If the prediction matches the
measurement, the residual is zero.

After you perform the real-time commands for the time step, buffer the results so that you can plot
them after the run is complete.

for k = 1:size(y)
 [Residual,ResidualCovariance] = residual(obj,y(k));

1 Functions

1-234

 [CorrectedState,CorrectedStateCovariance] = correct(obj,y(k));
 [PredictedState,PredictedStateCovariance] = predict(obj);

 residBuf(k,:) = Residual;
 xcorBuf(k,:) = CorrectedState';
 xpredBuf(k,:) = PredictedState';

end

When you use the correct command, obj.State and obj.StateCovariance are updated with
the corrected state and state estimation error covariance values for time step k, CorrectedState
and CorrectedStateCovariance. When you use the predict command, obj.State and
obj.StateCovariance are updated with the predicted values for time step k+1, PredictedState
and PredictedStateCovariance. When you use the residual command, you do not modify any
obj properties.

In this example, you used correct before predict because the initial state value was x[k |k− 1], a
guess for the state value at initial time k based on system outputs until time k-1. If your initial state
value is x[k− 1|k− 1], the value at previous time k-1 based on measurements until k-1, then use the
predict command first. For more information about the order of using predict and correct, see
“Using predict and correct Commands” on page 1-240.

Plot the estimated states, using the postcorrection values.

plot(xcorBuf(:,1), xcorBuf(:,2))
title('Estimated States')

 correct

1-235

Plot the actual measurement, the corrected estimated measurement, and the residual. For the
measurement function in vdpMeasurementFcn, the measurement is the first state.

M = [y,xcorBuf(:,1),residBuf];
plot(M)
grid on
title('Actual and Estimated Measurements, Residual')
legend('Measured','Estimated','Residual')

The estimate tracks the measurement closely. After the initial transient, the residual remains
relatively small throughout the run.

Estimate States Online using Particle Filter

Load the van der Pol ODE data, and specify the sample time.

vdpODEdata.mat contains a simulation of the van der Pol ODE with nonlinearity parameter mu=1,
using ode45, with initial conditions [2;0]. The true state was extracted with sample time dt =
0.05.

load ('vdpODEdata.mat','xTrue','dt')
tSpan = 0:dt:5;

Get the measurements. For this example, a sensor measures the first state with a Gaussian noise with
standard deviation 0.04.

1 Functions

1-236

sqrtR = 0.04;
yMeas = xTrue(:,1) + sqrtR*randn(numel(tSpan),1);

Create a particle filter, and set the state transition and measurement likelihood functions.

myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);

Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.

initialize(myPF,1000,[2;0],eye(2));

Pick the mean state estimation and systematic resampling methods.

myPF.StateEstimationMethod = 'mean';
myPF.ResamplingMethod = 'systematic';

Estimate the states using the correct and predict commands, and store the estimated states.

xEst = zeros(size(xTrue));
for k=1:size(xTrue,1)
 xEst(k,:) = correct(myPF,yMeas(k));
 predict(myPF);
end

Plot the results, and compare the estimated and true states.

figure(1)
plot(xTrue(:,1),xTrue(:,2),'x',xEst(:,1),xEst(:,2),'ro')
legend('True','Estimated')

 correct

1-237

Specify State Transition and Measurement Functions with Additional Inputs

Consider a nonlinear system with input u whose state x and measurement y evolve according to the
following state transition and measurement equations:

x[k] = x[k− 1] + u[k− 1] + w[k− 1]

y[k] = x[k] + 2 * u[k] + v[k]2

The process noise w of the system is additive while the measurement noise v is nonadditive.

Create the state transition function and measurement function for the system. Specify the functions
with an additional input u.

f = @(x,u)(sqrt(x+u));
h = @(x,v,u)(x+2*u+v^2);

f and h are function handles to the anonymous functions that store the state transition and
measurement functions, respectively. In the measurement function, because the measurement noise
is nonadditive, v is also specified as an input. Note that v is specified as an input before the
additional input u.

Create an extended Kalman filter object for estimating the state of the nonlinear system using the
specified functions. Specify the initial value of the state as 1 and the measurement noise as
nonadditive.

obj = extendedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);

Specify the measurement noise covariance.

obj.MeasurementNoise = 0.01;

You can now estimate the state of the system using the predict and correct commands. You pass
the values of u to predict and correct, which in turn pass them to the state transition and
measurement functions, respectively.

Correct the state estimate with measurement y[k]=0.8 and input u[k]=0.2 at time step k.

correct(obj,0.8,0.2)

Predict the state at the next time step, given u[k]=0.2.

predict(obj,0.2)

Retrieve the error, or residual, between the prediction and the measurement.

[Residual, ResidualCovariance] = residual(obj,0.8,0.2);

Input Arguments
obj — Extended or unscented Kalman filter, or particle filter object
extendedKalmanFilter object | unscentedKalmanFilter object | particleFilter object

1 Functions

1-238

Extended or unscented Kalman filter, or particle filter object for online state estimation, created using
one of the following commands:

• extendedKalmanFilter — Uses the extended Kalman filter algorithm.
• unscentedKalmanFilter — Uses the unscented Kalman filter algorithm.
• particleFilter — Uses the particle filter algorithm.

y — Measured system output
vector

Measured system output at the current time step, specified as an N-element vector, where N is the
number of measurements.

Um1,...,Umn — Additional input arguments to measurement function
input arguments of any type

Additional input arguments to the measurement function of the system, specified as input arguments
of any type. The measurement function, h, is specified in the MeasurementFcn or
MeasurementLikelihoodFcn property of obj. If the function requires input arguments in addition
to the state and measurement noise values, you specify these inputs in the correct command
syntax. correct command passes these inputs to the measurement or the measurement likelihood
function to calculate estimated outputs. You can specify multiple arguments.

For example, suppose that your measurement or measurement likelihood function calculates the
estimated system output y using system inputs u and current time k, in addition to the state x:

y(k) = h(x(k),u(k),k)

Then when you perform online state estimation at time step k, specify these additional inputs in the
correct command syntax:

[CorrectedState,CorrectedStateCovariance] = correct(obj,y,u(k),k);

Output Arguments
CorrectedState — Corrected state estimate
vector

Corrected state estimate, returned as a vector of size M, where M is the number of states of the
system. If you specify the initial states of obj as a column vector then M is returned as a column
vector, otherwise M is returned as a row vector.

For information about how to specify the initial states of the object, see the
extendedKalmanFilter, unscentedKalmanFilter and particleFilter reference pages.

CorrectedStateCovariance — Corrected state estimation error covariance
matrix

Corrected state estimation error covariance, returned as an M-by-M matrix, where M is the number
of states of the system.

 correct

1-239

More About
Using predict and correct Commands

After you have created an extended or unscented Kalman filter, or particle filter object, obj, to
implement the estimation algorithms, use the correct and predict commands together.

At time step k, correct command returns the corrected value of states and state estimation error
covariance using measured system outputs y[k] at the same time step. If your measurement function
has additional input arguments Um, you specify these as inputs to the correct command. The
command passes these values to the measurement function.

[CorrectedState,CorrectedCovariance] = correct(obj,y,Um)

The correct command updates the State and StateCovariance properties of the object with the
estimated values, CorrectedState and CorrectedCovariance.

The predict command returns the prediction of state and state estimation error covariance at the
next time step. If your state transition function has additional input arguments Us, you specify these
as inputs to the predict command. The command passes these values to the state transition
function.

[PredictedState,PredictedCovariance] = predict(obj,Us)

The predict command updates the State and StateCovariance properties of the object with the
predicted values, PredictedState and PredictedCovariance.

If the current output measurement exists at a given time step, you can use correct and predict. If
the measurement is missing, you can only use predict. For details about how these commands
implement the algorithms, see “Extended and Unscented Kalman Filter Algorithms for Online State
Estimation”.

The order in which you implement the commands depends on the availability of measured data y, Us,
and Um for your system:

• correct then predict — Assume that at time step k, the value of obj.State is x [k k− 1]. This
value is the state of the system at time k, estimated using measured outputs until time k-1. You
also have the measured output y[k] and inputs Us[k] and Um[k] at the same time step.

Then you first execute the correct command with measured system data y[k] and additional
inputs Um[k]. The command updates the value of obj.State to be x [k k], the state estimate for
time k, estimated using measured outputs up to time k. When you then execute the predict
command with input Us[k], obj.State now stores x [k + 1 k]. The algorithm uses this state
value as an input to the correct command in the next time step.

• predict then correct — Assume that at time step k, the value of obj.State is x [k− 1 k− 1].
You also have the measured output y[k] and input Um[k] at the same time step but you have
Us[k-1] from the previous time step.

Then you first execute the predict command with input Us[k-1]. The command updates the
value of obj.State to x [k k− 1]. When you then execute the correct command with input
arguments y[k] and Um[k], obj.State is updated with x [k k]. The algorithm uses this state
value as an input to the predict command in the next time step.

1 Functions

1-240

Thus, while in both cases the state estimate for time k, x [k k] is the same, if at time k you do not
have access to the current state transition function inputs Us[k], and instead have Us[k-1], then use
predict first and then correct.

For an example of estimating states using the predict and correct commands, see “Estimate
States Online Using Extended Kalman Filter” on page 1-234 or “Estimate States Online using Particle
Filter” on page 1-1410.

Version History
Introduced in R2016b

See Also
predict | clone | extendedKalmanFilter | unscentedKalmanFilter | particleFilter |
initialize | residual

Topics
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
“Generate Code for Online State Estimation in MATLAB”
“What Is Online Estimation?”
“Extended and Unscented Kalman Filter Algorithms for Online State Estimation”

 correct

1-241

cra
Estimate impulse response using prewhitened-based correlation analysis

Syntax
ir=cra(data)
[ir,R,cl] = cra(data,M,na,plot)

Description
ir=cra(data) estimates the impulse response for the time-domain data, data.

[ir,R,cl] = cra(data,M,na,plot) estimates correlation/covariance information, R, and the
99% confidence level for the impulse response, cl.

The cra command first computes an autoregressive model for the input u as A(q)u(t) = e(t), where e
is uncorrelated (white) noise, q is the time-shift operator, and A(q) is a polynomial of order na. The
command then filters u and output data y with A(q) to obtain the prewhitened data. The command
then computes and plots the covariance functions of the prewhitened y and u and the cross-
correlation function between them. Positive values of the lag variable then correspond to an influence
from u to later values of y. In other words, significant correlation for negative lags is an indication of
feedback from y to u in the data. A properly scaled version of this correlation function is also an
estimate of the system impulse response. This is also plotted along with 99% confidence levels. The
output argument ir is this impulse response estimate, so that its first entry corresponds to lag zero.
(Negative lags are excluded in ir.) In the plot, the impulse response is scaled so that it corresponds
to an impulse of height 1/T and duration T, where T is the sample time of the data.

Input Arguments
data

Input-output data.

Specify data as an iddata object containing time-domain data only.

data should contain data for a single-input, single-output experiment. For the multivariate case,
apply cra to two signals at a time, or use impulse.

M

Number of lags for which the covariance/correlation functions are computed.

M specifies the number of lags for which the covariance/correlation functions are computed. These
are from -M to M, so that the length of R is 2M+1. The impulse response is computed from 0 to M.

Default: 20

na

Order of the AR model to which the input is fitted.

1 Functions

1-242

For the prewhitening, the input is fitted to an AR model of order na.

Use na = 0 to obtain the covariance and correlation functions of the original data sequences.

Default: 10

plot

Plot display control.

Specify plot as one of the following integers:

• 0 — No plots are displayed.
• 1 — Plots the estimated impulse response with a 99% confidence region.
• 2 — Plots all the covariance functions.

Default: 1

Output Arguments
ir

Estimated impulse response.

The first entry of ir corresponds to lag zero. (Negative lags are excluded in ir.)

R

Covariance/correlation information.

• The first column of R contains the lag indices.
• The second column contains the covariance function of the (possibly filtered) output.
• The third column contains the covariance function of the (possibly prewhitened) input.
• The fourth column contains the correlation function. The plots can be redisplayed by cra(R).

cl

99 % significance level for the impulse response.

Examples

Estimate the Impulse Response of an ARX Model

Compare a second-order ARX model's impulse response with the one obtained by correlation analysis.

load iddata1
z = z1;
ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(20,1)];
irth = sim(m,imp);
subplot(211)

 cra

1-243

plot([ir irth])
title('Impulse Responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('Step Responses')

Alternatives
An often better alternative to cra is impulseest, which use a high-order FIR model to estimate the
impulse response.

Version History
Introduced before R2006a

See Also
impulse | step | impulseest | spa

1 Functions

1-244

createMLPNetwork
Package: idneuralstatespace

Create and initialize a Multi-Layer Perceptron (MPL) network to be used within a neural state-space
system

Syntax
dlnet = createMLPNetwork(nss,type)
dlnet = createMLPNetwork(___ ,Name=Value)

Description
dlnet = createMLPNetwork(nss,type) creates a multi-layer perceptron (MLP) network dlnet
of type type to approximate either the state or the (non-trivial part of) the output function of the
neural state space object nss. For example, to specify the network for the state function, use

nss.StateNetwork = createMLPNetwork(nss, 'state',...)

To specify the network for the non-trivial part of the output function, use

nss.OutputNetwork(2) = createMLPNetwork(nss, 'output',...)

dlnet = createMLPNetwork(___ ,Name=Value) specifies name-value pair arguments after any
of the input argument in the previous syntax. You can use name-value pair arguments to set the
number of layers, the number of neurons per layer, or the type of their activation function.

For example, dlnet = createMLPNetwork(nss,'output',LayerSizes=[4
3],Activations="sigmoid") creates an output network with two hidden layers having four and
three sigmoid-activated neurons, respectively.

Examples

Create MLP Network for Neural State-Space Object

Use idNeuralStateSpace to create a continuous-time neural state-space object with three states
and one input. By default, the state network has two hidden layers each with 64 neurons and an
hyperbolic tangent activation function.

nss = idNeuralStateSpace(3,NumInputs=1)

Use createMLPNetwork and dot notation, to re-configure the state network. Specify three hidden
layers of 4, 8 and 4 neurons, respectively, and use a sigmoid as activation function.

nss.StateNetwork = createMLPNetwork(nss,'state', ...
 LayerSizes=[4 8 4],Activations="sigmoid");

You can now use time-domain data to perform estimation and validation.

 createMLPNetwork

1-245

Input Arguments
nss — Neural state-space object
idNeuralStateSpace object

Neural state-space object, specified as an idNeuralStateSpace object.
Example: idNeuralStateSpace(2,NumInputs=1)

type — Network type
"state" | "output"

Network type, specified as one of the following:

• "state" or 'state' — creates a network to approximate the state function of nss. For
continuous state-space systems the state function returns the system state derivative with respect
to time, while for discrete-time state-space systems it returns the next state. The inputs of the
state function are time (if IsTimeInvariant is false), the current state, and the current input
(if NumInputs is positive).

• "output" or 'output' — creates a network to approximate the non-trivial part of the output
function of nss. This network returns the non-trivial system output, y2(t) = H(t,x,u), as a function
of time (if IsTimeInvariant is false), the current state, and the current input (if NumInputs is
positive). For more information, see idNeuralStateSpace.

Example: "output"

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Use name-value pair arguments to specify network properties such as the number of hidden layers,
the size of each hidden layer, the activation functions, and the weights and bias initialization
methods.
Example: LayerSizes=[16 32 16]

LayerSizes — Layer sizes
[64 64] (default) | vector of positive integers

Layer sizes, specified as a vector of positive integers. Each number specifies the number of neurons
(network nodes) for each hidden layer (each layer is fully-connected). For example, [10 20 8]
specifies a network with three hidden layers, the first (after the network input) having 10 neurons,
the second having 20 neurons, and the last (before the network output), having 8 neurons. Note that
the output layer is also a fully-connected, and you cannot change its size.
Example: [32 32]

Activations — Activation function type
"tanh" (default) | "sigmoid"

Activation function type for all hidden layers, specified as one of the following:

• "tanh" or 'tanh' — uses the hyperbolic tangent as activation function.

1 Functions

1-246

• "sigmoid" or 'sigmoid' — uses the sigmoid as activation function.

Example: "sigmoid"

WeightsInitializer — Weights initializer method
"glorot" (default) | "he" | "orthogonal" | "narrow-normal" | "zeros" | "ones"

Weights initializer method for all hidden layers, specified as one of the following:

• "glorot" or 'glorot' — uses the Glorot method.
• "he" or 'he' — uses the He method.
• "orthogonal" or 'orthogonal' — uses the orthogonal method.
• "narrow-normal" or 'narrow-normal' — uses the narrow-normal method.
• "zeros" or 'zeros' — initializes all weights to zero.
• "ones" or 'ones' — initializes all weights to one.

Example: "orthogonal"

WeightsInitializer — Bias initializer method
"zeros" (default) | "ones" | "narrow-normal"

Weights initializer method for all hidden layers, specified as one of the following:

• "narrow-normal" or 'narrow-normal' — uses the narrow-normal method.
• "zeros" or 'zeros' — initializes all biases to zero.
• "ones" or 'ones' — initializes all biases to one.

Example: "narrow-normal"

Output Arguments
dlnet — Network for the state or output function
dlnetwork object

Network for the state or output function of nss, specified as a dlnetwork object.

For continuous state-space systems the state function returns the system state derivative with respect
to time, while for discrete-time state-space systems it returns the next state. The inputs of the state
function are time (if IsTimeInvariant is false), the current state, and the current input (if
NumInputs is positive).

The output function returns the system output as a function of time (if IsTimeInvariant is false),
the current state, and the current input (if NumInputs is positive).

Note You can use commands such as summary(dlnet), plot(dlnet), dlnet.Layers, and
dlnet.Learnables to examine network details.

Version History
Introduced in R2022b

 createMLPNetwork

1-247

See Also
Objects
idNeuralStateSpace | nssTrainingADAM | nssTrainingSGDM | idss | idnlgrey

Functions
nssTrainingOptions | nlssest | generateMATLABFunction | idNeuralStateSpace/
evaluate | idNeuralStateSpace/linearize | sim

Blocks
Neural State-Space Model

Topics
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

1 Functions

1-248

customreg
(Not recommended) Custom regressor for nonlinear ARX models

Note The customreg command is not recommended. For polynomial regressors, use
polynomialRegressor instead. For other custom regressors, use customRegressor. For more
information, see “Compatibility Considerations”.

Syntax
C=customreg(Function,Variables)
C=customreg(Function,Variables,Delays,Vectorized)

Description
customreg class represents arbitrary functions of past inputs and outputs, such as products, powers,
and other MATLAB expressions of input and output variables.

You can specify custom regressors in addition to or instead of standard regressors for greater
flexibility in modeling your data using nonlinear ARX models. For example, you can define regressors
like tan(u(t-1)), u(t-1)2, and u(t-1)*y(t-3).

For simpler regressor expressions, specify custom regressors directly in the app or in the nlarx
estimation command. For more complex expressions, create a customreg object for each custom
regressor and specify these objects as inputs to the estimation. Regardless of how you specify custom
regressors, the toolbox represents these regressors as customreg objects. Use getreg to list the
expressions of all standard and custom regressors in your model.

A special case of custom regressors involves polynomial combinations of past inputs and outputs. For
example, it is common to capture nonlinearities in the system using polynomial expressions like y(t
−1)2, u(t−1)2, y(t−2)2, y(t−1)*y(t−2), y(t−1)*u(t−1), y(t− 2)*u(t−1). At the command line, use the
polyreg command to generate polynomial-type regressors automatically by computing all
combinations of input and output variables up to a specified degree. polyreg produces customreg
objects that you specify as inputs to the estimation.

The nonlinear ARX model (idnlarx object) stores all custom regressors as the CustomRegressors
property. You can list all custom regressors using m.CustomRegressors, where m is a nonlinear ARX
model. For MIMO models, to retrieve the rth custom regressor for output ky, use
m.CustomRegressors{ky}(r).

Use the Vectorized property to specify whether to compute custom regressors using vectorized
form during estimation. If you know that your regressor formulas can be vectorized, set Vectorized
to 1 to achieve better performance. To better understand vectorization, consider the custom
regressor function handle z=@(x,y)x^2*y. x and y are vectors and each variable is evaluated over a
time grid. Therefore, z must be evaluated for each (xi,yi) pair, and the results are concatenated to
produce a z vector:

for k = 1:length(x)
 z(k) = x(k)^2*y(k)
end

 customreg

1-249

The above expression is a nonvectorized computation and tends to be slow. Specifying a Vectorized
computation uses MATLAB vectorization rules to evaluate the regressor expression using matrices
instead of the FOR-loop and results in faster computation:

% ".*" indicates element-wise operation
z=(x.^2).*y

Construction
C=customreg(Function,Variables) specifies a custom regressor for a nonlinear ARX model. C is
a customreg object that stores custom regressor. Function is a function of input and output
variables. Variables represent the names of model inputs and outputs in the function Function.
Each input and output name must coincide with the InputName and OutputName properties of the
corresponding idnlarx object. The size of Variables must match the number of Function inputs.
For multiple-output models with p outputs, the custom regressor is a p-by-1 cell array or an array of
customreg object, where the kyth entry defines the custom regressor for output ky. You must add
these regressors to the model by assigning the CustomRegressors model property or by using
addreg.

C=customreg(Function,Variables,Delays,Vectorized) create a custom regressor that
includes the delays corresponding to inputs or outputs in Arguments. Delays is a vector of positive
integers that represent the delays of Variables variables (default is 1 for each vector element). The
size of Delays must match the size of Variables. Vectorized value of 1 uses MATLAB
vectorization rules to evaluate the regressor expression Function. By default, Vectorized value is
0 (false).

Properties
After creating the object, you can use get or dot notation to access the object property values. For
example:

% List all property values
get(C)
% Get value of Arguments property
C.Arguments

You can also use the set function to set the value of particular properties. For example:

set(C,'Vectorized',1)

Property Name Description
Function Function handle or character vector representing a function of standards

regressors.

For example:

cr = @(x,y) x*y

1 Functions

1-250

Property Name Description
Variables Cell array of character vectors that represent the names of model input and

output variables in the function Function. Each input and output name must
coincide with the InputName and OutputName properties of the idnlarx
object—the model for which you define custom regressors. The size of
Variables must match the number of Function inputs.

For example, Variables correspond to {'y1','u1'} in:

C = customreg(cr,{'y1','u1'},[2 3])

Delays Vector of positive integers representing the delays of Variables. The size of
Delays must match the size of Arguments.

Default: 1 for each vector element.

For example, Delays are [2 3] in:

C = customreg(cr,{'y1','u1'},[2 3])

Vectorized Assignable values:

• 0 (default)—Function is not computed in vectorized form.
• 1—Function is computed in vectorized form when called with vector

arguments.

Examples

Define Custom Regressors

Load estimation data.

load iddata1

Specify the regressors as a cell array of character vectors.

C = {'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'};

u1 and y1 are input and output data, respectively.

Estimate a nonlinear ARX model using the custom regressors.

m = nlarx(z1,[2 2 1],'idLinear','CustomRegressors',C);

Define Custom Regressors During Estimation

Load the estimation data.

load iddata1

Estimate a nonlinear ARX model with custom regressors.

 customreg

1-251

m = nlarx(z1,[2 2 1],'idLinear','CustomRegressors',...
 {'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'});

Define Custom Regressors as Array of customreg Objects

Load the estimation data.

load iddata1

Construct a nonlinear ARX model.

m = idnlarx([2 2 1]);

Define the custom regressors.

cr1 = @(x,y) x*sin(y);
cr2 = @(x) x^3;
C = [customreg(cr1,{'u','y'},[1 3]),customreg(cr2,{'u'},2)];

Add custom regressors to the model.

m2 = addreg(m,C);

Use Vectorization Rules to Evaluate Regressor Expression

Load the estimation data.

load iddata1

Specify the regressors.

C = customreg(@(x,y) x.*sin(y),{'u' 'y'},[1 3]);
set(C,'Vectorized',1);

Estimate a nonlinear ARX model with custom regressors.

m = nlarx(z1,[2 2 1],idSigmoidNetwork,'CustomReg',C);

Version History
Introduced in R2007a

customreg is not recommended
Not recommended starting in R2021a

Starting in R2021a, create polynomial regressors using polynomialRegressor. To create other
custom regressor forms, use customRegressor. Add the new regressor to the idnlarx
Regressors property by using the syntax by using the syntax model.Regressors(end+1) =
new_regressor_object.

There are no plans to remove customreg at this time.

1 Functions

1-252

See Also
addreg | getreg | idnlarx | nlarx | polyreg

Topics
“Identifying Nonlinear ARX Models”

 customreg

1-253

customRegressor
Specify custom regressor for nonlinear ARX model

Description
A custom regressor represents a single user-provided formula that operates on delayed input and
output variables. For example, y(t–1)eu(t–1) is a custom regressor that you can construct using the
formula @(x,y)x.*exp(y). A customRegressor object encapsulates a set of custom regressors.
Use customRegressor objects when you create nonlinear ARX models using idnlarx or nlarx.
You can specify customRegressor objects along with linearRegressor, polynomialRegressor,
and periodicRegressor objects and combine them into a single combined regressor set.

Creation

Syntax
cReg = customRegressor(Variables,Lags,Fcn)
cReg = customRegressor(Variables,Lags,Fcn,Vectorized)

Description

cReg = customRegressor(Variables,Lags,Fcn) creates a customRegressor object, with the
output and input names in Variables, the corresponding lags in Lags, and the function handle in
Fcn. Fcn sets the VariablesToRegressorFcn property. For example, if Variables contains 'y',
lags contains the corresponding lag vector [2 4], and the custom function is @(x)sin(x), then the
regressors that use 'y' are sin(y(t–2)) and sin(y(t–4)).

cReg = customRegressor(Variables,Lags,Fcn,Vectorized) specifies whether Fcn can
process a vector of inputs to return a vector of output values, based on the value of Vectorized.

Properties
VariablesToRegressorFcn — Custom Function
function handle

Custom function that transforms a set of delayed variables into a numeric scalar output, specified as
a function handle.
Example: @(x)sin(x)
Example: @(x,y)x.*exp(y)

Variables — Output and input variable names
cell array of strings | iddata object properties

Output and input variable names, specified as a cell array of strings or a cell array that references the
OutputName and InputName properties of an iddata object. Each entry must be a string with no
special characters other than white space.

1 Functions

1-254

Example: {'y1','u1'}
Example: [z.OutputName; z.InputName]

Lags — Lags in each variable
cell array of non-negative integers

Lags in each variable, specified as a 1-by-nv cell array of non-negative integer row vectors, where nv
is the total number of regressor variables. Each row vector contains nr integers that specify the nr
regressor lags for the corresponding variable. When nr>1 for at least one of the variables, then the
software generates a regressor for every lag combination. For instance, suppose that you want to
create the formula r(t) = sin(y1(t–a))cos(u1(t–b)), where lag a can be 1 or 2 and lag b can be 0 or 3.
Specify Lags as {[1 2],[0 3]}, which corresponds to the variables {'y1','u1'}. This
specification creates the following set of regressors:

• 'sin(y1(t-1))*cos(u1(t))'
• 'sin(y1(t-1))*cos(u1(t-3))'
• 'sin(y1(t-2))*cos(u1(t))'
• 'sin(y1(t-2))*cos(u1(t-3))'

If a lag corresponds to an output variable of an idnlarx model, the minimum lag must be greater
than or equal to 1.
Example: {1 1}
Example: {[1 2],[1,3,4]}

Vectorized — Vectorization indicator
true (default) | false

Vectorization indicator that determines whether VariablesToRegressorFcn is vectorized ,
specified as true or false.

For an example of setting this property, see “Use Absolute Value in Polynomial Regressor Set” on
page 1-1385.
Example: [true,false]

TimeVariable — Name of time variable
't' (default) | character array | string

Name of the time variable, specified as a valid MATLAB variable name that is distinct from values in
Variables.
Example: 'ClockTime'

Examples

Create Custom Regressor

Create a custom regressor that represents the formula xey.

Specify the input variables as 'u1' and 'y1' and corresponding lags of 1 and 3 delays.

 customRegressor

1-255

vars = {'y1','u1'};
lags = {1 3};

Specify the custom function.

fcn = @(x,y)x.*exp(y);

Create the regressor.

cReg = customRegressor(vars,lags,fcn)

cReg =
Custom regressor: y1(t-1).*exp(u1(t-3))
 VariablesToRegressorFcn: @(x,y)x.*exp(y)
 Variables: {'y1' 'u1'}
 Lags: {[1] [3]}
 Vectorized: 1
 TimeVariable: 't'

 Regressors described by this set

Create Custom Regressors in Multiple Variables

Create a set of custom regressors in three variables, all based on the formula xy + sin z .

Specify the variable names and the lags.

vars = {'a','b','c'};
lags = {[1 5],[0 8],7};

Specify the custom function.

fcn = @(x,y,z)x.*y+sin(z);

Create the custom regressor set.

cReg = customRegressor(vars,lags,fcn)

cReg =
Custom regressor: @(x,y,z)x.*y+sin(z)
 VariablesToRegressorFcn: @(x,y,z)x.*y+sin(z)
 Variables: {'a' 'b' 'c'}
 Lags: {[1 5] [0 8] [7]}
 Vectorized: 1
 TimeVariable: 't'

 Regressors described by this set

cReg specifies regressors for all possible lag combinations.

Specify Linear, Polynomial, and Custom Regressors

Load the estimation data z1, which has one input and one output, and obtain the output and input
names.

1 Functions

1-256

load iddata1 z1;
names = [z1.OutputName z1.InputName]

names = 1x2 cell
 {'y1'} {'u1'}

Specify L as the set of linear regressors that represents y1 t − 1 , u1 t − 2 , and u1 t − 5 .

L = linearRegressor(names,{1,[2 5]});

Specify P as the polynomial regressor y1 t − 1 2.

P = polynomialRegressor(names(1),1,2);

Specify C as the custom regressor y1 t − 2 u1 t − 3 . Use an anonymous function handle to define this
function.

C = customRegressor(names,{2 3},@(x,y)x.*y)

C =
Custom regressor: y1(t-2).*u1(t-3)
 VariablesToRegressorFcn: @(x,y)x.*y
 Variables: {'y1' 'u1'}
 Lags: {[2] [3]}
 Vectorized: 1
 TimeVariable: 't'

 Regressors described by this set

Combine the regressors in the column vector R.

R = [L;P;C]

R =
[3 1] array of linearRegressor, polynomialRegressor, customRegressor objects.

1. Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1] [2 5]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

2. Order 2 regressors in variables y1
 Order: 2
 Variables: {'y1'}
 Lags: {[1]}
 UseAbsolute: 0
 AllowVariableMix: 0
 AllowLagMix: 0
 TimeVariable: 't'

3. Custom regressor: y1(t-2).*u1(t-3)
 VariablesToRegressorFcn: @(x,y)x.*y
 Variables: {'y1' 'u1'}
 Lags: {[2] [3]}

 customRegressor

1-257

 Vectorized: 1
 TimeVariable: 't'

Regressors described by this set

Estimate a nonlinear ARX model with R.

sys = nlarx(z1,R)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 1. Linear regressors in variables y1, u1
 2. Order 2 regressors in variables y1
 3. Custom regressor: y1(t-2).*u1(t-3)

Output function: Wavelet network with 1 units
Sample time: 0.1 seconds

Status:
Estimated using NLARX on time domain data "z1".
Fit to estimation data: 59.73% (prediction focus)
FPE: 3.356, MSE: 3.147
More information in model's "Report" property.

View the full regressor set.

getreg(sys)

ans = 5x1 cell
 {'y1(t-1)' }
 {'u1(t-2)' }
 {'u1(t-5)' }
 {'y1(t-1)^2' }
 {'y1(t-2).*u1(t-3)'}

Version History
Introduced in R2021a

See Also
idnlarx | nlarx | getreg | linearRegressor | polynomialRegressor | periodicRegressor

1 Functions

1-258

d2c
Convert model from discrete to continuous time

Syntax
sysc = d2c(sysd)
sysc = d2c(sysd,method)
sysc = d2c(sysd,opts)
[sysc,G] = d2c(___)

Description
sysc = d2c(sysd) converts a the discrete-time dynamic system model sysd to a continuous-time
model using zero-order hold on the inputs.

sysc = d2c(sysd,method) specifies the conversion method.

sysc = d2c(sysd,opts) specifies conversion options for the discretization.

[sysc,G] = d2c(___), where sysd is a state-space model, returns a matrix G that maps the
states xd[k] of the discrete-time state-space model to the states xc(t) of sysc.

Examples

Convert Discrete-Time Transfer Function to Continuous Time

Create the following discrete-time transfer function:

H z = z − 1
z2 + z + 0 . 3

H = tf([1 -1],[1 1 0.3],0.1);

The sample time of the model is Ts = 0 . 1s.

Derive a continuous-time, zero-order-hold equivalent model.

Hc = d2c(H)

Hc =

 121.7 s + 1.758e-12

 s^2 + 12.04 s + 776.7

Continuous-time transfer function.

Discretize the resulting model, Hc, with the default zero-order hold method and sample time 0.1s to
return the original discrete model, H.

c2d(Hc,0.1)

 d2c

1-259

ans =

 z - 1

 z^2 + z + 0.3

Sample time: 0.1 seconds
Discrete-time transfer function.

Use the Tustin approximation method to convert H to a continuous time model.

Hc2 = d2c(H,'tustin');

Discretize the resulting model, Hc2, to get back the original discrete-time model, H.

c2d(Hc2,0.1,'tustin');

Convert Identified Discrete-Time Transfer Function to Continuous Time

Estimate a discrete-time transfer function model, and convert it to a continuous-time model.

load iddata1
sys1d = tfest(z1,2,'Ts',0.1);
sys1c = d2c(sys1d,'zoh');

Estimate a continuous-time transfer function model.

sys2c = tfest(z1,2);

Compare the response of sys1c and the directly estimated continuous-time model, sys2c.

compare(z1,sys1c,sys2c)

1 Functions

1-260

The two systems are almost identical.

Regenerate Covariance Information After Converting to Continuous-Time Model

Convert an identified discrete-time transfer function model to continuous-time.

load iddata1
sysd = tfest(z1,2,'Ts',0.1);
sysc = d2c(sysd,'zoh');

sys1c has no covariance information. The d2c operation leads to loss of covariance data of identified
models.

Regenerate the covariance information using a zero iteration update with the same estimation
command and estimation data.

opt = tfestOptions;
opt.SearchOptions.MaxIterations = 0;
sys1c = tfest(z1,sysc,opt);

Analyze the effect on frequency-response uncertainty.

h = bodeplot(sysd,sys1c);
showConfidence(h,3)

 d2c

1-261

The uncertainties of sys1c and sysd are comparable up to the Nyquist frequency. However, sys1c
exhibits large uncertainty in the frequency range for which the estimation data does not provide any
information.

If you do not have access to the estimation data, use the translatecov command which is a Gauss-
approximation formula based translation of covariance across model type conversion operations.

Input Arguments
sysd — Discrete-time dynamic system
dynamic system model

Discrete-time model, specified as a dynamic system model such as idtf, idss, or idpoly.

You cannot directly use an idgrey model whose FunctionType is 'd' with d2c. Convert the model
into idss form first.

method — Discrete-to-continuous time conversion method
'zoh' (default) | 'foh' | 'tustin' | 'matched'

Discrete-to-continuous time conversion method, specified as one of the following values:

• 'zoh' — Zero-order hold on the inputs. Assumes that the control inputs are piecewise constant
over the sampling period.

1 Functions

1-262

• 'foh' — Linear interpolation of the inputs (modified first-order hold). Assumes that the control
inputs are piecewise linear over the sampling period.

• 'tustin' — Bilinear (Tustin) approximation to the derivative. To specify this method with
frequency prewarping (formerly known as the 'prewarp' method), use the PrewarpFrequency
option of d2cOptions.

• 'matched' — Zero-pole matching method (for SISO systems only). See [1] .

For information about the algorithms for each d2c conversion method, see “Continuous-Discrete
Conversion Methods”.

opts — Discrete-to-continuous time conversion options
d2cOptions object

Discrete-to-continuous time conversion options, created using d2cOptions. For example, specify the
prewarp frequency or the conversion method as an option.

Output Arguments
sysc — Continuous-time model
dynamic system model

Continuous-time model, returned as a dynamic system model of the same type as the input system
sysd.

When sysd is an identified (IDLTI) model, sysc:

• Includes both the measured and noise components of sysd. If the noise variance is λ in sysd,
then the continuous-time model sysc has an indicated level of noise spectral density equal to
Ts*λ.

• Does not include the estimated parameter covariance of sysd. If you want to translate the
covariance while converting the model, use translatecov.

G — Mapping of discrete-time states of state-space model to continuous-time states
matrix

Mapping of the states xd[k] of the state-space model sysd to the states xc(t) of sysc, returned as
a matrix. The mapping of the states is as follows:

xc kTs = G
xd k
u k

.

Given an initial condition x0 for sysd and an initial input u0 = u[0], the corresponding initial
condition for sysc (assuming u[k] = 0 for k < 0 is:

xc 0 = G
x0
u0

.

Version History
Introduced before R2006a

 d2c

1-263

References
[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition),

Prentice Hall, 1997.

[2] Kollár, I., G.F. Franklin, and R. Pintelon, "On the Equivalence of z-domain and s-domain Models in
System Identification," Proceedings of the IEEE® Instrumentation and Measurement
Technology Conference, Brussels, Belgium, June, 1996, Vol. 1, pp. 14-19.

See Also
d2cOptions | c2d | d2d | translatecov | logm

Topics
“Dynamic System Models”
“Transforming Between Discrete-Time and Continuous-Time Representations”
“Continuous-Discrete Conversion Methods”

1 Functions

1-264

d2cOptions
Create option set for discrete- to continuous-time conversions

Syntax
opts = d2cOptions
opts = d2cOptions(Name,Value)

Description
opts = d2cOptions returns the default options for d2c.

opts = d2cOptions(Name,Value) creates an option set with the options specified by one or more
Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

method

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where d2c assumes that the control inputs are piecewise
constant over the sample time Ts.

'foh' Linear interpolation of the inputs (modified first-order hold). Assumes that the
control inputs are piecewise linear over the sampling period.

'tustin' Bilinear (Tustin) approximation. By default, d2c converts with no prewarp. To
include prewarp, use the PrewarpFrequency option.

'matched' Zero-pole matching method. (See [1] on page 1-266, p. 224.)

For information about the algorithms for each d2c conversion method, see “Continuous-Discrete
Conversion Methods”.

Default: 'zoh'

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time
units, specified in the TimeUnit property, of the discrete-time system. Specify the prewarp frequency
as a positive scalar value. A value of 0 corresponds to the 'tustin' method without prewarp.

Default: 0

Output Arguments
opts — Option set for d2c
d2cOptions option set

 d2cOptions

1-265

Option set for d2c, returned as an d2cOptions option set.

Examples

Specify Model Discretization Method

Consider the following discrete-time transfer function.

H(z) = z + 1
z2 + z + 1

Create the discrete-time transfer function with a sample time of 0.1 seconds.

Hd = tf([1 1],[1 1 1],0.1);

Specify the discretization method as bilinear (Tustin) approximation and the prewarp frequency as 20
rad/seconds.

opts = d2cOptions('Method','tustin','PrewarpFrequency',20);

Convert the discrete-time model to continuous-time using the specified discretization method.

Hc = d2c(Hd,opts);

You can use the discretization option set opts to discretize additional models using the same options.

Version History
Introduced in R2012a

References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition),
Prentice Hall, 1997.

See Also
d2c

1 Functions

1-266

d2d
Resample discrete-time model

Syntax
sys1 = d2d(sys, Ts)
sys1 = d2d(sys, Ts, 'method')
sys1 = d2d(sys, Ts, opts)

Description
sys1 = d2d(sys, Ts) resamples the discrete-time dynamic system model sys to produce an
equivalent discrete-time model sys1 with the new sample time Ts (in seconds), using zero-order hold
on the inputs.

sys1 = d2d(sys, Ts, 'method') uses the specified resampling method 'method':

• 'zoh' — Zero-order hold on the inputs
• 'tustin' — Bilinear (Tustin) approximation

For information about the algorithms for each d2d conversion method, see “Continuous-Discrete
Conversion Methods”.

sys1 = d2d(sys, Ts, opts) resamples sys using the option set with d2dOptions.

Examples

Resample a Discrete-Time Model

Create the following zero-pole-gain-model with sample time 0.1 seconds.

H z = z − 0 . 7
z − 0 . 5

H = zpk(0.7,0.5,1,0.1);

Resample the model at 0.05 s.

H2 = d2d(H,0.05)

H2 =

 (z-0.8243)

 (z-0.7071)

Sample time: 0.05 seconds
Discrete-time zero/pole/gain model.

Resample H2 at 0.1 seconds to obtain the original model H.

 d2d

1-267

H3 = d2d(H2,0.1)

H3 =

 (z-0.7)

 (z-0.5)

Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.

Resample an Identified Discrete-Time Model

Suppose that you estimate a discrete-time output-error polynomial model with sample time
commensurate with the estimation data (0.1 seconds). However, your application requires a faster
sampling frequency (0.01 seconds). You can use d2d to resample your estimated model.

Load the estimation data.

load iddata1 z1
z1.Ts

ans = 0.1000

z1 is an iddata object containing the estimation input-output data with sample time 0.1 seconds.

Estimate an output-error polynomial model of order [2 2 1].

sys = oe(z1,[2 2 1]);
sys.Ts

ans = 0.1000

Resample the model at sample time 0.01 seconds.

sys2 = d2d(sys,0.01);
sys2.Ts

ans = 0.0100

d2d resamples the model using the zero-order hold method.

Tips
• Use the syntax sys1 = d2d(sys,Ts,'method') to resample sys using the default options for

'method'. To specify tustin resampling with a frequency prewarp, use the syntax sys1 =
d2d(sys,Ts,opts). For more information, see d2dOptions.

• When sys is an identified (IDLTI) model, sys1 does not include the estimated parameter
covariance of sys. If you want to translate the covariance while converting the model, use
translatecov.

1 Functions

1-268

Version History
Introduced before R2006a

See Also
d2dOptions | c2d | d2c | upsample | translatecov

 d2d

1-269

d2dOptions
Create option set for discrete-time resampling

Syntax
opts = d2dOptions
opts = d2dOptions('OptionName', OptionValue)

Description
opts = d2dOptions returns the default options for d2d.

opts = d2dOptions('OptionName', OptionValue) accepts one or more comma-separated
name-value pairs that specify options for the d2d command. Specify OptionName inside single
quotes.

This table summarizes the options that the d2d command supports.

Input Arguments
Name-Value Pair Arguments

Method

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where d2d assumes that the control inputs are piecewise
constant over the sample time Ts.

'tustin' Bilinear (Tustin) approximation. By default, d2d resamples with no prewarp.
To include prewarp, use the PrewarpFrequency option.

For information about the algorithms for each d2d conversion method, see “Continuous-Discrete
Conversion Methods”.

Default: 'zoh'

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time
units, specified in the TimeUnit property, of the resampled system. Takes positive scalar values. The
prewarp frequency must be smaller than the Nyquist frequency before and after resampling. A value
of 0 corresponds to the standard 'tustin' method without prewarp.

Default: 0

Examples

1 Functions

1-270

Specify Method for Resampling a Discrete-Time Model

Create the following discrete-time transfer function with sample time 0.1 seconds.

H(z) = z + 1
z2 + z + 1

h1 = tf([1 1],[1 1 1],0.1);

Specify the discretization method as bilinear Tustin method with a prewarping frequency of 20 rad/
seconds.

opts = d2dOptions('Method','tustin','PrewarpFrequency',20);

Resample the discrete-time model using the specified options.

h2 = d2d(h1,0.05,opts);

You can use the option set opts to resample additional models using the same options.

Version History
Introduced in R2012a

See Also
d2d

 d2dOptions

1-271

damp
Natural frequency and damping ratio

Syntax
damp(sys)

[wn,zeta] = damp(sys)
[wn,zeta,p] = damp(sys)

Description
damp(sys) displays the damping ratio, natural frequency, and time constant of the poles of the linear
model sys. For a discrete-time model, the table also includes the magnitude of each pole. The poles
are sorted in increasing order of frequency values.

[wn,zeta] = damp(sys) returns the natural frequencies wn, and damping ratios zeta of the poles
of sys.

[wn,zeta,p] = damp(sys) also returns the poles p of sys.

Examples

Display Natural Frequency, Damping Ratio, and Poles of Continuous-Time System

For this example, consider the following continuous-time transfer function:

sys(s) = 2s2 + 5s + 1
s3 + 2s− 3

.

Create the continuous-time transfer function.

sys = tf([2,5,1],[1,0,2,-3]);

Display the natural frequencies, damping ratios, time constants, and poles of sys.

damp(sys)

 Pole Damping Frequency Time Constant
 (rad/seconds) (seconds)

 1.00e+00 -1.00e+00 1.00e+00 -1.00e+00
 -5.00e-01 + 1.66e+00i 2.89e-01 1.73e+00 2.00e+00
 -5.00e-01 - 1.66e+00i 2.89e-01 1.73e+00 2.00e+00

The poles of sys contain an unstable pole and a pair of complex conjugates that lie int he left-half of
the s-plane. The corresponding damping ratio for the unstable pole is -1, which is called a driving
force instead of a damping force since it increases the oscillations of the system, driving the system
to instability.

1 Functions

1-272

Display Natural Frequency, Damping Ratio, and Poles of Discrete-Time System

For this example, consider the following discrete-time transfer function with a sample time of 0.01
seconds:

sys(z) = 5z2 + 3z + 1
z3 + 6z2 + 4z + 4

.

Create the discrete-time transfer function.

sys = tf([5 3 1],[1 6 4 4],0.01)

sys =

 5 z^2 + 3 z + 1

 z^3 + 6 z^2 + 4 z + 4

Sample time: 0.01 seconds
Discrete-time transfer function.

Display information about the poles of sys using the damp command.

damp(sys)

 Pole Magnitude Damping Frequency Time Constant
 (rad/seconds) (seconds)

 -3.02e-01 + 8.06e-01i 8.61e-01 7.74e-02 1.93e+02 6.68e-02
 -3.02e-01 - 8.06e-01i 8.61e-01 7.74e-02 1.93e+02 6.68e-02
 -5.40e+00 5.40e+00 -4.73e-01 3.57e+02 -5.93e-03

The Magnitude column displays the discrete-time pole magnitudes. The Damping, Frequency, and
Time Constant columns display values calculated using the equivalent continuous-time poles.

Natural Frequency and Damping Ratio of Zero-Pole-Gain Model

For this example, create a discrete-time zero-pole-gain model with two outputs and one input. Use
sample time of 0.1 seconds.

sys = zpk({0;-0.5},{0.3;[0.1+1i,0.1-1i]},[1;2],0.1)

sys =

 From input to output...
 z
 1: -------
 (z-0.3)

 2 (z+0.5)
 2: -------------------

 damp

1-273

 (z^2 - 0.2z + 1.01)

Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.

Compute the natural frequency and damping ratio of the zero-pole-gain model sys.

[wn,zeta] = damp(sys)

wn = 3×1

 12.0397
 14.7114
 14.7114

zeta = 3×1

 1.0000
 -0.0034
 -0.0034

Each entry in wn and zeta corresponds to combined number of I/Os in sys. zeta is ordered in
increasing order of natural frequency values in wn.

Compute Natural Frequency, Damping Ratio and Poles of a State-Space Model

For this example, compute the natural frequencies, damping ratio and poles of the following state-
space model:

A =
−2 −1
1 −2

, B =
1 1
2 −1

, C = 1 0 , D = 0 1] .

Create the state-space model using the state-space matrices.

A = [-2 -1;1 -2];
B = [1 1;2 -1];
C = [1 0];
D = [0 1];
sys = ss(A,B,C,D);

Use damp to compute the natural frequencies, damping ratio and poles of sys.

[wn,zeta,p] = damp(sys)

wn = 2×1

 2.2361
 2.2361

zeta = 2×1

 0.8944

1 Functions

1-274

 0.8944

p = 2×1 complex

 -2.0000 + 1.0000i
 -2.0000 - 1.0000i

The poles of sys are complex conjugates lying in the left half of the s-plane. The corresponding
damping ratio is less than 1. Hence, sys is an underdamped system.

Input Arguments
sys — Linear dynamic system
dynamic system model

Linear dynamic system, specified as a SISO, or MIMO dynamic system model. Dynamic systems that
you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.)

damp assumes

• current values of the tunable components for tunable control design blocks.
• nominal model values for uncertain control design blocks.

Output Arguments
wn — Natural frequency of each pole
vector

Natural frequency of each pole of sys, returned as a vector sorted in ascending order of frequency
values. Frequencies are expressed in units of the reciprocal of the TimeUnit property of sys.

If sys is a discrete-time model with specified sample time, wn contains the natural frequencies of the
equivalent continuous-time poles. If the sample time is not specified, then damp assumes a sample
time value of 1 and calculates wn accordingly. For more information, see “Algorithms” on page 1-276.

zeta — Damping ratio of each pole
vector

Damping ratios of each pole, returned as a vector sorted in the same order as wn.

If sys is a discrete-time model with specified sample time, zeta contains the damping ratios of the
equivalent continuous-time poles. If the sample time is not specified, then damp assumes a sample
time value of 1 and calculates zeta accordingly. For more information, see “Algorithms” on page 1-
276.

p — Poles of the dynamic system model
vector

 damp

1-275

Poles of the dynamic system model, returned as a vector sorted in the same order as wn. p is the
same as the output of pole(sys), except for the order. For more information on poles, see pole.

Algorithms
damp computes the natural frequency, time constant, and damping ratio of the system poles as
defined in the following table:

 Continuous Time Discrete Time with Sample
Time Ts

Pole Location s z
Equivalent Continuous-Time
Pole

Not applicable s = ln(z)
Ts

Natural Frequency ωn = s ωn = s = ln(z)
Ts

Damping Ratio ζ = − cos(∠s) ζ = − cos(∠s) = − cos(∠ln(z))
Time Constant τ = 1

ωnζ τ = 1
ωnζ

If the sample time is not specified, then damp assumes a sample time value of 1 and calculates zeta
accordingly.

Version History
Introduced before R2006a

See Also
eig | esort | dsort | pole | pzmap | zero

1 Functions

1-276

data2state
Map past data to states of state-space and nonlinear ARX models

Syntax
X = data2state(sys,PastData)
[X,XCov] = data2state(sys,PastData)

Description
X = data2state(sys,PastData) maps the past data to the states of a state-space or a nonlinear
ARX model sys. X contains the state values at the time instant immediately after the most recent
data sample in PastData. The software computes the state estimates by minimizing the 1-step ahead
prediction error between predicted response and output signal in PastData.

data2state is useful for continued model simulation. That is, suppose you have simulated a model
up to a certain time instant and would like to then simulate the model for future inputs. Use
data2state to estimate states of the model at the beginning of the second simulation.

[X,XCov] = data2state(sys,PastData) returns the estimated covariance, XCov, of the current
states.

Examples

Compute Mapped States of Identified Model

Compute the mapped states of an identified model, and use the states as initial state values for model
simulation.

Load estimation data.

load iddata3 z3

Estimate a second-order state-space model using the data.

sys = ssest(z3,2);

Simulate the model using the entire input signal in z3.

Input = z3(:,[],:); % |iddata| object containing only the input signal
y_all = sim(sys,Input);

sim uses zero initial conditions to compute y_all.

Now simulate the model using only the first-half of the input signal.

Input1 = Input(1:150);
y_1 = sim(sys,Input1);

Continue the simulation with the second-half of the input signal such that the results show no
discontinuity owing to initial-condition-induced transients. To do so, first construct a past data set

 data2state

1-277

comprising of the input and simulated output from the first-half of the input signal. Then calculate the
state values corresponding to the start of the second-half of the input signal (t = 151).

PastData = [y_1,Input1];
X = data2state(sys,PastData);

X contains the state values at the time instant immediately after the most recent data sample in
PastData. This time point is also the start of the future data (second-half of the input signal).

FutureData = Input(151:end);

Simulate the model using the second-half of the input signal and X as initial conditions.

opt = simOptions('InitialCondition',X);
y_2 = sim(sys,FutureData,opt);

Verify that y_2 matches the second half of y_all.

plot(y_all,y_2,'r.')
legend('Simulation using all input data',...
 'Separate simulation of second-half of input data')

Calculate Mapped States and Covariance of States

Load the past data.

1 Functions

1-278

load iddata1 z1
PastData = z1;

Estimate an ARX model.

sys = arx(PastData,[1 1 0]);

Convert the model to a state-space model.

sys2 = idss(sys);

Calculate the mapped states and covariance of states using PastData.

[X,XCov] = data2state(sys2,PastData);

X is the state value at the time instant immediately after the most recent data sample in PastData.

Determine Mapped State of a Nonlinear ARX model

Load your data and create a data object.

load motorizedcamera;
z = iddata(y,u,0.02,'Name','Motorized Camera','TimeUnit','s');

Estimate a nonlinear ARX model.

mw1 = nlarx(z,[ones(2,2),ones(2,6),ones(2,6)],'idWaveletNetwork');

The estimated model has six inputs and two outputs.

Determine the model order, nx.

nx = order(mw1);

Use the first nx samples of data to generate initial conditions.

PastData = struct('Input', z.u(1:nx,:),'Output',z.y(1:nx,:));

Compute the mapped states of the model.

X = data2state(mw1,PastData);

X is the state value at the time instant immediately after the most recent data sample in PastData.

Simulate the model using the remaining input data, and specify the initial conditions for simulation.

InputSignal = z.u(nx+1:end,:);
opt = simOptions;
opt.InitialCondition = X;
sim(mw1,InputSignal,opt)

 data2state

1-279

Input Arguments
sys — Identified model
idss | idgrey | idnlgrey | idnlarx

Identified model whose current states are estimated, specified as one of the following:

• State-space model (idss, idgrey, or idnlgrey object)
• Nonlinear ARX model (idnlarx object) — For a definition of the states of idnlarx models, see
“Definition of idnlarx States” on page 1-685.

PastData — Past input-output data
iddata object | structure

Past input-output data, specified as one of the following:

• iddata object — The number of samples must be greater than or equal to the model order. To
determine model order, use order.

X is the value of model states at time PastData.SamplingInstants(end) + PastData.Ts.

When sys is continuous-time, specify PastData as an iddata object. X then corresponds to the
discretized (c2d) version of the model, where the discretization method is stored in the
InterSampleproperty of PastData.

1 Functions

1-280

• Structure — Specified as a structure with the following fields:

• Input — Past input data, specified as an N-by-Nu matrix, where N is great than or equal to the
model order.

• Output — Past output data, specified as an N-by-Ny matrix, where N is great than or equal to
the model order.

Specify PastData as a structure only when sys is a discrete-time model.

The data samples in PastData should be in the order of increasing time. That is, the last row in
PastData should correspond to the latest time.

Output Arguments
X — Mapped states of model
row vector

Mapped states of model, returned as a row vector of size equal to the number of states. X contains
the state value at the time instant immediately after the most recent data sample in PastData. That
is, if PastData is an iddata object, X is the state value at time t =
PastData.SamplingInstants(end)+PastData.Ts.

XCov — Estimated covariance of state values
matrix

Estimated covariance of state values, returned as a matrix of size Nx-by-Nx, where Nx is the number
of states.

XCov is empty if sys is a nonlinear ARX model.

Version History
Introduced in R2008a

See Also
idnlarx/findop | findstates | getDelayInfo | sim | order

 data2state

1-281

db2mag
Convert decibels (dB) to magnitude

Syntax
y = db2mag(ydb)

Description
y = db2mag(ydb) returns the magnitude measurements, y, that correspond to the decibel (dB)
values specified in ydb. The relationship between magnitude and decibels is ydb = 20 ∗ log10(y)

Examples

Magnitude of Elements in an Array

For this example, generate a 2-by-3-by-4 array of Gaussian random numbers. Assume the numbers
are expressed in decibels and compute the corresponding magnitudes.

rng('default');
ydb = randn(2,3,4);
y = db2mag(ydb)

y =
y(:,:,1) =

 1.0639 0.7710 1.0374
 1.2351 1.1044 0.8602

y(:,:,2) =

 0.9513 1.5098 0.8561
 1.0402 1.3755 1.4182

y(:,:,3) =

 1.0871 1.0858 0.9858
 0.9928 0.9767 1.1871

y(:,:,4) =

 1.1761 1.0804 1.0861
 1.1772 0.8702 1.2065

Use the definition to check the calculation.

chck = 10.^(ydb/20)

1 Functions

1-282

chck =
chck(:,:,1) =

 1.0639 0.7710 1.0374
 1.2351 1.1044 0.8602

chck(:,:,2) =

 0.9513 1.5098 0.8561
 1.0402 1.3755 1.4182

chck(:,:,3) =

 1.0871 1.0858 0.9858
 0.9928 0.9767 1.1871

chck(:,:,4) =

 1.1761 1.0804 1.0861
 1.1772 0.8702 1.2065

Input Arguments
ydb — Input array in decibels
scalar | vector | matrix | array

Input array in decibels, specified as a scalar, vector, matrix, or an array. When ydb is nonscalar,
db2mag is an element-wise operation.
Data Types: single | double

Output Arguments
y — Magnitude measurements
scalar | vector | matrix | array

Magnitude measurements, returned as a scalar, vector, matrix, or an array of the same size as ydb.

Version History
Introduced in R2008a

See Also
mag2db

 db2mag

1-283

dcgain
Low-frequency (DC) gain of LTI system

Syntax
k = dcgain(sys)

Description
k = dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time

The continuous-time DC gain is the transfer function value at the frequency s = 0. For state-space
models with matrices (A, B, C, D), this value is

K = D – CA–1B

Discrete Time

The discrete-time DC gain is the transfer function value at z = 1. For state-space models with
matrices (A, B, C, D), this value is

K = D + C(I – A)–1B

Examples

Compute the DC Gain of a MIMO Transfer Function

Create the following 2-input 2-output continuous-time transfer function.

H s =
1 s− 1

s2 + s + 3
1

s + 1
s + 2
s− 3

H = [1 tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tf([1 2],[1 -3])];

Compute the DC gain of the transfer function. For continuous-time models, the DC gain is the
transfer function value at the frequency s = 0.

K = dcgain(H)

K = 2×2

 1.0000 -0.3333
 1.0000 -0.6667

The DC gain for each input-output pair is returned. K(i,j) is the DC gain from input j to output i.

1 Functions

1-284

Compute DC Gain of Identified Model

Load the estimation data.

load iddata1 z1

z1 is an iddata object containing the input-output estimation data.

Estimate a process model from the data. Specify that the model has one pole and a time delay term.

sys = procest(z1,'P1D')

sys =

Process model with transfer function:
 Kp
 G(s) = ---------- * exp(-Td*s)
 1+Tp1*s

 Kp = 9.0754
 Tp1 = 0.25655
 Td = 0.068

Parameterization:
 {'P1D'}
 Number of free coefficients: 3
 Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using PROCEST on time domain data "z1".
Fit to estimation data: 44.85%
FPE: 6.02, MSE: 5.901

Compute the DC gain of the model.

K = dcgain(sys)

K = 9.0754

This DC gain value is stored in the Kp property of sys.

sys.Kp

ans = 9.0754

Tips
The DC gain is infinite for systems with integrators.

Version History
Introduced in R2012a

 dcgain

1-285

See Also
evalfr | norm

1 Functions

1-286

delayest
Estimate time delay (dead time) from data

Syntax
nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin,nkmax,maxtest)

Description
nk = delayest(Data) estimates time delay from data. Data is an iddata object containing the
input-output data. It can also be an idfrd object defining frequency-response data. Only single-
output data can be handled. nk is returned as an integer or a row vector of integers, containing the
estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different delays:

y(t) + a1y(t − 1) + ... + anay(t − na) =
b1u(t − nk) + ... + bnbu(t − nb− nk + 1) + e(t)

nk = delayest(Data,na,nb,nkmin,nkmax,maxtest) specifies additional options. The integer
na is the order of the A polynomial (default 2). nb is a row vector of length equal to the number of
inputs, containing the order(s) of the B polynomial(s) (default all 2). nkmin and nkmax are row
vectors of the same length as the number of inputs, containing the smallest and largest delays to be
tested. Defaults are nkmin = 0 and nkmax = nkmin+20. If nb, nkmax, and/or nkmin are entered as
scalars in the multiple-input case, all inputs will be assigned the same values. maxtest is the largest
number of tests allowed (default 10,000).

Version History
Introduced before R2006a

 delayest

1-287

detrend
Subtract offset or trend from time-domain signals contained in iddata objects

Syntax
data_d = detrend(data)
data_d = detrend(data,Type)
[data_d,T_r] = detrend(___)

data_d = detrend(data,1,brkpt)

Description
detrend subtracts offsets or linear trends from time-domain input-output data represented in
iddata objects. detrend either computes the trend data to subtract, or subtracts the trend that you
specify.

For a more general detrending function that does not require iddata objects, see detrend.

data_d = detrend(data) computes and subtracts the mean value from each time-domain signal in
data. The iddata objects data_d and data each contain input and output data originating from
SISO, MIMO, or multiexperiment datasets.

data_d = detrend(data,Type) subtracts the trend you specify in Type. You can specify a mean-
value, linear, or custom trend.

[data_d,T_r] = detrend(___) also returns the subtracted trend as a TrendInfo object T_r.
You can obtain T_r with any of the input-argument combinations in previous syntaxes.

data_d = detrend(data,1,brkpt) computes and subtracts the piecewise-linear trends for data
with segmented trends, using the breakpoints that you define with brkpt.

The second argument, which corresponds to Type, must be 1.

With this syntax, you cannot retrieve the resulting piecewise-linear trend information as an output.

Examples

Remove Biases From Signals

Remove biases from steady-state signals in an iddata object by using detrend to compute and
subtract the mean values of the input and output.

Load the input and output time series data y2 and u2. Construct the iddata object data2, using the
data and a sample time of 0.08 seconds.

load dryer2 y2 u2
data2 = iddata(y2,u2,0.08);

1 Functions

1-288

Use detrend to both compute the mean values and subtract them from input and output signals. Use
the input argument Tr to store the computed trend information. Plot the original data and detrended
data together.

[data2_d,Tr] = detrend(data2);
plot(data2,data2_d)
legend('Original Data','Detrended Data')

The detrended data has shifted by about 5 units. Inspect Tr to obtain the precise mean values that
detrend computed and subtracted. These values are returned in the InputOffset and
OutputOffset properties.

Tr

Trend specifications for data "data2" with 1 input(s), 1 output(s), 1 experiment(s):
 DataName: 'data2'
 InputOffset: 5.0000
 OutputOffset: 4.8901
 InputSlope: 0
 OutputSlope: 0

The mean of the original input is higher than the mean of the original output.

 detrend

1-289

Remove Linear Trend from a Signal

Remove the linear trend from a signal in an iddata object, and overlay the trendline on a before-
and-after data plot.

Load and plot signal data from the file lintrend2. For this example, only output data is provided in
iddata object dataL.

load lintrend2 dataL
plot(dataL,'b')

The plot shows a clear linear trend in the data. Use detrend linear option (Type = 1) to subtract the
trend from the data. detrend fits the data and determines the linear trend to subtract. Include the
TrendInfo object Tr as an output argument so you can see what detrend subtracts.

[dataL_d,Tr] = detrend(dataL,1);

Plot the detrended data against the original data.

hold on
plot(dataL_d,'g')
legend('Original','Detrended','Location','northwest')

1 Functions

1-290

The linear trend has been removed. Inspect Tr to get more information about the removed trend.

Tr

Trend specifications for data "dataL" with 0 input(s), 1 output(s), 1 experiment(s):
 DataName: 'dataL'
 InputOffset: [1x0 double]
 OutputOffset: 0.8888
 InputSlope: [1x0 double]
 OutputSlope: 19.3830

The OutputOffset and the OutputSlope properties provide the parameters of the line that
detrend removed. You can reconstruct this line, and then overlay it on the before-and-after data plot.
The SamplingInstants property of DataL provides the timepoints associated with the data.

m = Tr.OutputSlope

m = 19.3830

b = Tr.OutputOffset

b = 0.8888

t = dataL.SamplingInstants;
TrLn = m*t+b;
plot(t,TrLn,'r')
legend('Original','Detrended','Trendline','Location','northwest')

 detrend

1-291

Remove Specified Offsets from Signals

Remove known offsets from an input-output signal pair contained in an iddata object.

Detrend can compute and subtract the mean values for input and output signals, resulting in zero-
mean detrended signals. However, if you already know you have specific data offsets beforehand, you
can have detrend subtract these from your signals instead. Specifying the offsets also allows you to
retain a non-zero operating point in the detrend result.

Load SISO data containing vectors u2 and y2. For this example, suppose that you know both signals
have an offset of 4 from the expected operating point of 1. Combine these vectors into an iddata
object, using a sample time of 0.08 seconds, and plot it.

load dryer2 u2 y2
data = iddata(y2,u2,0.08);
plot(data)

1 Functions

1-292

The known offset of 4 (from operating point 1) is visible in the plots. You can construct a TrendInfo
object to capture this offset, using the function getTrend.

Create the TrendInfo object, and then set its offset properties.

T = getTrend(data);
T.InputOffset = 4;
T.OutputOffset = 4

Trend specifications for data "data" with 1 input(s), 1 output(s), 1 experiment(s):
 DataName: 'data'
 InputOffset: 4
 OutputOffset: 4
 InputSlope: 0
 OutputSlope: 0

Use detrend to subtract the offset from the data. Plot it alongside the original data.

data_d = detrend(data,T);
hold on
plot(data_d)
legend('Original','Detrended')

 detrend

1-293

The offset of 4 has been removed.

Remove Segmented Linear Trends from Signals by using Breakpoints

Detrend data with segmented piecewise-linear trends by specifying breakpoints to delimit the
segments.

Most of the detrend syntaxes assume and compute a single trend for each of the signals. However,
in some cases there are discontinuities in the linear trends, caused by test configuration changes,
environmental conditions, or other influences. When the signal displays such segmentation, you can
have detrend operate on the test segments independently. To do so, specify breakpoints in the
brkpt input argument. These are the indices to the timepoints in the signal at which linear trends
change slope.

You may know these breakpoints up front, based on changes that you know occurred during data
collection. Alternatively, you may need to approximate them by inspecting the data itself.

Load the data, inspect its structure and contents, and plot it. This data consists of output data only in
the iddata object dataLb2.

load brkTrend dataLb2
dataLb2

dataLb2 =

1 Functions

1-294

Time domain data set with 512 samples.
Sample time: 0.00390625 seconds

Outputs Unit (if specified)
 y1

plot(dataLb2)

For this example, the data has known breakpoints at indices [100 300]. Applying the sample time
(property Ts), these breakpoints correspond to the actual timepoints as follows:

brkpt=[100 300];
brkpt_time = brkpt*dataLb2.Ts

brkpt_time = 1×2

 0.3906 1.1719

Detrend the data using brkpt.

dataLb2_d = detrend(dataLb2,1,brkpt);

Plot the original and detrended data.

plot(dataLb2,dataLb2_d)
legend('Original Data','Detrended Data')

 detrend

1-295

The linear trend segments have been removed.

Detrend Multiexperiment Signals using Multiple-Breakpoint Sets

Apply a unique set of breakpoints to each experiment when you detrend a Multiexperiment dataset.

Experiments within a multiexperiment dataset may contain unique linear trending discontinuities.
You can apply a unique set of breakpoints to each experiment by expressing them in a cell array.

Load the data, which consists of:

• datmult, a multiexperiment iddata object containing three experiments (output only)
• bpn vectors, which provide known breakpoints for each experiment in the form of indices to

timepoints

load multiexpdt datmult bp1 bp2 bp3
datmult

datmult =
Time domain data set containing 3 experiments.

Experiment Samples Sample Time
 exp1 250 1
 exp2 320 1

1 Functions

1-296

 exp3 350 1

Outputs Unit (if specified)
 y1

bp1,bp2,bp3

bp1 = 1×2

 50 200

bp2 = 100

bp3 =

 []

Plot the data. There are significant differences among the streams, and they drift at different rates
from zero mean.

plot(datmult)
legend

For this set of experiments, it is known that there is unique trending for each run and unique
discontinuities indicated by the bp vectors.

 detrend

1-297

detrend can incorporate these unique characteristics if the bp information is provided as a cell
array.

Construct the cell array.

bpcell = {bp1;bp2;bp3}

bpcell=3×1 cell array
 {[50 200]}
 {[100]}
 {0x0 double}

Apply detrend and plot the result, using the same scale as the original plot.

datmult_d = detrend(datmult,1,bpcell);
figure
plot(datmult_d)
axis([0,inf,-15,30])
legend

The experimental data are now better aligned, and do not drift significantly away from zero mean.

Detrend Input and Output Signals Separately

Apply different trend types to the input and output signals contained in an iddata object.

1 Functions

1-298

Detrend assumes that the same type of trend applies to both input and output signals. In some
cases, there may be a trend type that is present in only one signal. You can perform detrend
individually on each signal by extracting the signals into separate iddata objects. Apply detrend to
each object using its individual signal trend type. Then reassemble the results back into a single
detrended iddata object.

Load, examine, and plot the data in iodatab.

load septrend iodatab;
iodatab

iodatab =

Time domain data set with 1000 samples.
Sample time: 0.08 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

plot(iodatab)
hold on

Both input and output plots show a bias. However, the output plot also shows an inverted V-shape
trend that is not present in the input data.

 detrend

1-299

Separate the input data and the output data into separate objects for detrending, using the iddata
general data-selection form (see “Representing Time- and Frequency-Domain Data Using iddata
Objects”):

data(samples,outputchannels,inputchannels)

idatab = iodatab(:,[],:);
odatab = iodatab(:,:,[]);

Remove the bias from the input data, using detrend to calculate and subtract the mean.

idatab_d = detrend(idatab,0);

Remove the bias and the inverted-V trend from the output data, using the midpoint index 500 as a
breakpoint.

odatab_d = detrend(odatab,1,500);

Combine the detrended input and output data into a single iddata object.

iodatab_d = [odatab_d,idatab_d];

Overlay the detrended data on the original data.

plot(iodatab_d)
legend('original','detrended')

The input and output data now contain neither bias nor V-shape trend.

1 Functions

1-300

Input Arguments
data — Time-domain input-output data
iddata object

Time-domain input-output data, specified as an iddata object containing one or more sets of time-
domain signals. The iddata object can contain SISO, MIMO, or multiexperiment data. The signal sets
can contain either input and output data, or output data only.

Type — Trend type to be subtracted
0 (default) | 1 | TrendInfo object

Trend type to be subtracted, specified as one of:

• 0 — Compute and subtract the mean value
• 1 — Compute and subtract the linear trend (least-squares fit)
• TrendInfo object — subtract the trend you specify in the TrendInfo object. Use getTrend to

create a TrendInfo object. For an example, see “Remove Specified Offsets from Signals” on page
1-292.

brkpt — Timepoint locations of trending discontinuities
integer row vector | cell array of integer vectors

Timepoint locations of trending discontinuities (breakpoints), specified as:

• An integer row vector — For single-experiment SISO and MIMO datasets. Doing so applies a
single set of breakpoints to all input and output signals. For an example, see “Remove Segmented
Linear Trends from Signals by using Breakpoints” on page 1-294.

• A cell array containing individually-sized integer row vectors — For multiple-experiment datasets.
Doing so applies a unique set of breakpoints to the output and input signals for each experiment.
For an example, see “Detrend Multiexperiment Signals using Multiple-Breakpoint Sets” on page 1-
296.

Output Arguments
data_d — Detrended signals
iddata object

Detrended signals, returned as an iddata object. Dimensions of the contents are the same as
dimensions of the contents of data.

T_r — Subtracted trend data
TrendInfo object

Trend data subtracted from data to produce data_d, returned as a TrendInfo object .

When you use brkpt to specify multiple trends, you cannot retrieve the computed trend data.

Version History
Introduced before R2006a

 detrend

1-301

See Also
getTrend | iddata | idfilt | retrend

1 Functions

1-302

diff
Difference signals in iddata objects

Syntax
zdi = diff(z)
zdi = diff(z,n)

Description
zdi = diff(z) and zdi = diff(z,n) return the difference signals in iddata objects. z is a time-
domain iddata object. diff(z) and diff(z,n) apply this command to each of the input/output
signals in z.

Version History
Introduced before R2006a

 diff

1-303

era
Estimate state-space model from impulse response data using Eigensystem Realization Algorithm
(ERA)

Syntax
sys = era(data)
sys = era(data,nx)
sys = era(data,nx,Name=Value)

Description
era uses the Eigensystem Realization Algorithm [1] to estimate a state-space model using impulse
response data rather than input/output data. era is especially useful for identifying dynamic systems
for applications such as modal analysis or structural health modeling.You can also use era for
modeling time-series data for applications such as prediction. For more information about the
algorithm, see [1].

sys = era(data) estimates a state-space model using the time-domain impulse response data in
data, which can be either a timetable or matrix that contains only output data. The software
determines the order of the model nx automatically.

sys is a model of the following form:

ẋ(t) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)

A, B, C, D, and K are state-space matrices. u(t) is the input, y(t) is the output, e(t) is the disturbance,
and x(t) is the vector of nx states.

All entries of A, B, C, and K are free estimable parameters by default. D is fixed to zero by default,
meaning that there is no feedthrough, except for static systems (nx = 0).

The software sets the sample time of sys to the sample time of data if data is a timetable, or to -1 if
data is a matrix.

sys = era(data,nx) specifies the number of states nx.

sys = era(data,nx,Name=Value) incorporates additional options specified by one or more name-
value arguments. For example, use the Feedthrough name-value argument to introduce feedthrough
by estimating the D matrix. Use the InputDelay name-value argument to specify input delays for
each channel.

Examples

Estimate State-Space Model from Impulse Response

Load and plot the data Htt, which is a timetable that contains impulse response data in the
variable H.

1 Functions

1-304

load impulseresponse.mat Htt
plot(Htt.Time,Htt.H)
title('Impulse Response')

Use era to estimate a state-space model.

sys = era(Htt);
order = order(sys)

order = 2

sys is an idss model of order 2.

Specify Model Order

Load and plot the data H, which is a numeric matrix. Ts is the sample time for the data in H.

load impulseresponse.mat H Ts
L = size(H,1);
t = (1:L)'*Ts;
plot(t,H)
title('Impulse Response')

 era

1-305

Use era to estimate a state-space model of order 3.

sys = era(H,3);
sysorder = order(sys)

sysorder = 3

sys is an idss model of order 3.

Specify Feedthrough for Model

Load the impulse response data, which is in the form of a timetable.

load impulseresponse.mat Htt

Use era to specify a state-space model that includes feedthrough.

sys = era(Htt,'best',Feedthrough=1);

Input Arguments
data — Impulse response data
timetable | numeric matrix

1 Functions

1-306

Impulse response data, specified as either a timetable with Ns rows and Ny variables or an Ns-by-
Ny-by-Nu numeric matrix, where Ns is the number of samples, Ny is the number of outputs, and Nu is
the number of inputs. data must be uniformly sampled.

• For SISO and SIMO systems, each column i of the timetable or matrix in data represents the
impulse response from the single input to the ith output.

• For MIMO systems, data must be a 3-D matrix. Each Ns-length vector (i,j) of data represents the
impulse response between output i and input j, data(:,i,j).

data must be obtained from a system with zero initial conditions.

nx — Order of estimated model
1:10 (default) | positive integer scalar | positive integer vector | "best" | 0

Order of the estimated model, specified as a nonnegative integer, a vector containing a range of
positive integers, or "best".

• If you already know what order you want your estimated model to have, specify nx as a scalar.
• If you want to compare a range of potential orders to choose the most effective order for your

estimated model, specify the range in nx. era creates a Hankel singular-value plot that shows the
relative energy contributions of each state in the system. States with relatively small Hankel
singular values contribute little to the accuracy of the model and can be discarded with little
impact. The index of the highest state you retain is the model order. The plot window includes a
suggestion for the order to use. You can accept this suggestion or enter a different order. For an
example of using Hankel plots, see ssest.

If you do not specify nx or if you specify nx as "best", the software automatically chooses nx
from the range 1:10.

• If you are identifying a static system, set nx to 0.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: sys = era(data,2,InputDelay=1)

InputDelay — Input delays
0 (default) | scalar | vector

Input delay for each input channel, specified as a numeric vector of length equal to the number of
inputs in sys. To apply the same delay to all channels, specify InputDelay as a numeric scalar.

Feedthrough — Option to include direct feedthrough from input to output
0 | 1 | logical vector

Option to include direct feedthrough from input to output, specified as a logical vector of length Nu,
where Nu is the number of inputs. If you specify Feedthrough as a logical scalar, that value is
applied to all the inputs. The default is 0, except for static systems, where the software always
assumes Feedthrough is 1.

 era

1-307

Output Arguments
sys — Identified state-space model
idss model | idss model array

Identified state-space model, returned as an idss array for SISO systems or, for systems with more
than one input or output, an array of idss models. Each model represents the response of one input
to one output. This model is created using the specified model order and delays.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the same fields as an idss model that was generated using estimation commands
such as ssest. However, models generated with era do not use all these fields.

Report
Field

Description

Status For era-based models, Estimated using the Eigensystem Realization
Algorithm

Method ERA
Fit Quantitative assessment of the estimation, returned as a structure
Parameter
s

Estimated values of model parameters.

OptionsUs
ed

[]

RandState []
DataUsed Attributes of the data used for estimation
Termination []

For more information on using Report, see “Estimation Report”.

Version History
Introduced in R2022b

References
[1] Juang, Jer-Nan, and Richard S. Pappa. “An Eigensystem Realization Algorithm for Modal

Parameter Identification and Model Reduction.” Journal of Guidance, Control, and Dynamics
8, no. 5 (September 1985): 620–27. https://doi.org/10.2514/3.20031.

See Also
idss | n4sid | ssest

Topics
“System Identification Using Eigensystem Realization Algorithm (ERA)”

1 Functions

1-308

https://doi.org/10.2514/3.20031

Estimate Process Model
Estimate continuous-time process model for single-input, single-output (SISO) system in either time
or frequency domain in the Live Editor

Description
The Estimate Process Model task lets you interactively estimate and validate a process model for
SISO systems. You can define and vary the model structure and specify optional parameters, such as
initial condition handling and search methods. The task automatically generates MATLAB code for
your live script. For more information about Live Editor tasks generally, see “Add Interactive Tasks to
a Live Script”.

Process models are simple continuous-time transfer functions that describe the linear system
dynamics. Process model elements include static gain, time constants, time delays, integrator, and
process zero.

Process models are popular for describing system dynamics in numerous industries and are
applicable to various production environments. The advantages of these models are that they are
simple, they support transport delay estimation, and the model coefficients are easy to interpret as
poles and zeros. For more information about process model estimation, see “What Is a Process
Model?”

The Estimate Process Model task is independent of the more general System Identification app.
Use the System Identification app when you want to compute and compare estimates for multiple
model structures.

To get started, load experiment data that contains input and output data into your MATLAB
workspace and then import that data into the task. Then select a model structure to estimate. The
task gives you controls and plots that help you experiment with different model structures and
compare how well the output of each model fits the measurements.

Related Functions

The code that Estimate Process Model generates uses the following functions.

• iddata
• idfrd

frd
• procest
• procestOptions
• compare

The task estimates an idproc process model.

 Estimate Process Model

1-309

Description (Collapsed Portion)
Related Functions

The code that Estimate Process Model generates uses the following functions.

• iddata
• idfrd

frd
• procest
• procestOptions
• compare

The task estimates an idproc process model.

Open the Task
To add the Estimate Process Model task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Estimate Process Model.
• In a code block in your script, type a relevant keyword, such as process or estimate. Select

Estimate Process Model from the suggested command completions.

Examples

1 Functions

1-310

Estimate Process Model with Live Editor Task

Use the Estimate Process Model Live Editor Task to estimate a state-space model and compare the
model output to the measurement data.

Open this example to see a preconfigured script containing the task.

Set Up Data

Load the measurement data iddata1 into your MATLAB workspace.

load iddata1 z1
z1

z1 =

Time domain data set with 300 samples.
Sample time: 0.1 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

Import Data into the Task

In the Select data section, set Data Type to Data Object and set Estimation Object to z1.

The data object contains the input and output variable names as well as the sample time, so you do
not have to specify them.

Estimate the Model Using Default Settings

Examine the model structure and optional parameters.

 Estimate Process Model

1-311

In the Specify model structure section, the default option is One Pole with no delay, zero, or
integrator. Equations below the parameters in this section display the specified structure.

In the Specify estimation initialization section, initialization parameters matching the parameters
in your model structure allow you to set starting points for estimation. If you select Fix, the
parameter remains fixed to the value you specify. For this example, do not specify initialization. The
task then uses default values for starting points.

In the Specify optional parameters section, the default options for process estimation are set.

Execute the task from the Live Editor tab using Run. A plot displays the estimation data, the
estimated model output, and the fit percentage.

1 Functions

1-312

Experiment with Parameter Settings

Experiment with the parameter settings and see how they influence the fit.

For instance, add delay to the One Pole structure and run the task.

 Estimate Process Model

1-313

The estimation fit improves, although the fit percentage is still below 50%.

Try a different model structure. In Specify model structure, select Underdamped Pair with no
delay and run the task.

1 Functions

1-314

The fit results improve significantly.

Generate Code

To display the code that the task generates, click at the bottom of the parameter section. The
code that you see reflects the current parameter configuration of the task.

Use Validation Data Set to Validate Estimated Model

Use separate estimation and validation data so that you can validate the estimated process model.

 Estimate Process Model

1-315

Open this example to see a preconfigured script containing the task.

Set Up Data

Load the measurement data iddata1 into your MATLAB workspace and examine its contents.

load iddata1 z1
z1

z1 =

Time domain data set with 300 samples.
Sample time: 0.1 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

Extract the input and output measurements.

u = z1.u;
y = z1.y;

Split the data into two sets, with one half for estimation and one half for validation. The original data
set has 300 samples, so each new data set has 150 samples.

u_est = u(1:150);
u_val = u(151:300);
y_est = y(1:150);
y_val = y(151:300);

Import Data into Task

In the Select data section, set Data Type to Time. Set the sample time to 0.1 seconds, which is the
sample time in the original iddata object z1. Select the appropriate data sets for estimation and
validation.

1 Functions

1-316

Estimate and Validate the Model

The example “Estimate Process Model with Live Editor Task” on page 1-310 achieves the best results
using the model structure Underdamped Pair. Choose the same option for this example.

Execute the task from the Live Editor tab using Run. Executing the task creates two plots.The first
plot shows the estimation results and the second plot shows the validation results.

 Estimate Process Model

1-317

1 Functions

1-318

The fit to the estimation data is somewhat worse than in “Estimate Process Model with Live Editor
Task” on page 1-310. Estimation in the current example has only half the data with which to estimate
the model. The fit to the validation data, which represents the goodness of the model more generally,
is better than the fit to the estimation data.

Parameters
Select Data

Data Type — Data type for input and output data
Time (default) | Frequency | Data Object

The task accepts single-channel numeric measurement values that are uniformly sampled in time.
Data can be packaged as numeric arrays (Time or Frequency type) or in a data object, such as an
iddata or idfrd object.

The data type you choose determines the additional parameters you must specify.

• Time — Specify Sample Time and Start Time in the time units that you select.
• Frequency — Specify Frequency by selecting the variable name of a frequency vector in your

MATLAB workspace. Specify the units for this frequency vector. Specify Sample Time in seconds.
• Data Object — Specify no additional parameters, because the data object already contains

information on time or frequency sampling.

Estimation Input and Estimation Output — Variable names of input and output data
for estimation
valid variable names

Select the input and output variable names from the MATLAB workspace choices. Use these
parameters when Data Type is Time or Frequency.

Estimation Object — Variable name of data object containing input and output data to be
used for estimation
valid variable name

Select the data object variable name from the MATLAB workspace choices. Use this parameter when
Data Type is Data Object.

Validation Input (u) and Validation Output (y) — Variable names of input and
output data to be used for validation
valid variable names

Select the input and output variable names, or the data object name, from the workspace choices.
Use these parameters when Data Type is Time or Frequency. Specifying validation data is optional
but recommended.

Validation Object — Variable name of data object containing input and output data for
validation
valid variable name

Select the data object variable name from the MATLAB workspace choices. Use this parameter when
Data Type is Data Object. Specifying validation data is optional but recommended.

 Estimate Process Model

1-319

Specify Model Structure

Structure — Zeros and poles in model
One Pole (default) | Two Real Poles | Underdamped Pair | Underdamped Pair + Real Pole

The task allows you to specify one of four basic structures. These structures range from a simple first-
order process to a more dynamic second-order or third-order process with complex conjugate
(underdamped) poles.

• One Pole
• Two Real Poles
• Underdamped Pair
• Underdamped Pair + Real Pole

Delay — Include transport delay
off (default) | on

Include transport delay, or input-to-output delay, of one sample. The transport delay is also known as
dead time.

Zero — Include process zero
off (default) | on

Include a process zero in the numerator.

Integrator — Include integrator
off (default) | on

Include an integrator, represented by an additional 1/ s term. Including an integrator creates a self-
regulating process.

Specify Estimation Initialization

Initial Values — Initial values of structure parameters
0 | parameter values

Specify initial values for the estimation and whether these values are to be fixed or estimated. The
values to specify depend on the model structure and your specifications for Delay and Zero. Below
Specify model structure, the task displays the equation that represents the specified system. This
equation contains all of the parameters that can be estimated, and that you can initialize or fix. The
possible parameters are:

• Kp — Static gain
• Tp1 — Time constant for first real pole
• Tp2 — Time constant for second real pole
• Tω — Time constant for complex poles, equal to the inverse of the natural frequency
• ζ — Damping coefficient for complex poles
• Td — Transport delay
• Tz — Time constant for the process zero

All time-based parameters are in the time units you select for Sample Time.

1 Functions

1-320

Specify Optional Parameters

Fit Focus — Minimize prediction error or simulation error
Prediction (default) | Simulation

Fit focus specifies what error to minimize in the loss function during estimation.

• Prediction — Minimize the one-step-ahead prediction error between measured and predicted
outputs. This estimation approach focuses on producing a good predictor model for the estimation
inputs and outputs. Prediction focus generally produces the best estimation results because it
uses both input and output measurements, thus accounting for disturbances.

• Simulation — Minimize the error between measured and simulation outputs. This estimation
approach focuses on producing a simulated model response that has a good fit with the estimation
inputs and outputs. Simulation focus is generally best for validation, especially with data sets not
used for the original estimation.

Initial Conditions — Handling of initial conditions
Auto (default) | Zero | Estimate | Backcast

Set this option when you want to choose a specific method for initializing the model. With the default
setting of Auto, the software chooses the method based on the estimation data. Choices are:

• Zero — The initial state is set to zero.
• Estimate — The initial state is treated as an independent estimation parameter.
• Backcast — The initial state is estimated using the best least squares fit.

Input Intersampling — Intersampling behavior for input signal
Zero-order hold (default) | Triangle approximation | Band-limited

Input intersampling is a property of the input data. The task uses this property when estimating
process models. Specify Input Intersampling when your data type is Time or Frequency. If you
are using an iddata object, the object already contains the intersampling information. Choices for
this property are:

• Zero-order hold — Piecewise-constant input signal between samples
• Triangle approximation — Piecewise-linear input signal between samples, also known as
first-order hold

• Band-limited — Input signal has zero power above the Nyquist frequency

Search Method — Numerical search mode for iterative parameter estimation
Auto (default) | Gauss-Newton | Adaptive Gauss-Newton | Levenberg-Marquardt | Gradient
Search

• Auto — For each iteration, the software cycles through the methods until it finds the first
direction descent that leads to a reduction in estimation cost.

• Gauss-Newton — Subspace Gauss-Newton least-squares search.
• Levenberg-Marquardt — Levenberg-Marquardt least-squares search.
• Adaptive Gauss-Newton —Adaptive subspace Gauss-Newton search.
• Gradient Search — Steepest descent least-squares search.

Max. Iterations — Maximum number of iterations during error minimization
20 (default) | positive integer

 Estimate Process Model

1-321

Set the maximum number of iterations during error minimization. The iterations stop when Max.
Iterations is reached or another stopping criterion is satisfied, such as Tolerance.

Tolerance — Minimum percentage of expected improvement in error
0.01 (default) | positive integer

When the percentage of expected improvement is less than Tolerance, the iterations stop.

Weighting Prefilter — Weighting prefilter for loss function
No filter (default) | Passband(s) | LTI Filter | Frequency weights vector

Set this option when you want to apply a weighting prefilter to the loss function that the task
minimizes when you estimate the model. When you select an option, you must also select the
associated variable in your workspace that contains the filter information. The available options
depend on the domain of the data.

Weighting Prefilter Data Domain Filter Information
No Filter Time and frequency
Passbands Time and frequency Passband ranges, specified as a

1-by-2 row vector or an n-by-2
matrix, where n is the number
of passbands

LTI Filter Time and frequency SISO LTI model
Frequency Weights Vector Frequency Frequency weights, specified as

a column vector with the same
length as the frequency vector

For instance, suppose that you are performing estimation with SISO frequency-domain data and that
in your MATLAB workspace, you have a column vector W that contains frequency weights for the
prefilter. In the task, select Weighting prefilter > Frequency weights vector and the variable W.

Visualize Results

Output Plot — Plot comparison of model and measured outputs
on (default) | off

Plot a comparison of the model output and the original measured data, along with the fit percentage.
If you have separate validation data, a second plot compares the model response to the validation
input data with the measured output from the validation data set.

Version History
Introduced in R2019b

See Also
iddata | procest | procestOptions | compare | idproc | idfrd | frd

1 Functions

1-322

Estimate State-Space Model
Estimate state-space model using time or frequency data in the Live Editor

Description
The Estimate State-Space Model task lets you interactively estimate and validate a state-space
model using time or frequency data. You can define and vary the model structure and specify optional
parameters, such as initial condition handling and search method. The task automatically generates
MATLAB code for your live script. For more information about Live Editor tasks generally, see “Add
Interactive Tasks to a Live Script”.

State-space models are models that use state variables to describe a system by a set of first-order
differential or difference equations, rather than by one or more nth-order differential or difference
equations. State variables can be reconstructed from the measured input-output data, but are not
themselves measured during the experiment.

The state-space model structure is a good choice for quick estimation because it requires you to
specify only one input, the model order. For more information about state-space estimation, see
“What Are State-Space Models?”

The Estimate State-Space Model task is independent of the more general System Identification
app. Use the System Identification app when you want to compute and compare estimates for
multiple model structures.

To get started, load experiment data that contains input and output data into your MATLAB
workspace and then import that data into the task. Then specify a model structure to estimate. The
task gives you controls and plots that help you experiment with different model parameters and
compare how well the output of each model fits the measurements.

Related Functions

The code that Estimate State-Space Model generates uses the following functions.

• iddata
• idfrd

frd
• ssest
• ssestOptions
• compare

The task estimates an idss state-space model.

 Estimate State-Space Model

1-323

Description (Collapsed Portion)
Related Functions

The code that Estimate State-Space Model generates uses the following functions.

• iddata
• idfrd

frd
• ssest
• ssestOptions
• compare

The task estimates an idss state-space model.

Open the Task
To add the Estimate State-Space Model task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Estimate State-Space Model.
• In a code block in your script, type a relevant keyword, such as state, space, or estimate.

Select Estimate State Space Model from the suggested command completions.

Examples

Estimate State-Space Model with Live Editor Task

Use the Estimate State-Space Model Live Editor Task to estimate a state-space model and compare
the model output to the measurement data.

Open this example to see a preconfigured script containing the task.

1 Functions

1-324

Set Up Data

Load the measurement data iddata1 into your MATLAB workspace.

load iddata1 z1
z1

z1 =

Time domain data set with 300 samples.
Sample time: 0.1 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

Import Data into the Task

In the Select data section, set Data Type to Data Object and set Estimation Object to z1.

The data object contains the input and output variable names as well as the sample time, so you do
not have to specify them.

Estimate the Model Using Default Settings

Examine the model structure and optional parameters.

 Estimate State-Space Model

1-325

In the Specify model structure section, the plant order is set to its default value of 4 and the model
is in the continuous-time domain. Equations below the parameters in this section display the specified
structure.

In the Specify optional parameters section, parameters display the default options for state-space
estimation.

Execute the task from the Live Editor tab using Run. A plot displays the estimation data, the
estimated model output, and the fit percentage.

1 Functions

1-326

Experiment with Parameter Settings

Experiment with the parameter settings and see how they influence the fit.

For instance, in Specify model structure, the Estimate disturbance box is selected, so the
disturbance matrix K is present in the equations. If you clear the box, the K term disappears. Run the
updated configuration, and see how the fit changes.

 Estimate State-Space Model

1-327

Change the Plant Order setting to Pick best value in range. The default setting is 1:10.

When you run the model, a Model Order Selection plot displays the contribution of each state to
the model dynamic behavior. With the initial task settings for the other parameters, the plot displays
a recommendation of 2 for the model order.

1 Functions

1-328

Accept this recommendation by clicking Apply, and see how this change affects the fit.

 Estimate State-Space Model

1-329

Generate Code

To display the code that the task generates, click at the bottom of the parameter section. The
code that you see reflects the current parameter configuration of the task.

1 Functions

1-330

Use Validation Data Set to Validate Estimated Model

Use separate estimation and validation data so that you can validate the estimated state-space model.

Open this example to see a preconfigured script containing the task.

Set Up Data

Load measurement data iddata1 into your MATLAB workspace and examine its contents.

load iddata1 z1
z1

z1 =

Time domain data set with 300 samples.
Sample time: 0.1 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

Extract the input and output measurements.

u = z1.u;
y = z1.y;

Split the data into two sets, with one half for estimation and one half for validation. The original data
set has 300 samples, so each new data set has 150 samples.

u_est = u(1:150);
u_val = u(151:300);
y_est = y(1:150);
y_val = y(151:300);

Import Data into Task

In the Select data section, set Data Type to Time. Set Sample Time to 0.1 seconds, which is the
sample time in the original iddata object z1. Select the appropriate data sets for estimation and
validation.

 Estimate State-Space Model

1-331

Estimate and Validate Model

The example “Estimate State-Space Model with Live Editor Task” on page 1-324 recommends a
model order of 2. Use that value for Plant Order. Leave other parameters at their default values.
Note that Input Channel refers not to the input data set, but to the channel index within the input
data set, which for a single-input system is always u1.

Execute the task from the Live Editor tab using Run. Executing the task creates two plots. The first
plot shows the estimation results and the second plot shows the validation results.

1 Functions

1-332

 Estimate State-Space Model

1-333

The fit to the estimation data is somewhat worse than in “Estimate State-Space Model with Live
Editor Task” on page 1-324. Estimation in the current example has only half the data with which to
estimate the model. The fit to the validation data, which represents the goodness of the model more
generally, is better than the fit to the estimation data.

Parameters
Select Data

Data Type — Data type for input and output data
Time (default) | Frequency | Data Object

The task accepts numeric measurement values that are uniformly sampled in time. Input and output
signals can contain multiple channels. Data can be packaged as numeric arrays (for Time or
Frequency) or in a data object, such as an iddata or idfrd object.

The data type you choose determines whether you must specify additional parameters.

• Time — Specify Sample Time and Start Time in the time units that you select.
• Frequency — Specify Frequency by selecting the variable name of a frequency vector in your

MATLAB workspace. Specify the units for this frequency vector. Specify Sample Time in seconds.
• Data Object — Specify no additional parameters because the data object already contains

information on time or frequency sampling.

Estimation Input (u) and Estimation Output (y) — Variable names of input and
output data for estimation
valid variable names

Select the input and output variable names from the MATLAB workspace choices. Use these
parameters when Data Type is Time or Frequency.

Estimation Object — Variable name of data object containing input and output data for
estimation
valid variable name

Select the data object variable name from the MATLAB workspace choices. Use this parameter when
Data Type is Data Object.

Validation Input (u) and Validation Output (y) — Variable names of input and
output data for validation
valid variable names

Select the input and output variable names from the workspace choices. Use these parameters when
Data Type is Time or Frequency. Specifying validation data is optional but recommended.

Validation Object — Variable name of data object containing input and output data for
validation
valid variable name

Select the data object variable name from the MATLAB workspace choices. Use this parameter when
Data Type is Data Object. Specifying validation data is optional but recommended.

1 Functions

1-334

Specify Model Structure

Plant Order — Order of model to estimate
4 (default) | integer scalar | integer range

The task allows you to specify a single value or a range of values for the order of the model to
estimate.

• Specify value — Specify the order of the model explicitly.
• Pick best value in range — Specify a range of values, such as 1:10. When you run the task,

the Hankel singular-value plot visualizes the relative energy contribution of each state in the
estimated model and recommends the lowest order that reproduces critical dynamic behavior.
Proceed with this recommendation or select another order in Chosen Order. Click Apply to
accept the model order and proceed.

Time Domain — Continuous or discrete time domain
Continuous (default) | Discrete

Select a continuous-time or discrete-time model.

Estimate Disturbance — Include disturbance in estimation model
off (default) | on

Select this option to estimate the disturbance model. When you select this option, the model
equations update to show the K matrix and e term.

Input Channel — Set input channel delay and feedthrough options
u1 (default) | u2 | ...

For each input channel, assign values for Input Delay and Feedthrough.

• Input Channel — Select an input channel. The input channel is always of the form ui, where i is
the ith channel of the input u.

• Input Delay — Enter the input delay in number of samples (discrete-time model) or number of
time units (continuous-time model) for the channel. For instance, to specify a 0.2-second input
delay for a continuous-time system for which the time unit is milliseconds, enter 200.

• Feedthrough — Select this option to estimate channel feedthrough from input to output. When
you select this option, the model equations update to show the Du term.

Specify Optional Parameters

Fit Focus — Minimize prediction error or simulation error
Prediction (default) | Simulation

Fit focus specifies what error to minimize in the loss function during estimation.

• Prediction — Minimize the one-step-ahead prediction error between measured and predicted
outputs. This estimation approach focuses on producing a good predictor model for the estimation
inputs and outputs. Prediction focus generally produces the best estimation results because it
uses both input and output measurements, thus accounting for disturbances.

• Simulation — Minimize the error between measured and simulated outputs. This estimation
approach focuses on producing a simulated model response that has a good fit with the estimation
inputs and outputs. Simulation focus is generally best for validation, especially with data sets not
used for the original estimation.

 Estimate State-Space Model

1-335

Initial Conditions — Handling of initial states
Auto (default) | Zero | Estimate | Backcast

Set this option when you want to choose a specific method for initializing the model states. With the
default setting of Auto, the software chooses the method based on the estimation data. Choices are:

• Zero — The initial state is set to zero.
• Estimate — The initial state is treated as an independent estimation parameter.
• Backcast — The initial state is estimated using the best least-squares fit.

Input Intersampling — Intersampling behavior for input signal
Zero-order hold (default) | Triangle approximation | Band-limited

Input intersampling is a property of the input data. The task uses this property when estimating
continuous models. Specify Input Intersampling when your data type is Time or Frequency. If you
are using an iddata object, the object already contains the intersampling information. Choices for
this property are:

• Zero-order hold — Piecewise-constant input signal between samples
• Triangle approximation — Piecewise-linear input signal between samples, also known as
first-order hold

• Band-limited — Input signal has zero power above the Nyquist frequency

Search Method — Numerical search mode for iterative parameter estimation
Auto (default) | Gauss-Newton | Adaptive Gauss-Newton | Levenberg-Marquardt | Gradient
Search

• Auto — For each iteration, the software cycles through the methods until it finds the first
direction descent that leads to a reduction in estimation cost.

• Gauss-Newton — Subspace Gauss-Newton least-squares search.
• Levenberg-Marquardt — Levenberg-Marquardt least-squares search.
• Adaptive Gauss-Newton —Adaptive subspace Gauss-Newton search.
• Gradient Search — Steepest descent least-squares search.

Max. Iterations — Maximum number of iterations during error minimization
20 (default) | positive integer

Set the maximum number of iterations during error minimization. The iterations stop when Max.
Iterations is reached or another stopping criterion is satisfied, such as Tolerance.

Tolerance — Minimum percentage of expected improvement in error
0.01 (default) | positive integer

When the percentage of expected improvement is less than Tolerance, the iterations stop.

Weighting Prefilter — Weighting prefilter for loss function
No filter (default) | Passband(s) | LTI Filter | Frequency weights vector | Inverse of
magnitude of the frequency response | Inverse of square root of magnitude of
the frequency response

Set this option when you want to apply a weighting prefilter to the loss function that the task
minimizes when you estimate the model. When you select an option, you must also select the

1 Functions

1-336

associated variable in your workspace that contains the filter information. The available options
depend on the domain of the data.

Weighting Prefilter Data Domain Filter Information
No Filter Time and frequency
Passbands Time and frequency Passband ranges, specified as a

1-by-2 row vector or an n-by-2
matrix, where n is the number
of passbands.

LTI Filter Time and frequency SISO LTI model.
Frequency Weights Vector Frequency Frequency weights, specified as

a column vector with the same
length as the frequency vector.

Inverse of magnitude of
the frequency response

Frequency response The weighting filter is1/ G(ω) ,
where G(ω) is the complex
frequency-response data. SISO
and SIMO systems only.

Inverse of square root
of magnitude of the
frequency response

Frequency response The weighting filter is
1/ G(ω) . SISO and SIMO
systems only.

For instance, suppose that you are performing estimation with SISO frequency-domain data and that
in your MATLAB workspace, you have a column vector W that contains frequency weights for the
prefilter. In the task, select Weighting prefilter > Frequency weights vector and the variable W.

Visualize Results

Output Plot — Plot comparison of model and measured outputs
on (default) | off

Plot a comparison of the model output and the original measured data, along with the fit percentage.
If you have separate validation data, a second plot compares the model response to the validation
input data with the measured output from the validation data set.

Version History
Introduced in R2019b

See Also
ssest | ssestOptions | iddata | compare | idss | idfrd | frd

Topics
“What Are State-Space Models?”

 Estimate State-Space Model

1-337

Estimate Spectral Model
Estimate spectral model using time-domain data in the Live Editor

Description
The Estimate Spectral Model task lets you interactively estimate and plot a spectral model using
time data. You can specify one of three estimation algorithms and modify the size of the window size
that determines frequency resolution. You can also specify the frequency vector, including the
number of frequencies and whether those frequencies are evenly spaced on a linear or a logarithmic
scale. The task automatically generates MATLAB code for your live script. For more information
about Live Editor tasks in general, see “Add Interactive Tasks to a Live Script”.

A frequency-response model is the frequency response of a linear system evaluated over a range of
frequency values. The model is represented by an idfrd model object that stores the frequency
response, sample time, and input-output channel information. For more information about frequency-
response models, see “What is a Frequency-Response Model?”.

The Estimate Spectral Model task is independent of the more general System Identification app.
Use the System Identification app when you want to compute and compare estimates for multiple
models.

To get started, load experiment data that contains input and output data into your MATLAB
workspace and then import that data into the task. Then, specify a model structure to estimate. The
task gives you controls and plots that help you experiment with different model parameters and
compare how well the output of each model fits the measurements.

Related Functions

The code that Estimate Spectral Model generates uses the following functions.

• Data objects:

• iddata — Contains input-output data
• Algorithms for estimating frequency response:

• spa
• spafdr
• etfe

• Frequency Plots:

• bode for input-output data
• spectrum for time series data

The task estimates an idfrd frequency-response model.

1 Functions

1-338

Description (Collapsed Portion)
Related Functions

The code that Estimate Spectral Model generates uses the following functions.

• Data objects:

• iddata — Contains input-output data
• Algorithms for estimating frequency response:

• spa
• spafdr
• etfe

• Frequency Plots:

 Estimate Spectral Model

1-339

• bode for input-output data
• spectrum for time series data

The task estimates an idfrd frequency-response model.

Open the Task
To add the Estimate Spectral Model task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Estimate Spectral Model.
• In a code block in your script, type a relevant keyword, such as spectral or estimate. Select

Estimate Spectral Model from the suggested command completions.

Examples

Estimate Spectral Model in the Live Editor

Use the Estimate Spectral Model Live Editor Task to estimate a frequency-response model and plot
the response.

Open this example to see a preconfigured script containing the task.

Set Up Data

Load the measurement data iddata2 into your MATLAB workspace.

load iddata2 z2
z2

z2 =

Time domain data set with 400 samples.
Sample time: 0.1 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

Import Data into Task

In the Select data section, for Data type, select Data object. For Estimation data, select
Input-output data. In Data object, the task displays the workplace variables that meet the
criteria that you set. Select z2.

1 Functions

1-340

A data object contains the input and output variable names as well as the sample time, so you do not
need to specify them.

Estimate Model Using Default Settings

The default algorithm is SPA (Blackman-Tukey).

 Estimate Spectral Model

1-341

Run the task using this algorithm and the default settings for Specify frequency vector and Display
results.

Examine Plot

The task displays a Bode plot that includes a confidence region of three standard deviations.

Parameters
Select Data

Data Type — Data type for input and output data
Time (default) | Data object

The task accepts numeric measurement values that are uniformly sampled in time. Input and output
signals can contain multiple channels. Data can be packaged either as numeric arrays (for Time) or in
an iddata object (for Data object).

The data type you choose determines whether you must specify additional parameters.

• Time — Specify Sample Time in the time unit that you select.
• Data Object — Specify no additional parameters because the data object already contains

information on time sampling.

Estimation Data — Estimation data input and output content
Input-output data (default) | Time series

1 Functions

1-342

The task accepts input-output data and time series data that has no input array.

The estimation data content you select, along with your selection of Data Type, determines your
options for accessing variables from your MATLAB workspace.

• Time series and Input-output data — Select the variable names of your input and output
vectors for Input (u) and Output (y), respectively. If Data Type is Time series, then you can
select only a single vector, using Output (y).

• Data object — Select the variable name of your data object.

Specify estimator

Algorithm — Algorithm to use
SPA (Blackman-Tukey) (default) | SPAFDR (Frequency-dependent resolution) | ETFE
(Smoothed Fourier transform)

The task provides three algorithms to choose from.

• SPA — Blackman-Tukey Spectral analysis (SPA) method. Takes the Fourier transform of windowed
versions of the covariance function.

• SPAFDR — Variant of the SPA method that uses frequency-dependent resolution.
• ETFE — Empirical transfer function estimate. This method computes the ratio of the Fourier

transform of the output to the Fourier transform of the input. For time series, which have no input,
this method computes a periodogram as the normalized absolute squares of the Fourier transform
of the time series.

For more information on these algorithms, see spa, spafdr, and etfe. For information on selecting
an algorithm, see “Selecting the Method for Computing Spectral Models”.

Window Size or Resolution — Window size parameter
method-dependent resolution value

Each estimation algorithm uses a unique parameter for determining and using the window size.

• SPA — Hann window size. Specify this parameter as a positive integer greater than 2. The
default value is equal to 30 for data arrays with lengths of 300 or more, or, for smaller arrays,
arraylength/10.

• SPAFDR — Resolution. Specify this parameter in rad/TimeUnit, where TimeUnit is the unit you
specify for Sample Time. The resolution is the size of the smallest detail in the frequency
function and the spectrum that is resolved by the estimate. Setting the resolution is a tradeoff
between obtaining estimates with fine, reliable details, and suffering from spurious, random
effects. The default value in the task is default, which uses the resolution that spafdr
calculates based on the frequencies. If you want to view this resolution value for the SISO model
spectralModel, at the command line, enter spectralModel.Report.WindowSize.

• ETFE — Hamming window size. Specify this parameter, which represents frequency resolution,
as a positive integer greater than 2. The value of the parameter determines the amount of
smoothing that the function applies to the raw spectral estimates. The default value in the task is
default, which uses the resolution that etfe calculates based on the frequencies. If you want to
view this resolution value for the SISO model spectralModel, at the command line, enter
spectralModel.Report.WindowSize.

 Estimate Spectral Model

1-343

Specify frequency vector

Frequency range parameters — Frequency range minimum, maximum, and units
numeric values | unit string

Specify the frequency vector minimum and maximum, and select the unit, such as the default rad/
second, from the Unit list. By default, the task sets the frequency to span the range bounded at the
upper end by the Nyquist frequency, which is a function of the sample time. The task sets the default
value of the lower end of the range to the first frequency value.

Number of frequencies and scale — Number of frequency divisions and linear or
logarithmic scale selection
128 | integer | Logarithmic | Linear

Specify the number of frequency divisions and whether to use a linear or a logarithmic scale. The
default number of divisions is 128. The default scale is Logarithmic.

Display Results

Frequency response plot — Plot the frequency response
on (default) | off

Select Frequency response plot to create a frequency plot of your model. If you specify your data
type as Input-output data, then the task creates the frequency response using bode. If your data
type is Time series, then the task plots the power spectrum using spectrum.

You can plot only one model at a time in the task. If you want to compare responses, do one of the
following:

• Open multiple tasks and visually compare plots for different models.
• Use unique model IDs for each model you want to compare, and then create Bode plots for them

at the command line.

Frequency response plot parameters — Magnitude units, scale, confidence region
dB | Absolute | Logarithmic | Linear | on | off

Specify the parameters for the Bode or power spectrum plot. You can specify that the units in
Magnitude are dB or absolute value. For Scale, you can specify a logarithmic or a linear scale for
the frequency axis. If you are creating a Bode plot by using input-output data, you can select Show
confidence region to display a confidence region of three standard deviations. If you are creating a
power spectrum plot by using a time series, no Show confidence region option exists.

Version History
Introduced in R2021b

See Also
idfrd | iddata | spafdr | spa | etfe | bode | spectrum

Topics
“Frequency Response Plots for Model Validation”
“Selecting the Method for Computing Spectral Models”

1 Functions

1-344

etfe
Estimate empirical transfer functions and periodograms

Syntax
g = etfe(data)
g = etfe(data,M)
g = etfe(data,M,N)

Description
g = etfe(data) estimates a transfer function of the form:

y(t) = G(q)u(t) + v(t)

data contains time- or frequency-domain input-output data or time-series data:

• If data is time-domain input-output signals, g is the ratio of the output Fourier transform to the
input Fourier transform for the data.

For nonperiodic data, the transfer function is estimated at 128 equally-spaced frequencies
[1:128]/128*pi/Ts.

For periodic data that contains a whole number of periods (data.Period = integer), the
response is computed at the frequencies k*2*pi/period for k = 0 up to the Nyquist frequency.

• If data is frequency-domain input-output signals, g is the ratio of output to input at all
frequencies, where the input is nonzero.

• If data is time-series data (no input channels), g is the periodogram, that is the normed absolute
square of the Fourier transform, of the data. The corresponding spectral estimate is normalized,
as described in “Spectrum Normalization” and differs from the spectrum normalization in the
Signal Processing Toolbox™ product.

g = etfe(data,M) applies a smoothing operation on the raw spectral estimates using a Hamming
Window that yields a frequency resolution of about pi/M. The effect of M is similar to the effect of M in
spa. M is ignored for periodic data. Use this syntax as an alternative to spa for narrowband spectra
and systems that require large values of M.

g = etfe(data,M,N) specifies the frequency spacing for nonperiodic data.

• For nonperiodic time-domain data, N specifies the frequency grid [1:N]/N*pi/Ts rad/TimeUnit.
When not specified, N is 128.

• For periodic time-domain data, N is ignored.
• For frequency-domain data, the N is fmin:delta_f:fmax, where [fmin fmax] is the range of

frequencies in data, and delta_f is (fmax-fmin)/(N-1) rad/TimeUnit. When not specified, the
response is computed at the frequencies contained in data where input is nonzero.

Examples

 etfe

1-345

Compare an Empirical Transfer Function to a Smoothed Spectral Estimate

Load estimation data.

load iddata1 z1;

Estimate empirical transfer function and smoothed spectral estimate.

ge = etfe(z1);
gs = spa(z1);

Compare the two models on a Bode plot.

bode(ge,gs)

Generate Empirical Transfer Function Using Periodic Input

Generate a periodic input, simulate a system with it, and compare the frequency response of the
estimated model with the original system at the excited frequency points.

Generate a periodic input signal and output signal using simulation.

m = idpoly([1 -1.5 0.7],[0 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
y = sim(m,u);

1 Functions

1-346

Estimate an empirical transfer function.

me = etfe([y u]);

Compare the empirical transfer function with the original model.

bode(me,'b*',m,'r')

Apply Smoothing Operation on Empirical Transfer Function Estimate

Perform a smoothing operation on raw spectral estimates using a Hamming Window and compare the
responses.

Load data.

load iddata1

Estimate empirical transfer functions with and without the smoothing operation.

ge1 = etfe(z1);
ge2 = etfe(z1,32);

Compare the models on a Bode plot.

ge2 is smoother than ge1 because of the effect of the smoothing operation.

 etfe

1-347

bode(ge1,ge2)

Compare Effect of Frequency Spacing on Empirical Transfer Function Estimate

Estimate empirical transfer functions with low- and high-frequency spacings and compare the
responses.

Load data.

load iddata9

Estimate empirical transfer functions with low and high frequency spacings.

ge1 = etfe(z9,[],32);
ge2 = etfe(z9,[],512);

Plot the output power spectrum of the two models.

spectrum(ge1,'b.-',ge2,'g')

1 Functions

1-348

Input Arguments
data — Estimation data
iddata

Estimation data, specified as an iddata object. The data can be time- or frequency-domain input/
output signals or time-series data.

M — Frequency resolution
[] (default) | positive scalar

Frequency resolution, specified as a positive scalar.

N — Frequency spacing
128 for nonperiodic time-domain data (default) | positive scalar

Frequency spacing, specified as a positive scalar. For frequency-domain data, the default frequency
spacing is the spacing inherent in the estimation data.

Output Arguments
g — Transfer function estimate
idfrd

 etfe

1-349

Transfer function estimate, returned as an idfrd model.

Information about the estimation results and options used is stored in the model's Report property.
Report has the following fields:

Report Field Description
Status Summary of the model status, which indicates whether the model was

created by construction or obtained by estimation.
Method Estimation command used.
WindowSize Size of the Hamming window.
DataUsed Attributes of the data used for estimation, returned as a structure with

the following fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSa
mple

Input intersample behavior, returned as one of the following
values:

• 'zoh' — Zero-order hold maintains a piecewise-constant
input signal between samples.

• 'foh' — First-order hold maintains a piecewise-linear
input signal between samples.

• 'bl' — Band-limited behavior specifies that the
continuous-time input signal has zero power above the
Nyquist frequency.

InputOf
fset

Offset removed from time-domain input data during
estimation. For nonlinear models, it is [].

OutputO
ffset

Offset removed from time-domain output data during
estimation. For nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

Version History
Introduced before R2006a

See Also
bode | freqresp | idfrd | nyquist | spa | spafdr | impulseest | spectrum

Topics
“Estimate Frequency-Response Models at the Command Line”
“What is a Frequency-Response Model?”

1 Functions

1-350

evalfr
Evaluate system response at specific frequency

Syntax
frsp = evalfr(sys,f)

Description
evalfr is a simplified version of freqresp meant for quick evaluation of the system response at the
Laplace variable value of s or z for a single, specific frequency. Use freqresp to evaluate the system
response over a set of frequencies. To obtain the magnitude and phase data as well as plots of the
frequency response, use bode instead.

frsp = evalfr(sys,f) evaluates the continuous-time or discrete-time model sys at the specified
frequency f.

Examples

Evaluate Discrete-Time Transfer Function

Create the following discrete-time transfer function.

H z = z − 1
z2 + z + 1

H = tf([1 -1],[1 1 1],-1);

Evaluate the transfer function at z = 1+j.

z = 1+j;
evalfr(H,z)

ans = 0.2308 + 0.1538i

Evaluate Frequency Response of Identified Model at Given Frequency

Create the following continuous-time transfer function model:

H s = 1
s2 + 2s + 1

sys = idtf(1,[1 2 1]);

Evaluate the transfer function at frequency 0.1 rad/second.

 evalfr

1-351

w = 0.1;
s = j*w;
evalfr(sys,s)

ans = 0.9705 - 0.1961i

Alternatively, use the freqresp command.

freqresp(sys,w)

ans = 0.9705 - 0.1961i

Frequency Response of MIMO State-Space Model

For this example, consider a cube rotating about its corner with inertia tensor J and a damping force
F of 0.2 magnitude. The input to the system is the driving torque while the angular velocities are the
outputs. The state-space matrices for the cube are:

A = − J−1F, B = J−1, C = I, D = 0,

where, J =
8 −3 −3
−3 8 −3
−3 −3 8

and F =
0 . 2 0 0

0 0 . 2 0
0 0 0 . 2

Specify the A, B, C and D matrices, and create the continuous-time state-space model.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys = ss(A,B,C,D);
size(sys)

State-space model with 3 outputs, 3 inputs, and 3 states.

Compute the frequency response of the system at 0.2 rad/second. Since sys is a continuous-time
model, express the frequency in terms of the Laplace variable s.

w = 0.2;
s = j*w;
frsp = evalfr(sys,s)

frsp = 3×3 complex

 0.3607 - 0.9672i 0.3197 - 0.5164i 0.3197 - 0.5164i
 0.3197 - 0.5164i 0.3607 - 0.9672i 0.3197 - 0.5164i
 0.3197 - 0.5164i 0.3197 - 0.5164i 0.3607 - 0.9672i

Alternatively, you can use the freqresp command to evaluate the frequency response using the
scalar value of the frequency directly.

H = freqresp(sys,w)

1 Functions

1-352

H = 3×3 complex

 0.3607 - 0.9672i 0.3197 - 0.5164i 0.3197 - 0.5164i
 0.3197 - 0.5164i 0.3607 - 0.9672i 0.3197 - 0.5164i
 0.3197 - 0.5164i 0.3197 - 0.5164i 0.3607 - 0.9672i

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• LTI models such as ss, tf, and zpk models.
• Sparse state-space models, such as sparss or mechss models.
• Generalized or uncertain state-space models such as genss or uss models. (Using uncertain

models requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value to
evaluate the frequency response.

• For uncertain control design blocks, the function evaluates the frequency response at the
nominal value and random samples of the model.

• Identified state-space models, such as idss models.

For a complete list of models, see “Dynamic System Models”.

f — Frequency at which to evaluate system response
complex scalar

Frequency at which to evaluate system response, expressed as the Laplace variable s or z, specified
as a complex scalar. Specify the frequency in terms of the Laplace variable s or z based on whether
sys is a continuous-time or discrete-time model, respectively. For instance, if you want to evaluate
the frequency response of a system sys at a frequency value of w rad/s, then specify f in terms of

• s = jw, if sys is in continuous-time.
• z = ejwT, if sys is in discrete-time. Here, T is the sample time.

Output Arguments
frsp — Frequency response
complex scalar

Frequency response of the system at f, returned as a complex scalar.

Version History
Introduced in R2012a

 evalfr

1-353

See Also
bode | freqresp | sigma

1 Functions

1-354

extendedKalmanFilter
Create extended Kalman filter object for online state estimation

Syntax
obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState)
obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState,
Name,Value)

obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn)
obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,Name,Value)
obj = extendedKalmanFilter(Name,Value)

Description
obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState)
creates an extended Kalman filter object for online state estimation of a discrete-time nonlinear
system. StateTransitionFcn is a function that calculates the state of the system at time k, given
the state vector at time k-1. MeasurementFcn is a function that calculates the output measurement
of the system at time k, given the state at time k. InitialState specifies the initial value of the
state estimates.

After creating the object, use the correct and predict commands to update state estimates and
state estimation error covariance values using a first-order discrete-time extended Kalman filter
algorithm and real-time data.

obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState,
Name,Value) specifies additional attributes of the extended Kalman filter object using one or more
Name,Value pair arguments.

obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn) creates an extended
Kalman filter object using the specified state transition and measurement functions. Before using the
predict and correct commands, specify the initial state values using dot notation. For example, for
a two-state system with initial state values [1;0], specify obj.State = [1;0].

obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,Name,Value)
specifies additional attributes of the extended Kalman filter object using one or more Name,Value
pair arguments. Before using the predict and correct commands, specify the initial state values
using Name,Value pair arguments or dot notation.

obj = extendedKalmanFilter(Name,Value) creates an extended Kalman filter object with
properties specified using one or more Name,Value pair arguments. Before using the predict and
correct commands, specify the state transition function, measurement function, and initial state
values using Name,Value pair arguments or dot notation.

Object Description
extendedKalmanFilter creates an object for online state estimation of a discrete-time nonlinear
system using the first-order discrete-time extended Kalman filter algorithm.

 extendedKalmanFilter

1-355

Consider a plant with states x, input u, output y, process noise w, and measurement noise v. Assume
that you can represent the plant as a nonlinear system.

The algorithm computes the state estimates x of the nonlinear system using state transition and
measurement functions specified by you. The software lets you specify the noise in these functions as
additive or nonadditive:

• Additive Noise Terms — The state transition and measurements equations have the following
form:

x[k] = f (x[k− 1], us[k− 1]) + w[k− 1]
y[k] = h(x[k], um[k]) + v[k]

Here f is a nonlinear state transition function that describes the evolution of states x from one
time step to the next. The nonlinear measurement function h relates x to the measurements y at
time step k. w and v are the zero-mean, uncorrelated process and measurement noises,
respectively. These functions can also have additional input arguments that are denoted by us and
um in the equations. For example, the additional arguments could be time step k or the inputs u to
the nonlinear system. There can be multiple such arguments.

Note that the noise terms in both equations are additive. That is, x(k) is linearly related to the
process noise w(k-1), and y(k) is linearly related to the measurement noise v(k).

• Nonadditive Noise Terms — The software also supports more complex state transition and
measurement functions where the state x[k] and measurement y[k] are nonlinear functions of the
process noise and measurement noise, respectively. When the noise terms are nonadditive, the
state transition and measurements equation have the following form:

x[k] = f (x[k− 1], w[k− 1], us[k− 1])
y[k] = h(x[k], v[k], um[k])

When you perform online state estimation, you first create the nonlinear state transition function f
and measurement function h. You then construct the extendedKalmanFilter object using these
nonlinear functions, and specify whether the noise terms are additive or nonadditive. You can also
specify the Jacobians of the state transition and measurement functions. If you do not specify them,
the software numerically computes the Jacobians.

After you create the object, you use the predict command to predict state estimate at the next time
step, and correct to correct state estimates using the algorithm and real-time data. For information
about the algorithm, see “Extended and Unscented Kalman Filter Algorithms for Online State
Estimation”.

You can use the following commands with extendedKalmanFilter objects:

1 Functions

1-356

Command Description
correct Correct the state and state estimation error

covariance at time step k using measured data at
time step k.

predict Predict the state and state estimation error
covariance at time the next time step.

residual Return the difference between the actual and
predicted measurements.

clone Create another object with the same object
property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created in this way
(obj2) also change the properties of the original
object (obj).

For extendedKalmanFilter object properties, see “Properties” on page 1-362.

Examples

Create Extended Kalman Filter Object for Online State Estimation

To define an extended Kalman filter object for estimating the states of your system, you first write
and save the state transition function and measurement function for the system.

In this example, use the previously written and saved state transition and measurement functions,
vdpStateFcn.m and vdpMeasurementFcn.m. These functions describe a discrete-approximation to
a van der Pol oscillator with nonlinearity parameter, mu, equal to 1. The oscillator has two states.

Specify an initial guess for the two states. You specify the guess as an M-element row or column
vector, where M is the number of states.

initialStateGuess = [1;0];

Create the extended Kalman filter object. Use function handles to provide the state transition and
measurement functions to the object.

obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,initialStateGuess);

The object has a default structure where the process and measurement noise are additive.

To estimate the states and state estimation error covariance from the constructed object, use the
correct and predict commands and real-time data.

Specify Process and Measurement Noise Covariances in Extended Kalman Filter Object

Create an extended Kalman filter object for a van der Pol oscillator with two states and one output.
Use the previously written and saved state transition and measurement functions, vdpStateFcn.m

 extendedKalmanFilter

1-357

and vdpMeasurementFcn.m. These functions are written for additive process and measurement
noise terms. Specify the initial state values for the two states as [2;0].

Since the system has two states and the process noise is additive, the process noise is a 2-element
vector and the process noise covariance is a 2-by-2 matrix. Assume there is no cross-correlation
between process noise terms, and both the terms have the same variance 0.01. You can specify the
process noise covariance as a scalar. The software uses the scalar value to create a 2-by-2 diagonal
matrix with 0.01 on the diagonals.

Specify the process noise covariance during object construction.

obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0],...
 'ProcessNoise',0.01);

Alternatively, you can specify noise covariances after object construction using dot notation. For
example, specify the measurement noise covariance as 0.2.

obj.MeasurementNoise = 0.2;

Since the system has only one output, the measurement noise is a 1-element vector and the
MeasurementNoise property denotes the variance of the measurement noise.

Copyright 2012 The MathWorks, Inc

Specify Jacobians for State and Measurement Functions

Create an extended Kalman filter object for a van der Pol oscillator with two states and one output.
Use the previously written and saved state transition and measurement functions, vdpStateFcn.m
and vdpMeasurementFcn.m. Specify the initial state values for the two states as [2;0].

obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0]);

The extended Kalman filter algorithm uses Jacobians of the state transition and measurement
functions for state estimation. You write and save the Jacobian functions and provide them as function
handles to the object. In this example, use the previously written and saved functions
vdpStateJacobianFcn.m and vdpMeasurementJacobianFcn.m.

obj.StateTransitionJacobianFcn = @vdpStateJacobianFcn;
obj.MeasurementJacobianFcn = @vdpMeasurementJacobianFcn;

Note that if you do not specify the Jacobians of the functions, the software numerically computes the
Jacobians. This numerical computation may result in increased processing time and numerical
inaccuracy of the state estimation.

Specify Nonadditive Measurement Noise in Extended Kalman Filter Object

Create an extended Kalman filter object for a van der Pol oscillator with two states and one output.
Assume that the process noise terms in the state transition function are additive. That is, there is a
linear relation between the state and process noise. Also assume that the measurement noise terms
are nonadditive. That is, there is a nonlinear relation between the measurement and measurement
noise.

1 Functions

1-358

obj = extendedKalmanFilter('HasAdditiveMeasurementNoise',false);

Specify the state transition function and measurement functions. Use the previously written and
saved functions, vdpStateFcn.m and vdpMeasurementNonAdditiveNoiseFcn.m.

The state transition function is written assuming the process noise is additive. The measurement
function is written assuming the measurement noise is nonadditive.

obj.StateTransitionFcn = @vdpStateFcn;
obj.MeasurementFcn = @vdpMeasurementNonAdditiveNoiseFcn;

Specify the initial state values for the two states as [2;0].

obj.State = [2;0];

You can now use the correct and predict commands to estimate the state and state estimation
error covariance values from the constructed object.

Specify State Transition and Measurement Functions with Additional Inputs

Consider a nonlinear system with input u whose state x and measurement y evolve according to the
following state transition and measurement equations:

x[k] = x[k− 1] + u[k− 1] + w[k− 1]

y[k] = x[k] + 2 * u[k] + v[k]2

The process noise w of the system is additive while the measurement noise v is nonadditive.

Create the state transition function and measurement function for the system. Specify the functions
with an additional input u.

f = @(x,u)(sqrt(x+u));
h = @(x,v,u)(x+2*u+v^2);

f and h are function handles to the anonymous functions that store the state transition and
measurement functions, respectively. In the measurement function, because the measurement noise
is nonadditive, v is also specified as an input. Note that v is specified as an input before the
additional input u.

Create an extended Kalman filter object for estimating the state of the nonlinear system using the
specified functions. Specify the initial value of the state as 1 and the measurement noise as
nonadditive.

obj = extendedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);

Specify the measurement noise covariance.

obj.MeasurementNoise = 0.01;

You can now estimate the state of the system using the predict and correct commands. You pass
the values of u to predict and correct, which in turn pass them to the state transition and
measurement functions, respectively.

 extendedKalmanFilter

1-359

Correct the state estimate with measurement y[k]=0.8 and input u[k]=0.2 at time step k.

correct(obj,0.8,0.2)

Predict the state at the next time step, given u[k]=0.2.

predict(obj,0.2)

Retrieve the error, or residual, between the prediction and the measurement.

[Residual, ResidualCovariance] = residual(obj,0.8,0.2);

Input Arguments
StateTransitionFcn — State transition function
function handle

State transition function f, specified as a function handle. The function calculates the Ns-element
state vector of the system at time step k, given the state vector at time step k-1. Ns is the number of
states of the nonlinear system.

You write and save the state transition function for your nonlinear system, and use it to construct the
object. For example, if vdpStateFcn.m is the state transition function, specify
StateTransitionFcn as @vdpStateFcn. You can also specify StateTransitionFcn as a function
handle to an anonymous function.

The inputs to the function you write depend on whether you specify the process noise as additive or
nonadditive in the HasAdditiveProcessNoise property of the object:

• HasAdditiveProcessNoise is true — The process noise w is additive, and the state transition
function specifies how the states evolve as a function of state values at the previous time step:

x(k) = f(x(k-1),Us1,...,Usn)

Where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function, such as system inputs or the sample time.
During estimation, you pass these additional arguments to the predict command, which in turn
passes them to the state transition function.

• HasAdditiveProcessNoise is false — The process noise is nonadditive, and the state transition
function also specifies how the states evolve as a function of the process noise:

x(k) = f(x(k-1),w(k-1),Us1,...,Usn)

To see an example of a state transition function with additive process noise, type edit
vdpStateFcn at the command line.

MeasurementFcn — Measurement function
function handle

Measurement function h, specified as a function handle. The function calculates the N-element output
measurement vector of the nonlinear system at time step k, given the state vector at time step k. N is
the number of measurements of the system. You write and save the measurement function, and use it
to construct the object. For example, if vdpMeasurementFcn.m is the measurement function, specify

1 Functions

1-360

MeasurementFcn as @vdpMeasurementFcn. You can also specify MeasurementFcn as a function
handle to an anonymous function.

The inputs to the function depend on whether you specify the measurement noise as additive or
nonadditive in the HasAdditiveMeasurementNoise property of the object:

• HasAdditiveMeasurementNoise is true — The measurement noise v is additive, and the
measurement function specifies how the measurements evolve as a function of state values:

y(k) = h(x(k),Um1,...,Umn)

Where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function. For example, if you are
using multiple sensors for tracking an object, an additional input could be the sensor position.
During estimation, you pass these additional arguments to the correct command, which in turn
passes them to the measurement function.

• HasAdditiveMeasurementNoise is false — The measurement noise is nonadditive, and the
measurement function also specifies how the output measurement evolves as a function of the
measurement noise:

y(k) = h(x(k),v(k),Um1,...,Umn)

When you have the HasMeasurementWrapping property enabled, then the output for the
measurement function must also include the wrapping bounds, specified as an N-by-2 matrix where,
the first column provides the minimum measurement bound and the second column provides the
maximum measurement bound. N is the number of measurements of the system.

To see an example of a measurement function with additive process noise, type edit
vdpMeasurementFcn at the command line. To see an example of a measurement function with
nonadditive process noise, type edit vdpMeasurementNonAdditiveNoiseFcn.

InitialState — Initial state estimate value
vector

Initial state estimate value, specified as an Ns-element vector, where Ns is the number of states in the
system. Specify the initial state values based on your knowledge of the system.

The specified value is stored in the State property of the object. If you specify InitialState as a
column vector, then State is also a column vector, and the predict and correct commands return
state estimates as a column vector. Otherwise, a row vector is returned.

If you want a filter with single-precision floating-point variables, specify InitialState as a single-
precision vector variable. For example, for a two-state system with state transition and measurement
functions vdpStateFcn.m and vdpMeasurementFcn.m, create the extended Kalman filter object
with initial state estimates [1;2] as follows:
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,single([1;2]))

Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 extendedKalmanFilter

1-361

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 1-362 of extendedKalmanFilter object
during object creation. For example, to create an extended Kalman filter object and specify the
process noise covariance as 0.01:
obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState,'ProcessNoise',0.01);

Properties
extendedKalmanFilter object properties are of three types:

• Tunable properties that you can specify multiple times, either during object construction using
Name,Value arguments, or any time afterward during state estimation. After object creation, use
dot notation to modify the tunable properties.
obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState);
obj.ProcessNoise = 0.01;

The tunable properties are State, StateCovariance, ProcessNoise, and
MeasurementNoise.

• Nontunable properties that you can specify once, either during object construction or afterward
using dot notion. Specify these properties before state estimation using correct and predict.
The StateTransitionFcn, MeasurementFcn, StateTransitionJacobianFcn, and
MeasurementJacobianFcn properties belong to this category.

• Nontunable properties that you must specify during object construction. The
HasAdditiveProcessNoise and HasAdditiveMeasurementNoise properties belong to this
category.

HasAdditiveMeasurementNoise — Measurement noise characteristics
true (default) | false

Measurement noise characteristics, specified as one of the following values:

• true — Measurement noise v is additive. The measurement function h that is specified in
MeasurementFcn has the following form:

y(k) = h(x(k),Um1,...,Umn)

Where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function.

• false — Measurement noise is nonadditive. The measurement function specifies how the output
measurement evolves as a function of the state and measurement noise:

y(k) = h(x(k),v(k),Um1,...,Umn)

HasAdditiveMeasurementNoise is a nontunable property, and you can specify it only during object
construction. You cannot change it using dot notation.

HasAdditiveProcessNoise — Process noise characteristics
true (default) | false

Process noise characteristics, specified as one of the following values:

1 Functions

1-362

• true — Process noise w is additive. The state transition function f specified in
StateTransitionFcn has the following form:

x(k) = f(x(k-1),Us1,...,Usn)

Where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function.

• false — Process noise is nonadditive. The state transition function specifies how the states
evolve as a function of the state and process noise at the previous time step:

x(k) = f(x(k-1),w(k-1),Us1,...,Usn)

HasAdditiveProcessNoise is a nontunable property, and you can specify it only during object
construction. You cannot change it using dot notation.

MeasurementFcn — Measurement function
function handle

Measurement function h, specified as a function handle. The function calculates the N-element output
measurement vector of the nonlinear system at time step k, given the state vector at time step k. N is
the number of measurements of the system. You write and save the measurement function and use it
to construct the object. For example, if vdpMeasurementFcn.m is the measurement function, specify
MeasurementFcn as @vdpMeasurementFcn. You can also specify MeasurementFcn as a function
handle to an anonymous function.

The inputs to the function depend on whether you specify the measurement noise as additive or
nonadditive in the HasAdditiveMeasurementNoise property of the object:

• HasAdditiveMeasurementNoise is true — The measurement noise v is additive, and the
measurement function specifies how the measurements evolve as a function of state values:

y(k) = h(x(k),Um1,...,Umn)

Where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function. For example, if you are
using multiple sensors for tracking an object, an additional input could be the sensor position.
During estimation, you pass these additional arguments to the correct command which in turn
passes them to the measurement function.

• HasAdditiveMeasurementNoise is false — The measurement noise is nonadditive, and the
measurement function also specifies how the output measurement evolves as a function of the
measurement noise:

y(k) = h(x(k),v(k),Um1,...,Umn)

When you have the HasMeasurementWrapping property enabled, then the output for the
measurement function must also include the wrapping bounds, specified as an N-by-2 matrix where,
the first column provides the minimum measurement bound and the second column provides the
maximum measurement bound. N is the number of measurements of the system.

To see an example of a measurement function with additive process noise, type edit
vdpMeasurementFcn at the command line. To see an example of a measurement function with
nonadditive process noise, type edit vdpMeasurementNonAdditiveNoiseFcn.

 extendedKalmanFilter

1-363

MeasurementFcn is a nontunable property. You can specify it once before using the correct
command either during object construction or using dot notation after object construction. You
cannot change it after using the correct command.

MeasurementJacobianFcn — Jacobian of measurement function
[] (default) | function handle

Jacobian of measurement function h, specified as one of the following:

• [] — The Jacobian is numerically computed at every call to the correct command. This may
increase processing time and numerical inaccuracy of the state estimation.

• function handle — You write and save the Jacobian function and specify the handle to the function.
For example, if vdpMeasurementJacobianFcn.m is the Jacobian function, specify
MeasurementJacobianFcn as @vdpMeasurementJacobianFcn.

The function calculates the partial derivatives of the measurement function with respect to the
states and measurement noise. The number of inputs to the Jacobian function must equal the
number of inputs to the measurement function and must be specified in the same order in both
functions. The number of outputs of the Jacobian function depends on the
HasAdditiveMeasurementNoise property:

• HasAdditiveMeasurementNoise is true — The function calculates the partial derivatives of
the measurement function with respect to the states (∂h/ ∂x). The output is as an N-by-Ns
Jacobian matrix, where N is the number of measurements of the system and Ns is the number
of states.

• HasAdditiveMeasurementNoise is false — The function also returns a second output that is
the partial derivative of the measurement function with respect to the measurement noise
terms (∂h/ ∂v). The second output is returned as an N-by-V Jacobian matrix, where V is the
number of measurement noise terms.

To see an example of a Jacobian function for additive measurement noise, type edit
vdpMeasurementJacobianFcn at the command line.

MeasurementJacobianFcn is a nontunable property. You can specify it once before using the
correct command either during object construction or using dot notation after object construction.
You cannot change it after using the correct command.

MeasurementNoise — Measurement noise covariance
1 (default) | scalar | matrix

Measurement noise covariance, specified as a scalar or matrix depending on the value of the
HasAdditiveMeasurementNoise property:

• HasAdditiveMeasurementNoise is true — Specify the covariance as a scalar or an N-by-N
matrix, where N is the number of measurements of the system. Specify a scalar if there is no
cross-correlation between measurement noise terms and all the terms have the same variance.
The software uses the scalar value to create an N-by-N diagonal matrix.

• HasAdditiveMeasurementNoise is false — Specify the covariance as a V-by-V matrix, where V
is the number of measurement noise terms. MeasurementNoise must be specified before using
correct. After you specify MeasurementNoise as a matrix for the first time, to then change
MeasurementNoise you can also specify it as a scalar. Specify as a scalar if there is no cross-
correlation between the measurement noise terms and all the terms have the same variance. The
software extends the scalar to a V-by-V diagonal matrix with the scalar on the diagonals.

1 Functions

1-364

MeasurementNoise is a tunable property. You can change it using dot notation.

ProcessNoise — Process noise covariance
1 (default) | scalar | matrix

Process noise covariance, specified as a scalar or matrix depending on the value of the
HasAdditiveProcessNoise property:

• HasAdditiveProcessNoise is true — Specify the covariance as a scalar or an Ns-by-Ns matrix,
where Ns is the number of states of the system. Specify a scalar if there is no cross-correlation
between process noise terms, and all the terms have the same variance. The software uses the
scalar value to create an Ns-by-Ns diagonal matrix.

• HasAdditiveProcessNoise is false — Specify the covariance as a W-by-W matrix, where W is
the number of process noise terms. ProcessNoise must be specified before using predict.
After you specify ProcessNoise as a matrix for the first time, to then change ProcessNoise you
can also specify it as a scalar. Specify as a scalar if there is no cross-correlation between the
process noise terms and all the terms have the same variance. The software extends the scalar to
a W-by-W diagonal matrix.

ProcessNoise is a tunable property. You can change it using dot notation.

State — State of nonlinear system
[] (default) | vector

State of the nonlinear system, specified as a vector of size Ns, where Ns is the number of states of the
system.

When you use the predict command, State is updated with the predicted value at time step k using
the state value at time step k–1. When you use the correct command, State is updated with the
estimated value at time step k using measured data at time step k.

The initial value of State is the value you specify in the InitialState input argument during
object creation. If you specify InitialState as a column vector, then State is also a column vector,
and the predict and correct commands return state estimates as a column vector. Otherwise, a
row vector is returned. If you want a filter with single-precision floating-point variables, you must
specify State as a single-precision variable during object construction using the InitialState
input argument.

State is a tunable property. You can change it using dot notation.

StateCovariance — State estimation error covariance
1 (default) | scalar | matrix

State estimation error covariance, specified as a scalar or an Ns-by-Ns matrix, where Ns is the
number of states of the system. If you specify a scalar, the software uses the scalar value to create an
Ns-by-Ns diagonal matrix.

Specify a high value for the covariance when you do not have confidence in the initial state values
that you specify in the InitialState input argument.

When you use the predict command, StateCovariance is updated with the predicted value at
time step k using the state value at time step k–1. When you use the correct command,
StateCovariance is updated with the estimated value at time step k using measured data at time
step k.

 extendedKalmanFilter

1-365

StateCovariance is a tunable property. You can change it using dot notation after using the
correct or predict commands.

StateTransitionFcn — State transition function
function handle

State transition function f, specified as a function handle. The function calculates the Ns-element
state vector of the system at time step k, given the state vector at time step k-1. Ns is the number of
states of the nonlinear system.

You write and save the state transition function for your nonlinear system and use it to construct the
object. For example, if vdpStateFcn.m is the state transition function, specify
StateTransitionFcn as @vdpStateFcn. You can also specify StateTransitionFcn as a function
handle to an anonymous function.

The inputs to the function you write depend on whether you specify the process noise as additive or
nonadditive in the HasAdditiveProcessNoise property of the object:

• HasAdditiveProcessNoise is true — The process noise w is additive, and the state transition
function specifies how the states evolve as a function of state values at previous time step:

x(k) = f(x(k-1),Us1,...,Usn)

Where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function, such as system inputs or the sample time.
During estimation, you pass these additional arguments to the predict command, which in turn
passes them to the state transition function.

• HasAdditiveProcessNoise is false — The process noise is nonadditive, and the state transition
function also specifies how the states evolve as a function of the process noise:

x(k) = f(x(k-1),w(k-1),Us1,...,Usn)

To see an example of a state transition function with additive process noise, type edit
vdpStateFcn at the command line.

StateTransitionFcn is a nontunable property. You can specify it once before using the predict
command either during object construction or using dot notation after object construction. You
cannot change it after using the predict command.

StateTransitionJacobianFcn — Jacobian of state transition function
[] (default) | function handle

Jacobian of state transition function f, specified as one of the following:

• [] — The Jacobian is numerically computed at every call to the predict command. This may
increase processing time and numerical inaccuracy of the state estimation.

• function handle — You write and save the Jacobian function and specify the handle to the function.
For example, if vdpStateJacobianFcn.m is the Jacobian function, specify
StateTransitionJacobianFcn as @vdpStateJacobianFcn.

The function calculates the partial derivatives of the state transition function with respect to the
states and process noise. The number of inputs to the Jacobian function must equal the number of
inputs of the state transition function and must be specified in the same order in both functions.
The number of outputs of the function depends on the HasAdditiveProcessNoise property:

1 Functions

1-366

• HasAdditiveProcessNoise is true — The function calculates the partial derivative of the
state transition function with respect to the states (∂ f / ∂x). The output is an Ns-by-Ns Jacobian
matrix, where Ns is the number of states.

• HasAdditiveProcessNoise is false — The function must also return a second output that is
the partial derivative of the state transition function with respect to the process noise terms
(∂ f / ∂w). The second output is returned as an Ns-by-W Jacobian matrix, where W is the number
of process noise terms.

The extended Kalman filter algorithm uses the Jacobian to compute the state estimation error
covariance.

To see an example of a Jacobian function for additive process noise, type edit
vdpStateJacobianFcn at the command line.

StateTransitionJacobianFcn is a nontunable property. You can specify it once before using the
predict command either during object construction or using dot notation after object construction.
You cannot change it after using the predict command.

HasMeasurementWrapping — Enable measurement wrapping
0 (default) | 1

Enable measurement wrapping, specified as either 0 or 1. You can enable measurement wrapping to
estimate states when you have circular measurements that are independent of your model states. If
you select this parameter, then the measurement function you specify must include the following two
outputs:

1 The measurement, specified as a N-element output measurement vector of the nonlinear system
at time step k, given the state vector at time step k. N is the number of measurements of the
system.

2 The measurement wrapping bounds, specified as an N-by-2 matrix where, the first column
provides the minimum measurement bound and the second column provides the maximum
measurement bound.

Enabling the HasMeasurementWrapping property wraps the measurement residuals in a defined
bound, which helps to prevent the filter from divergence due to incorrect measurement residual
values. For an example, see “State Estimation with Wrapped Measurements Using Extended Kalman
Filter”.

HasMeasurementWrapping is a nontunable property. You can specify it once during the object
construction. You cannot change it after creating the state estimation object.

Output Arguments
obj — Extended Kalman filter object for online state estimation
extendedKalmanFilter object

Extended Kalman filter object for online state estimation, returned as an extendedKalmanFilter
object. This object is created using the specified properties on page 1-362. Use the correct and
predict commands to estimate the state and state estimation error covariance using the extended
Kalman filter algorithm.

When you use predict, obj.State and obj.StateCovariance are updated with the predicted
value at time step k using the state value at time step k–1. When you use correct, obj.State and

 extendedKalmanFilter

1-367

obj.StateCovariance are updated with the estimated values at time step k using measured data
at time step k.

Version History
Introduced in R2016b

Numerical Changes
Behavior changed in R2020b

Starting in R2020b, numerical improvements in the extendedKalmanFilter algorithm might
produce results that are different from the results you obtained in previous versions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For more information, see “Generate Code for Online State Estimation in MATLAB”.

Generated code uses an algorithm that is different from the algorithm that the
extendedKalmanFilter function uses. You might see some numerical differences in the results
obtained using the two methods.

Supports MATLAB Function block: No

See Also
Functions
predict | correct | residual | clone | unscentedKalmanFilter

Blocks
Kalman Filter | Extended Kalman Filter | Unscented Kalman Filter

Topics
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
“Generate Code for Online State Estimation in MATLAB”
“State Estimation with Wrapped Measurements Using Extended Kalman Filter”
“What Is Online Estimation?”
“Extended and Unscented Kalman Filter Algorithms for Online State Estimation”
“Validate Online State Estimation at the Command Line”
“Troubleshoot Online State Estimation”

External Websites
Understanding Kalman Filters: Nonlinear State Estimators — MATLAB Video Series

1 Functions

1-368

https://www.mathworks.com/videos/understanding-kalman-filters-part-5-nonlinear-state-estimators-1495052905460.html

evaluate
Evaluate output values of idnlarx or idnlhw mapping object array for given set of input values

Syntax
Value = evaluate(MO,X)
Value = evaluate(MO,X,varnames)

Description
Value = evaluate(MO,X) computes the value of a mapping object array MO that contains objects
such as idWaveletNetwork objects for the inputs in X. For a list of available mapping objects, see
“Available Mapping Functions for Nonlinear ARX Models” or “Available Nonlinearity Estimators for
Hammerstein-Wiener Models”. Use this syntax when you want to independently evaluate the output
of a mapping object array that you are using to estimate an idnlarx or idnlhw model.

Value = evaluate(MO,X,varnames) specifies the list of variable names varnames that orders
the input data for the MO.Inputs property. Use this syntax when the columns of data in X are not in
the order that the nonlinear model blocks require.

Examples

Evaluate Output of Mapping Object

Create a linear input signal u with slope m.

m = 0.1;
u = m*[1:100]';

Create an idDeadZone object with a dead zone between 3 and 5.

MO = idDeadZone;
MO.ZeroInterval = [3 5]

MO =
Dead Zone
Inputs: u(t)
Output: y(t)

 Nonlinear Function: Dead Zone with zero interval: [3 5]

 Inputs: {'u(t)'}
 Outputs: {'y(t)'}
 ZeroInterval: [3 5]
 Free: [1 1]

Evaluate the output of MO using u as the input.

 evaluate

1-369

e = evaluate(MO,u);
plot(u,e)
title('Dead Zone Output')

The plot shows a zone of no response between 3 and 5.

Evaluate Output Function of Multiple-Output Nonlinear ARX model

Load the data, which contains input matrix u and output matrix y. u contains data for six inputs and y
contains data for two outputs. Encapsulate u and y in an iddata object with a sample time of 0.02
sec.

load motorizedcamera
z = iddata(y,u,0.02,'Name','Motorized Camera','Timeunit','s');

Estimate idnlarx Model and Predict Model Output

Specify the order nn for the nlarx estimation.

na = [2 1;1 4];
nb = [1 4 2 2 1 3;3 3 3 1 2 4];
nc = [ones(2,3),zeros(2,3)];
nn = [na nb nc];

1 Functions

1-370

Estimate an idnlarx model after first turning off the normalization option. Specify two different
mapping objects for the output function.

opt = nlarxOptions('Normalize',false);
sys = nlarx(z, nn, [idWaveletNetwork(3); idSupportVectorMachine('linear')],opt)

sys =

Nonlinear ARX model with 2 outputs and 6 inputs
 Inputs: u1, u2, u3, u4, u5, u6
 Outputs: y1, y2

Regressors:
 Linear regressors in variables y1, y2, u1, u2, u3, u4, u5, u6

Output functions:
 Output 1: Wavelet network with 3 units
 Output 2: Support Vector Machine function using a Linear kernel

Sample time: 0.02 seconds

Status:
Estimated using NLARX on time domain data "Motorized Camera".
Fit to estimation data: [98.87;91.79]% (prediction focus)
MSE: 22.44
More information in model's "Report" property.

Predict the model output using one-step-ahead prediction and store the result in yp.

yp = predict(sys,z,1,predictOptions('InitialCondition','zero'));
yp = yp.OutputData;

Use evaluate to Map Regressors to Mapping Object Output

Use getreg to compute and store the regressor data in D.

D = getreg(sys,z);
D = D{:,:};

The two mapping objects, y1 and y2, use different regressors. Because of this difference, evaluate
requires the regressor names to order the regressors correctly for the object inputs. Use getreg to
retrieve the regressor names and store them in regnames. View the first five regressor names.

regnames = getreg(sys);
regnames(1:5)

ans = 5x1 cell
 {'y1(t-1)'}
 {'y1(t-2)'}
 {'y2(t-1)'}
 {'y2(t-2)'}
 {'y2(t-3)'}

Evaluate the output of sys.OutputFcn using the regressor data and names.

yev = evaluate(sys.OutputFcn,D,regnames);

 evaluate

1-371

Compare Output Results

Plot the estimated and evaluated results for the two model outputs y1 and y2.

tiledlayout(2,1)
nexttile
t = z.SamplingInstants;
plot(t,yp(:,1),t,yev(:,1),'.')
ylabel('y1')
title('One-Step prediction result comparison')
legend('Result using PREDICT','Result using GETREG, EVALUATE')
nexttile
plot(t,yp(:,2),t,yev(:,2),'.')
ylabel('y2')
xlabel('Time (seconds)')

The predict and evaluate results are essentially the same.

Input Arguments
MO — Mapping object array
mapping object | array of mapping objects

Mapping object array, specified as a single mapping object or an array of length ny, where ny is the
number of both mapping objects and outputs. For an idnlarx model sys, MO represents the
sys.OutputFcn property. For an idnlhw model sys, MO represents the sys.InputNonlinearity
or sys.OutputNonlinearity property.

1 Functions

1-372

X — Input values
numeric value | matrix

Input values at which to evaluate MO, specified as a single numeric value or an nv-by-nx matrix, where
nv is the number of points at which to evaluate MO and nx is the number of inputs to MO. For nonlinear
ARX models, the inputs are the input regressor signals. For Hammerstein-Wiener models, the inputs
are either the true input signals (input nonlinearity) or the outputs of the linear block (output
nonlinearity).

varnames — Variable names
[] (default) | cell array

Variable names associated with each column of X, specified as a string array of length nx, where nx is
the number of input columns. varnames{i} corresponds to X(:,i). The software uses varnames to
order the data columns in accordance with the property MO.Inputs. If you do not specify varnames,
then the columns are ordered monotonically. Therefore, omit specifying varnames only when the
columns of X are already in the same order as in MO.Inputs.

Output Arguments
Value — Evaluated values
numeric value | array of numeric values

Evaluated values, returned as a numeric value or an nv-by-ny array of numeric values, where nv is the
number of points to evaluate and ny is the number of outputs.

Version History
Introduced in R2007a

See Also
getreg | idnlhw | idnlarx

Topics
“Available Mapping Functions for Nonlinear ARX Models”
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

 evaluate

1-373

idNeuralStateSpace/evaluate
Evaluate a neural state-space system for a given set of state and input values and return state
derivative (or next state) and output values

Syntax
[dxdt,y] = evaluate(nss,x)
[dxdt,y] = evaluate(nss,x,u)
[dxdt,y] = evaluate(nss,t,x)
[dxdt,y] = evaluate(nss,t,x,u)

[xNext,y] = evaluate(nss,x)
[xNext,y] = evaluate(nss,x,u)
[xNext,y] = evaluate(nss,t,x)
[xNext,y] = evaluate(nss,tx,u)

Description
Continuous-time

[dxdt,y] = evaluate(nss,x) evaluates the state and output networks of the autonomous time-
invariant neural state-space system nss at state x, and returns the time-derivative of the state dxdt
and the output y.

[dxdt,y] = evaluate(nss,x,u) evaluates the state and output networks of the time-invariant
neural state-space system nss with input u.

[dxdt,y] = evaluate(nss,t,x) evaluates the state and output networks of the autonomous
time-varying neural state-space system nss at time t.

[dxdt,y] = evaluate(nss,t,x,u) evaluates the state and output networks of the time-varying
neural state-space system nss at time t.

Discrete-time

[xNext,y] = evaluate(nss,x) evaluates the state and output networks of the autonomous time-
invariant neural state-space system nss at state x, and returns the next state xNext and the output
y.

[xNext,y] = evaluate(nss,x,u) evaluates the state and output networks of the time-invariant
neural state-space system nss with input u.

[xNext,y] = evaluate(nss,t,x) evaluates the state and output networks of the autonomous
time-varying neural state-space system nss at time t.

[xNext,y] = evaluate(nss,tx,u) evaluates the state and output networks of the time-varying
neural state-space system nss at time t.

Examples

1 Functions

1-374

Evaluate Continuous-Time Neural State-Space Object

Use idNeuralStateSpace to create a continuous-time neural state-space object with two states,
one input, and outputs identical to states.

nss = idNeuralStateSpace(2,NumInputs=1)

Define random state and input values.

x = rand(2,1)

x = 2×1

 0.6785
 0.0557

u = rand(1)

u = 0.0341

Evaluate the (untrained) state and output networks of nss at the defined state and input.

[dxdt,y] = evaluate(nss,x,u)

dxdt = 2×1

 -0.1448
 0.1793

y = 2×1

 0.6785
 0.0557

Note that the output is identical to the current state, as expected.

Evaluate Discrete-Time Neural State-Space Object

Use idNeuralStateSpace to create a discrete-time neural state-space object with three states, two
inputs, four outputs, and sample time 0.1.

nss = idNeuralStateSpace(3,NumInputs=2,NumOutputs=4,Ts=0.1)

Define random state and input values.

x = rand(3,1)

x = 3×1

 0.9165
 0.4326
 0.4270

 idNeuralStateSpace/evaluate

1-375

u = rand(2,1)

u = 2×1

 0.0293
 0.5104

Evaluate the (untrained) state and output networks of nss at the defined state and input.

[xNext,y] = evaluate(nss,x,u)

xNext = 3×1

 -0.4761
 -0.3816
 -0.2748

y = 4×1

 0.9165
 0.4326
 0.4270
 -0.4388

Note that the first three outputs are the current states, as expected.

Input Arguments
nss — Neural state-space system
idNeuralStateSpace object

Neural state-space system, specified as an idNeuralStateSpace object.
Example: myNrlSS

t — Value of the time variable
scalar

Value of the time variable, specified as a scalar, for time-varying idNeuralStateSpace systems.
Example: 1.8

x — Value of the state
scalar | column vector

Value of the state, specified as a scalar or column vector.
Example: [-1.2 -0.3]'

u — Value of the input
scalar | column vector

Value of the input, specified as a scalar or column vector.
Example: 2.9

1 Functions

1-376

Output Arguments
dxdt — Value of the time-derivative of the state
scalar | column vector

Value of the time-derivative of the state, returned as a scalar or column vector. This is obtained by
evaluating the state network of the continuous-time idNeuralStateSpace system nss.
Example: [-1.2 -4.9 3.8]'

xNext — Value of the state at the next sample time
scalar | column vector

Value of the state at the next sample time, returned as a scalar or column vector. This is obtained by
evaluating the state network of the discrete-time idNeuralStateSpace system nss.
Example: [0.69 0.31]'

y — Value of the output
scalar | column vector

Value of the output, returned as a scalar or column vector with as may elements as the total number
of outputs. This is obtained by evaluating both output networks of the idNeuralStateSpace system
nss. Note that the first nx elements of y are always equal to the elements of x, where nx is the
number of states specified in nss.
Example: [2 -3.1]

Version History
Introduced in R2022b

See Also
Objects
idNeuralStateSpace | nssTrainingADAM | nssTrainingSGDM | idss | idnlgrey

Functions
idNeuralStateSpace/linearize | createMLPNetwork | nssTrainingOptions | nlssest |
generateMATLABFunction | sim

Blocks
Neural State-Space Model

Topics
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

 idNeuralStateSpace/evaluate

1-377

fcat
Concatenate FRD models along frequency dimension

Syntax
sys = fcat(sys1,sys2,...)

Description
sys = fcat(sys1,sys2,...) takes two or more frd models and merges their frequency
responses into a single frd model sys. The resulting frequency vector is sorted by increasing
frequency. The frequency vectors of sys1, sys2,... should not intersect. If the frequency vectors
do intersect, use fdel to remove intersecting data from one or more of the models.

Version History
Introduced before R2006a

See Also
fdel | fselect | interp | frd | idfrd

1 Functions

1-378

fdel
Delete specified data from frequency response data (FRD) models

Syntax
sysout = fdel(sys, freq)

Description
sysout = fdel(sys, freq) removes from the frd model sys the data nearest to the frequency
values specified in the vector freq.

Input Arguments
sys

frd model.

freq

Vector of frequency values.

Output Arguments
sysout

frd model containing the data remaining in sys after removing the frequency points closest to the
entries of freq.

Examples

Delete Specified Data from Frequency Response Data Model

Create a frequency response data (FRD) model at specified frequencies from a transfer function
model.

w = logspace(0,1,10);
sys = frd(tf([1],[1 1]),w)

sys =

 Frequency(rad/s) Response
 ---------------- --------
 1.0000 0.5000 - 0.5000i
 1.2915 0.3748 - 0.4841i
 1.6681 0.2644 - 0.4410i
 2.1544 0.1773 - 0.3819i
 2.7826 0.1144 - 0.3183i
 3.5938 0.0719 - 0.2583i

 fdel

1-379

 4.6416 0.0444 - 0.2059i
 5.9948 0.0271 - 0.1623i
 7.7426 0.0164 - 0.1270i
 10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

w is a logarithmically-spaced grid of 10 frequency points between 1 and 10 rad/second.

Remove the data nearest 2, 3.5, and 6 rad/s from sys.

freq = [2, 3.5, 6];
sys2 = fdel(sys,freq)

sys2 =

 Frequency(rad/s) Response
 ---------------- --------
 1.0000 0.5000 - 0.5000i
 1.2915 0.3748 - 0.4841i
 1.6681 0.2644 - 0.4410i
 2.7826 0.1144 - 0.3183i
 4.6416 0.0444 - 0.2059i
 7.7426 0.0164 - 0.1270i
 10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

Note that you do not have to specify the exact frequency of the data to remove. The fdel command
removes the data corresponding to frequencies that are nearest to the specified frequencies.

Tips
• Use fdel to remove unwanted data (for example, outlier points) at specified frequencies.
• Use fdel to remove data at intersecting frequencies from frd models before merging them with

fcat. fcat produces an error when you attempt to merge frd models that have intersecting
frequency data.

• To remove data from an frd model within a range of frequencies, use fselect.

Version History
Introduced in R2012a

See Also
fcat | fselect | frd | idfrd

1 Functions

1-380

feedback
Identify possible feedback data

Syntax
[fbck,fbck0,nudir] = feedback(Data)

Description
Data is an iddata set with Ny outputs and Nu inputs.

fbck is an Ny-by-Nu matrix indicating the feedback. The ky,ku entry is a measure of feedback from
output ky to input ku. The value is a probability P in percent. Its interpretation is that if the
hypothesis that there is no feedback from output ky to input ku were tested at the level P, it would
have been rejected. An intuitive but technically incorrect way of thinking about this is to see P as “the
probability of feedback.” Often only values above 90% are taken as indications of feedback. When
fbck is calculated, direct dependence at lag zero between u(t) and y(t) is not regarded as a feedback
effect.

fbck0: Same as fbck, but direct dependence at lag 0 between u(t) and y(t) is viewed as feedback
effect.

nudir: A vector containing those input numbers that appear to have a direct effect on some outputs,
that is, no delay from input to output.

Version History
Introduced before R2006a

See Also
advice | iddata

 feedback

1-381

fft
Fast Fourier transform (FFT) of iddata object

Syntax
datf = fft(data)
datf = fft(data,N)
datf = fft(data,N,'complex')

Description
datf = fft(data) uses the fast Fourier transform (FFT) algorithm to transform the time-domain
iddata object data to the frequency domain iddata object datf. data contains real-valued signals
and has constant sample time Ts, and datf has frequency values equally distributed from 0 to the
Nyquist frequency. The Nyquist frequency is included if the signal length is even and not included if
the length is odd. To preserve the signal power and noise level, FFTs are normalized by dividing each
transform by the square root of the signal length.

datf = fft(data,N) specifies the transformation length N. In the default case, the length of the
transformation is determined by the signal length. Including N forces the FFT transformations to pad
with zeros if the signals in data are shorter than N and truncate the signals otherwise. Thus, the
number of frequencies in the real signal case is (N/2)+1 when N is even or (N+1)/2 when N is odd.
If data contains several experiments, N can be a row vector of corresponding length.

datf = fft(data,N,'complex') specifies to include negative frequencies. For real signals, the
default is that datf contains only nonnegative frequencies, while for complex-valued signals,
negative frequencies are always included. To enforce negative frequencies in the real case, add
'complex'.

Examples

Transform Data from Time to Frequency Domain

Load and plot the time-domain data z1, which contains 300 samples.

load iddata1 z1;
plot(z1)

1 Functions

1-382

Transform data to the frequency domain and plot.

datf = fft(z1);
plot(datf)

 fft

1-383

Transform Data by Specifying Transformation Length

Load the data. Use fft to transform the time-domain data z1 to the frequency domain, using a
transformation length N of 100.

load iddata1 z1;
datf = fft(z1, 100);
plot(datf)

1 Functions

1-384

Transform Real Data with Negative Frequencies

Load the data. Create 2 frequency-domain objects zf1 and zf2, using 'complex' when creating zf2
to include negative frequencies.

Compare the results.

load iddata1 z1
zf1 = fft(z1,300);
zf2 = fft(z1,300,'complex');
h = plot(zf2,zf1);
legend('zf2','zf1')
opt = getoptions(h);
opt.FreqScale = 'linear';
opt.PhaseMatching = 'on';
setoptions(h,opt)
xlim([-32 32])

 fft

1-385

Input Arguments
data — Time-domain data
iddata object

Time-domain data, specified as an iddata object.

N — Transformation length
scalar integer | row vector of integers

Transformation length, specified as a scalar integer, or for multiexperiment data, a row vector of
integers. By default, each element of N is equal to the corresponding signal length.

Output Arguments
datf — Frequency-domain data
frequency-domain data

Frequency-domain data, returned as an iddata object.

Tips
fft does not produce the same answer as the base MATLAB fft function.

1 Functions

1-386

• For real signals, by default, fft computes the FFT for only the positive portion of frequency
range. MATLAB fft computes the FFT for the entire frequency range.

• fft scales the result by 1/sqrt(N), where N is the data length. MATLAB fft does not apply
scaling.

Version History
Introduced in R2007a

See Also
iddata | ifft | spa

Topics
“Representing Data in MATLAB Workspace”

 fft

1-387

idnlarx/findop
Compute operating point for Nonlinear ARX model

Syntax
[X,U] = findop(sys,'steady',InputLevel,OutputLevel)

[X,U] = findop(sys,spec)

[X,U] = findop(___ ,Options)

[X,U,Report] = findop(___)

[X,U] = findop(sys,'snapshot',T,Uin)
[X,U] = findop(sys,'snapshot',T,Uin,X0)

Description
[X,U] = findop(sys,'steady',InputLevel,OutputLevel) returns the operating-point state
values, X, and input values, U, for theidnlarx model, sys, using steady-state input and output
specifications.

[X,U] = findop(sys,spec) returns the steady-state operating point for sys using the operating-
point specification, spec.

[X,U] = findop(___ ,Options) specifies optimization search options for all of the previous
syntaxes.

[X,U,Report] = findop(___) returns a summary report on the optimization search results for
all of the previous syntaxes.

[X,U] = findop(sys,'snapshot',T,Uin) returns the operating point for sys at a simulation
snapshot at time, T, using the specified input, Uin. The initial states of sys are assumed to be zero.

[X,U] = findop(sys,'snapshot',T,Uin,X0) specifies the initial states of the simulation.

Examples

Find Steady-State Nonlinear ARX Operating Point Using Default Specifications

Estimate a nonlinear ARX model.

load iddata6;
M = nlarx(z6,[4 3 1]);

Find the steady-state operating point where the input level is fixed to 1 and the output is unknown.

[X,U] = findop(M,'steady',1,NaN);

1 Functions

1-388

Find Nonlinear ARX Operating Point Using Additional Specifications

Estimate a nonlinear ARX model.

load iddata7;
M = nlarx(z7,[4 3*ones(1,2) 2*ones(1,2)]);

Create a default operating point specification object.

spec = operspec(M);

Set the values for the input signals.

spec.Input.Value(1) = -1;
spec.Input.Value(2) = 1;

Set the maximum and minimum values for the output signal.

spec.Output.Max = 10;
spec.Output.Min = -10;

Find the steady-state operating point using the given specifications.

[X,U] = findop(M,spec);

Find Nonlinear ARX Operating Point Using Custom Options

Estimate a nonlinear ARX model.

load iddata6;
M = nlarx(z6,[4 3 2]);

Create a default findopOptions option set.

opt = findopOptions(M);

Modify the option set to specify a steepest descent gradient search method with a maximum of 50
iterations.

opt.SearchMethod = 'grad';
opt.SearchOptions.MaxIterations = 50;

Find the steady-state operating point using the specified options.

[X,U] = findop(M,'steady',1,1,opt);

Retrieve Nonlinear ARX Operating Point Search Report

Estimate a nonlinear ARX model.

load iddata7;
M = nlarx(z7,[4 3*ones(1,2) 2*ones(1,2)]);

 idnlarx/findop

1-389

Find the steady-state operating point where input 1 is set to 1 and input 2 is unrestricted. The initial
guess for the output value is 2.

[X,U,R] = findop(M,'steady',[1 NaN],2);

Display the summary report.

disp(R);

 SearchMethod: 'auto'
 WhyStop: 'Near (local) minimum, (norm(g) < tol).'
 Iterations: 10
 FinalCost: 0
 FirstOrderOptimality: 0
 SignalLevels: [1x1 struct]

Find Nonlinear ARX Simulation Snapshot Using Default Initial States

Load the estimation data and estimate a nonlinear ARX model.

load twotankdata;
z = iddata(y,u,1);
M = nlarx(z,[4 3 1]);

Find the simulation snapshot after 10 seconds, assuming initial states of zero.

[X,U] = findop(M,'snapshot',10,z);

Find Nonlinear ARX Simulation Snapshot Using Initial State Specifications

Load the estimation data and estimate a nonlinear ARX model.

load twotankdata;
z = iddata(y,u,1);
M = nlarx(z,[4 3 1]);

Create an initial state vector. The first four states correspond to delayed output values and the final
three states correspond to delayed inputs.

X0 = [2;2;2;2;5;5;5];

Find the simulation snapshot after 10 seconds using the specified initial states.

[X,U] = findop(M,'snapshot',10,z,X0);

Input Arguments
sys — Nonlinear ARX model
idnlarx object

Nonlinear ARX model, specified as an idnlarx object.

1 Functions

1-390

InputLevel — Steady-state input level
vector

Steady-state input level for computing the operating point, specified as a vector. The length of
InputLevel must equal the number of inputs specified in sys.

The optimization algorithm assumes that finite values in InputLevel are fixed input values. Use NaN
to specify unknown input signals with initial guesses of 0. The minimum and maximum bounds for all
inputs have default values of -Inf and +Inf respectively.

OutputLevel — Steady-state output level
vector

Steady-state output level for computing the operating point, specified as a vector. The length of
OutputLevel must equal the number of outputs specified in sys.

The values in OutputLevel indicate initial guesses for the optimization algorithm. Use NaN to
specify unknown output signals with initial guesses of 0. The minimum and maximum bounds for all
outputs have default values of -Inf and +Inf respectively.

spec — Operating-point specifications
operspec object

Operating-point specifications, such as minimum and maximum input/output constraints and known
inputs, specified as anoperspec object.

T — Operating point snapshot time
positive scalar

Operating point snapshot time, specified as a positive scalar. The value of T must be in the range [T0,
N*Ts], where N is the number of input samples, Ts is the sample time and T0 is the input start time
(Uin.Tstart).

Uin — Snapshot simulation input
iddata object | matrix

Snapshot simulation input, specified as one of the following:

• Time-domain iddata object with a sample time and input size that matches sys.
• Matrix with as many columns as there are input channels. If the matrix has N rows, the input data

is assumed to correspond to the time vector (1:N)*sys.Ts.

X0 — Initial states
column vector

Initial states of the simulation, specified as a column vector with size equal to the number of states in
sys. X0 provides the initial conditions at the time corresponding to the first input sample
(Uin.Start, if Uin is an iddata object, or sys.Ts if Uin is a double matrix).

For more information about the states of an idnlarx model, see “Definition of idnlarx States” on
page 1-685.

Options — Operating point search options
findopOptions option set

 idnlarx/findop

1-391

Operating point search options, specified as a findopOptions option set.

Output Arguments
X — Operating point state values
column vector

Operating point state values, returned as a column vector of length equal to the number of model
states.

U — Operating point input values
column vector

Operating point input values, returned as a column vector of length equal to the number of inputs.

Report — Search result summary
structure

Search result summary report, returned as a structure with the following fields:

Field Description
SearchMeth
od

Search method used for iterative parameter estimation. See SearchMethod in
findopOptions for more information.

WhyStop Search algorithm termination condition.
Iterations Number of estimation iterations performed.
FinalCost Final value of the minimization objective function (sum of the squared errors).
FirstOrder
Optimality

∞-norm of the search gradient vector when the search algorithm terminates.

SignalLeve
ls

Structure containing the fields Input and Output, which are the operating point
input and output signal levels respectively.

Algorithms
findop computes the operating point from steady-state operating point specifications or at a
simulation snapshot.

Computing the Operating Point from Steady-State Specifications

To compute the steady-state operating point, call findop using either of the following syntaxes:

[X,U] = findop(sys,'steady',InputLevel,OutputLevel)
[X,U] = findop(sys,spec)

To compute the states, X, and the input, U, of the steady-state operating point, findop minimizes the
norm of the error e(t) = y(t)-f(x(t), u(t)), where:

• f is the nonlinearity estimator.
• u(t) is the input.
• x(t) is the model state.

1 Functions

1-392

• y(t) is the model output.

You can specify the search algorithm and search options using the findopOptions option set.

The algorithm uses the following independent variables for minimization:

• Unknown (unspecified) input signal levels
• Output signal levels

Because idnlarx model states are delayed samples of the input and output variables, the state
values are the constant values of the corresponding steady-state inputs and outputs. For more
information about the definition of nonlinear ARX model states, see “Definition of idnlarx States” on
page 1-685.

Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] = findop(sys,'snapshot',T,Uin,X0), the algorithm simulates
the model output until the snapshot time, T. At the snapshot time, the algorithm passes the input and
output samples to the data2state command to map these values to the current state vector.

Note For snapshot-based computations, findop does not perform numerical optimization.

Version History
Introduced in R2008a

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

See Also
idnlarx | findopOptions | idnlarx/operspec | data2state | sim | idnlhw/findop

 idnlarx/findop

1-393

idnlhw/findop
Compute operating point for Hammerstein-Wiener model

Syntax
[X,U] = findop(sys,'steady',InputLevel,OutputLevel)

[X,U] = findop(sys,spec)

[X,U] = findop(___ ,Options)

[X,U,Report] = findop(___)

[X,U] = findop(sys,'snapshot',T,Uin)
[X,U] = findop(sys,'snapshot',T,Uin,X0)

Description
[X,U] = findop(sys,'steady',InputLevel,OutputLevel) returns the operating-point state
values, X, and input values, U, for the idnlhw model, sys, using steady-state input and output
specifications.

[X,U] = findop(sys,spec) returns the steady-state operating point for sys using the operating
point specification in spec.

[X,U] = findop(___ ,Options) specifies optimization search options for all of the previous
syntaxes.

[X,U,Report] = findop(___) returns a summary report on the optimization search results for
all of the previous syntaxes.

[X,U] = findop(sys,'snapshot',T,Uin) returns the operating point for sys at a simulation
snapshot at time, T, using the specified input, Uin. The initial states of sys are assumed to be zero.

[X,U] = findop(sys,'snapshot',T,Uin,X0) specifies the initial states of the simulation.

Examples

Find Steady-State Hammerstein-Wiener Operating Point Using Default Specifications

Load the estimation data and estimate a Hammerstein-Wiener model.

load twotankdata;
z = iddata(y,u,1);
M = nlhw(z,[5 1 3]);

Find the steady-state operating point where the input level is set to 1 and the output is unknown.

[X,U] = findop(M,'steady',1,NaN);

1 Functions

1-394

Find Hammerstein-Wiener Operating Point Using Additional Specifications

Estimate a Hammerstein-Wiener model.

load iddata7;
orders = [4*ones(1,2) 2*ones(1,2) 3*ones(1,2)];
M = nlhw(z7,orders,[],idPiecewiseLinear);

Create a default operating point specification object.

spec = operspec(M);

Set the values for the input signals.

spec.Input.Value(1) = -1;
spec.Input.Value(2) = 1;

Set the maximum and minimum values for the output signal.

spec.Output.Max = 10;
spec.Output.Min = -10;

Find the steady-state operating point using the given specifications.

[X,U] = findop(M,spec);

Find Hammerstein-Wiener Operating Point Using Custom Options

Load the estimation data and estimate a Hammerstein-Wiener model.

load twotankdata;
z = iddata(y,u,1);
M = nlhw(z,[5 1 3]);

Create a default findopOptions option set.

opt = findopOptions(M);

Modify the option set to specify a steepest descent gradient search method with a maximum of 50
iterations.

opt.SearchMethod = 'grad';
opt.SearchOptions.MaxIterations = 50;

Find the steady-state operating point using the specified options.

[X,U] = findop(M,'steady',1,NaN,opt);

Retrieve Hammerstein-Wiener Operating Point Search Report

Load the estimation data and estimate a Hammerstein-Wiener model.

 idnlhw/findop

1-395

load iddata7;
orders = [4*ones(1,2) 2*ones(1,2) 3*ones(1,2)];
M = nlhw(z7,orders,[],idPiecewiseLinear);

Find the steady-state operating point where input 1 is set to 1 and input 2 is unrestricted. The initial
guess for the output value is 2.

[X,U,R] = findop(M,'steady',[1 NaN],2);

Display the summary report.

disp(R);

 SearchMethod: 'auto'
 WhyStop: 'Near (local) minimum, (norm(g) < tol).'
 Iterations: 3
 FinalCost: 0
 FirstOrderOptimality: 0
 SignalLevels: [1x1 struct]

Find Hammerstein-Wiener Simulation Snapshot Using Default Initial States

Load the estimation data estimate a Hammerstein-Wiener model.

load twotankdata;
z = iddata(y,u,1);
M = nlhw(z,[5 1 3]);

Find the simulation snapshot after 10 seconds, assuming initial states of zero.

[X,U] = findop(M,'snapshot',10,z);

Find Hammerstein-Wiener Simulation Snapshot Using Initial State Specifications

Load the estimation data and estimate a Hammerstein-Wiener model.

load twotankdata
z = iddata(y,u,1);
M = nlhw(z,[5 1 3]);

Create an initial state vector.

X0 = [10;10;5;5;1;1;0];

Find the simulation snapshot after 10 seconds using the specified initial states.

[X,U] = findop(M,'snapshot',10,z,X0);

Input Arguments
sys — Hammerstein-Wiener model
idnlhw object

1 Functions

1-396

Hammerstein-Wiener model, specified as an idnlhw object.

InputLevel — Steady-state input level
vector

Steady-state input level for computing the operating point, specified as a vector. The length of
InputLevel must equal the number of inputs specified in sys.

The optimization algorithm assumes that finite values in InputLevel are fixed input values. Use NaN
to specify unknown input signals with initial guesses of 0. The minimum and maximum bounds for all
inputs have default values of -Inf and +Inf respectively.

OutputLevel — Steady-state output level
vector

Steady-state output level for computing the operating point, specified as a vector. The length of
OutputLevel must equal the number of outputs specified in sys.

The values in OutputLevel indicate initial guesses for the optimization algorithm. Use NaN to
specify unknown output signals with initial guesses of 0. The minimum and maximum bounds for all
outputs have default values of -Inf and +Inf respectively.

spec — Operating-point specifications
operspec object

Operating-point specifications, such as minimum and maximum input/output constraints and known
inputs, specified as an operspec object.

T — Operating point snapshot time
positive scalar

Operating point snapshot time, specified as a positive scalar. The value of T must be in the range [T0,
N*Ts], where N is the number of input samples, Ts is the sample time and T0 is the input start time
(Uin.Tstart).

Uin — Snapshot simulation input
iddata object | matrix

Snapshot simulation input, specified as one of the following:

• Time-domain iddata object with a sample time and input size that matches sys.
• Matrix with as many columns as there are input channels. If the matrix has N rows, the input data

is assumed to correspond to the time vector (1:N)*sys.Ts.

X0 — Initial states
column vector

Initial states of the simulation, specified as a column vector with length equal to the number of states
in sys. X0 provides the initial conditions at the time corresponding to the first input sample
(Uin.Start, if Uin is an iddata object, or sys.Ts if Uin is a double matrix).

For more information about the states of an idnlhw model, see “Definition of idnlhw States” on page
1-715.

 idnlhw/findop

1-397

Options — Operating point search options
findopOptions option set

Operating point search options, specified as a findopOptions option set.

Output Arguments
X — Operating point state values
column vector

Operating point state values, returned as a column vector of length equal to the number of model
states.

U — Operating point input values
column vector

Operating point input values, returned as a column vector of length equal to the number of inputs.

Report — Search result summary
structure

Search result summary report, returned as a structure with the following fields:

Field Description
SearchMeth
od

Search method used for iterative parameter estimation. See SearchMethod in
findopOptions for more information.

WhyStop Search algorithm termination condition.
Iterations Number of estimation iterations performed.
FinalCost Final value of the minimization objective function (sum of the squared errors).
FirstOrder
Optimality

∞-norm of the search gradient vector when the search algorithm terminates.

SignalLeve
ls

Structure containing the fields Input and Output, which are the operating point
input and output signal levels respectively.

Algorithms
findop computes the operating point from steady-state operating point specifications or at a
simulation snapshot.

Computing the Operating Point from Steady-State Specifications

To compute the steady-state operating point, call findop using either of the following syntaxes:

[X,U] = findop(sys,'steady',InputLevel,OutputLevel)
[X,U] = findop(sys,spec)

findop uses a different approach to compute the steady-state operating point depending on how
much information you provide for this computation:

• When you specify values for all input levels (no NaN values). For a given input level, U, the
equilibrium state values are X = inv(I-A)*B*f(U), where [A,B,C,D] =
ssdata(model.LinearModel), and f() is the input nonlinearity.

1 Functions

1-398

• When you specify known and unknown input levels. findop uses numerical optimization to
minimize the norm of the error and compute the operating point. The total error is the union of
contributions from e1 and e2 , e(t) = (e1(t)e2(t)), such that:

• e1 applies for known outputs and the algorithm minimizes e1 = y- g(L(x,f(u))), where f is the
input nonlinearity, L(x,u) is the linear model with states x, and g is the output nonlinearity.

• e2 applies for unknown outputs and the error is a measure of whether these outputs are within
the specified minimum and maximum bounds. If a variable is within its specified bounds, the
corresponding error is zero. Otherwise, the error is equal to the distance from the nearest
bound. For example, if a free output variable has a value z and its minimum and maximum
bounds are L and U, respectively, then the error is e2= max[z-U, L-z, 0].

The independent variables for the minimization problem are the unknown inputs. In the error
definition e, both the input u and the states x are free variables. To get an error expression that
contains only unknown inputs as free variables, the algorithm findop specifies the states as a
function of inputs by imposing steady-state conditions: x = inv(I-A)*B*f(U), where A and B are
state-space parameters corresponding to the linear model L(x,u). Thus, substituting x = inv(I-
A)*B*f(U) into the error function results in an error expression that contains only unknown inputs
as free variables computed by the optimization algorithm.

Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] = findop(sys,'snapshot',T,UIN,X0), the algorithm simulates
the model output until the snapshot time, T. At the snapshot time, the algorithm computes the inputs
for the linear model block of the Hammerstein-Wiener model (LinearModel property of theidnlhw
object) by transforming the given inputs using the input nonlinearity: w = f(u). findop uses the
resulting w to compute x until the snapshot time using the following equation: x(t+1) = Ax(t) + Bw(t),
where [A,B,C,D] = ssdata(model.LinearModel).

Note For snapshot-based computations, findop does not perform numerical optimization.

Version History
Introduced in R2008a

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

See Also
idnlhw | findopOptions | idnlhw/operspec | sim | idnlarx/findop

 idnlhw/findop

1-399

findopOptions
Option set for findop

Syntax
opt = findopOptions(model)
opt = findopOptions(model,Name,Value)

Description
opt = findopOptions(model) creates a default option set for computing the operating point of a
specified nonlinear ARX or Hammerstein-Wiener model. Use dot notation to modify this option set for
your specific application. Options that you do not modify retain their default values.

opt = findopOptions(model,Name,Value) creates an option set with options specified by one
or more Name,Value pair arguments.

Examples

Create Default Option Set for Operating Point Search

Create a default option set for findop using an idnlarx model

opt = findopOptions(idnlarx);

Create and Modify Default Operating Point Search Options

Create a default option set for findop using an idnlhw model.

opt = findopOptions(idnlhw);

Use dot notation to specify a subspace Gauss-Newton least squares search with a maximum of 25
iterations.

opt.SearchMethod = 'gn';
opt.SearchOptions.MaxIterations = 25;

Specify Options for Operating Point Search

Create an option set for findop using an idnlarx model. Specify a steepest descent least squares
search with default search options.

opt = findopOptions(idnlarx,'SearchMethod','grad');

1 Functions

1-400

Input Arguments
model — Estimated nonlinear model
idnlarx model | idnlhw model

Estimated nonlinear model, specified as one of the following:

• idnlarx model
• idnlhw model

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SearchMethod','grad' specifies a steepest descent least squares search method

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

 findopOptions

1-401

SearchMethod Description
'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for the search algorithm
search option set

Option set for the search algorithm, specified as the comma-separated pair consisting of
'SearchOptions' and a search option set with fields that depend on the value of SearchMethod.

1 Functions

1-402

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

 findopOptions

1-403

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

1 Functions

1-404

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

 findopOptions

1-405

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

1 Functions

1-406

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

To specify field values in SearchOptions, create a default findopOptions set and modify the fields
using dot notation. Any fields that you do not modify retain their default values.

opt = findopOptions;
opt.SearchOptions.MaxIterations = 15;
opt.SearchOptions.Advanced.RelImprovement = 0.5;

Output Arguments
opt — Option set for findop command
findopOptions object

Option set for findop command, returned as a findopOptions object.

Version History
Introduced in R2015a

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

See Also
idnlarx/findop | idnlhw/findop

 findopOptions

1-407

findstates
Estimate initial states of model

Syntax
x0 = findstates(sys,Data)
x0 = findstates(sys,Data,Horizon)
x0 = findstates(sys,Data,Horizon,Options)

[x0,Report]= findstates(___)

Description
x0 = findstates(sys,Data) estimates the initial states, x0, of an identified model sys, to
maximize the fit between the model response and the output signal in the estimation data.

x0 = findstates(sys,Data,Horizon) specifies the prediction horizon for computing the
response of sys.

x0 = findstates(sys,Data,Horizon,Options) specifies additional options for computation of
x0.

[x0,Report]= findstates(___) delivers a report on the initial state estimation. Report is
returned with any of the previous syntaxes.

Examples

Estimate Initial States of a Model

Create a nonlinear grey-box model. The model is a linear DC motor with one input (voltage), and two
outputs (angular position and angular velocity). The structure of the model is specified by
dcmotor_m.m file.

FileName = 'dcmotor_m';
Order = [2 1 2];
Parameters = [0.24365;0.24964];
nlgr = idnlgrey(FileName,Order,Parameters);
nlgr = setinit(nlgr, 'Fixed', false(2,1)); % set initial states free

Load data for initial state estimation.

load(fullfile(matlabroot,'toolbox','ident',...
 'iddemos','data','dcmotordata'));
z = iddata(y,u,0.1);

Estimate the initial states such that the model's response using the estimated states X0 and measured
input u is as close as possible to the measured output y.

X0 = findstates(nlgr,z,Inf);

1 Functions

1-408

Estimate Initial States of State-Space Model

Estimate an idss model and simulate it such that the response of the estimated model matches the
estimation data's output signal as closely as possible.

Load sample data.

load iddata1 z1;

Estimate a linear model from the data.

model = ssest(z1,2);

Estimate the value of the initial states to best fit the measured output z1.y.

x0est = findstates(model,z1,Inf);

Simulate the model.

opt = simOptions('InitialCondition',x0est);
sim(model,z1(:,[],:),opt);

 findstates

1-409

Selectively Estimate Initial States of a Model

Estimate the initial states of a model selectively by fixing the first state and allowing the second state
of the model to be estimated.

Create a nonlinear grey-box model.

FileName = 'dcmotor_m';
Order = [2 1 2];
Parameters = [0.24365;0.24964];
nlgr = idnlgrey(FileName,Order,Parameters);

The model is a linear DC motor with one input (voltage), and two outputs (angular position and
angular velocity). The structure of the model is specified by dcmotor_m.m file.

Load the estimation data.

load(fullfile(matlabroot,'toolbox','ident',...
 'iddemos','data','dcmotordata'));
z = iddata(y,u,0.1);

Hold the first state fixed at zero, and estimate the value of the second.

x0spec = idpar('x0',[0;0]);
x0spec.Free(1) = false;
opt = findstatesOptions;
opt.InitialState = x0spec;
[X0,Report] = findstates(nlgr,z,Inf,opt)

X0 = 2×1

 0
 0.0061

Report =
 Status: 'Estimated by simulation error minimization'
 Method: 'lsqnonlin'
 Covariance: [2x2 double]
 DataUsed: [1x1 struct]
 Termination: [1x1 struct]

Estimate Initial States by Specifying an Initial State Vector

Create a nonlinear grey-box model.

FileName = 'dcmotor_m';
Order = [2 1 2];
Parameters = [0.24365;0.24964];
nlgr = idnlgrey(FileName,Order,Parameters);

The model is a linear DC motor with one input (voltage), and two outputs (angular position and
angular velocity). The structure of the model is specified by dcmotor_m.m file.

Load the estimation data.

1 Functions

1-410

load(fullfile(matlabroot,'toolbox','ident',...
 'iddemos','data','dcmotordata'));
z = iddata(y,u,0.1);

Specify an initial guess for the initial states.

x0spec = idpar('x0',[10;10]);

x0spec.Free is true by default

Estimate the initial states

opt = findstatesOptions;
opt.InitialState = x0spec;
x0 = findstates(nlgr,z,Inf,opt)

x0 = 2×1

 0.0362
 -0.1322

Estimate Initial States Using Multi-Experiment Data

Create a nonlinear grey-box model.

FileName = 'dcmotor_m';
Order = [2 1 2];
Parameters = [0.24365;0.24964];
nlgr = idnlgrey(FileName,Order,Parameters);
set(nlgr, 'InputName','Voltage','OutputName', ...
 {'Angular position','Angular velocity'});

The model is a linear DC motor with one input (voltage), and two outputs (angular position and
angular velocity). The structure of the model is specified by dcmotor_m.m file.

Load the estimation data.

load(fullfile(matlabroot,'toolbox','ident',...
 'iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor',...
 'InputName','Voltage','OutputName',...
 {'Angular position','Angular velocity'});

Create a three-experiment data set.

z3 = merge(z,z,z);

Choose experiment for estimating the initial states:

• Estimate initial state 1 for experiments 1 and 3
• Estimate initial state 2 for experiment 1

The fixed initial states have zero values.

 findstates

1-411

x0spec = idpar('x0',zeros(2,3));
x0spec.Free(1,2) = false;
x0spec.Free(2,[2 3]) = false;
opt = findstatesOptions;
opt.InitialState = x0spec;

Estimate the initial states

[X0,EstInfo] = findstates(nlgr,z3,Inf,opt);

Input Arguments
sys — Identified model
idss object | idgrey object | idnlarx object | idnlhw object | idnlgrey object

Identified model whose initial states are estimated, represented as a linear state-space (idss or
idgrey) or nonlinear model (idnlarx, idnlhw, or idnlgrey).

Data — Estimation data
iddata object

Estimation data, specified as an iddata object with input/output dimensions that match sys.

If sys is a linear model, Data can be a frequency-domain iddata object. For easier interpretation of
initial conditions, make the frequency vector of Data be symmetric about the origin. For converting
time-domain data into frequency-domain data, use fft with 'compl' input argument, and ensure
that there is sufficient zero padding. Scale your data appropriately when you compare x0 between
the time-domain and frequency-domain. Since for an N-point fft, the input/output signals are scaled
by 1/sqrt(N), the estimated x0 vector is also scaled by this factor.

Horizon — Prediction horizon for computing model response
1 (default) | positive integer between 1 and Inf

Prediction horizon for computing the response of sys, specified as a positive integer between 1 and
Inf. The most common values used are:

• Horizon = 1 — Minimizes the 1-step prediction error. The 1–step ahead prediction response of
sys is compared to the output signals in Data to determine x0. See predict for more
information.

• Horizon = Inf — Minimizes the simulation error. The difference between measured output,
Data.y, and simulated response of sys to the measured input data, Data.u is minimized. See
sim for more information.

Specify Horizon as any positive integer between 1 and Inf, with the following restrictions:

Scenario Horizon
Continuous-time model with time-domain data 1 or Inf
Continuous-time frequency-domain data (data.Ts = 0) Inf

1 Functions

1-412

Scenario Horizon
Output Error models (trivial noise component):

• Nonlinear grey-box (idnlgrey)
• Hammerstein-Wiener (idnlhw)
• Linear state-space with disturbance matrix, K = 0

Irrelevant

Any value of Horizon
returns the same answer
for x0

Nonlinear ARX (idnlarx) 1 or Inf

Options — Estimation options for findstates
findstates Option set

Estimation options for findstates, specified as an option set created using findstatesOptions

Output Arguments
x0 — Estimated initial states
vector | matrix

Estimated initial states of model sys, returned as a vector or matrix. For multi-experiment data, x0 is
a matrix with one column for each experiment.

Report — Initial state estimation information
structure

Initial state estimation information, returned as a structure. Report contains information about the
data used, state covariance, and results of any numerical optimization performed to search for the
initial states. Report has the following fields:

Report
Field

Description

Status Summary of how the initial state were estimated.
Method Search method used.
Covarianc
e

Covariance of state estimates, returned as a Ns-by-Ns matrix, where Ns is the number
of states.

 findstates

1-413

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for initial state estimation of
nonlinear models. Structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

Termination is empty for linear models.

Version History
Introduced in R2015a

1 Functions

1-414

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

Parallel computing support is available for estimation using the lsqnonlin search method (requires
Optimization Toolbox). To enable parallel computing, use findstatesOptions, set SearchMethod
to 'lsqnonlin', and set SearchOptions.Advanced.UseParallel to true.

For example:

opt = findstatesOptions;
opt.SearchMethod = 'lsqnonlin';
opt.SearchOptions.Advanced.UseParallel = true;

See Also
findstatesOptions | predict | sim

 findstates

1-415

findstatesOptions
Option set for findstates

Syntax
opt = findstatesOptions
opt = findstatesOptions(Name,Value)

Description
opt = findstatesOptions creates the default option set for findstates. Use dot notation to
customize the option set, if needed.

opt = findstatesOptions(Name,Value) creates an option set with options specified by one or
more Name,Value pair arguments. The options that you do not specify retain their default value.

Examples

Identify Initial States Using Option Set

Create an option set for findstates by configuring a specification object for the initial states.

Identify a fourth-order state-space model from data.

load iddata8 z8;
sys = ssest(z8,4);

z8 is an iddata object containing time-domain system response data. sys is a fourth-order idss
model that is identified from the data.

Configure a specification object for the initial states of the model.

x0obj = idpar([1;nan(3,1)]);
x0obj.Free(1) = false;
x0obj.Minimum(2) = 0;
x0obj.Maximum(2) = 1;

x0obj specifies estimation constraints on the initial conditions. The value of the first state is
specified as 1 when x0obj is created. x0obj.Free(1) = false specifies the first initial state as a
fixed estimation parameter. The second state is unknown. But, x0obj.Minimum(2) = 0 and
x0obj.Maximum(2) = 1 specify the lower and upper bounds of the second state as 0 and 1,
respectively.

Create an option set for findstates to identify the initial states of the model.

opt = findstatesOptions;
opt.InitialState = x0obj;

Identify the initial states of the model.

x0_estimated = findstates(sys,z8,Inf,opt);

1 Functions

1-416

Specify Option Set for Initial States Estimation

Create an option set for findstates where:

• Initial states are estimated such that the norm of prediction error is minimized. The initial values
of the states corresponding to nonzero delays are also estimated.

• Adaptive subspace Gauss-Newton search is used for estimation.

opt = findstatesOptions('InitialState','d','SearchMethod','gna');

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findstatesOptions('InitialState','d')

InitialState — Estimation of initial states
'e' (default) | 'd' | vector or matrix | idpar object x0Obj

Estimation of initial states, specified as the comma-separated pair consisting of 'InitialState'
and one of the following:

• 'e' — The initial states are estimated such that the norm of prediction error is minimized.

For nonlinear grey-box models, only those initial states i that are designated as free in the model
(sys.InitialStates(i).Fixed = false) are estimated. To estimate all the states of the
model, first specify all the Nx states of the idnlgrey model sys as free.

for i = 1:Nx
sys.InitialStates(i).Fixed = false;
end

Similarly, to fix all the initial states to values specified in sys.InitialStates, first specify all
the states as fixed in the sys.InitialStates property of the nonlinear grey-box model.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model coefficients. The delays are first
converted to explicit model states, and the initial values of those states are also estimated and
returned.

Use this option for discrete-time linear models only.
• Vector or Matrix — Initial guess for state values, when using nonlinear models. Specify a

column vector of length equal to the number of states. For multi-experiment data, use a matrix
with Ne columns, where Ne is the number of experiments.

Use this option for nonlinear models only.

 findstatesOptions

1-417

• x0obj — Specification object created using idpar. Use x0obj to impose constraints on the initial
states by fixing their value or specifying minimum or maximum bounds.

Use x0obj only for nonlinear grey-box models and linear state-space models (idss or idgrey).
This option is applicable only for prediction horizon equal to 1 or Inf. See findstates for more
details about the prediction horizon.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weighting of prediction errors when using multi-output data
[] (default) | 'noise' | matrix

Weighting of prediction errors when using multi-output data, specified as the comma-separated pair
consisting of 'OutputWeight' and one of the following:

• [] — No weighting is used. Specifying as [] is the same as eye(Ny), where Ny is the number of
outputs.

• 'noise' — Inverse of the noise variance stored with the model is used for weighting during
estimation of initial states.

• Positive semidefinite matrix, W, of size Ny-by-Ny — This weighting minimizes trace(E'*E*W) for
estimation of initial states, where E is the matrix of prediction errors.

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

1 Functions

1-418

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.

 findstatesOptions

1-419

SearchMethod Description
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for the search algorithm
search option set

Option set for the search algorithm, specified as the comma-separated pair consisting of
'SearchOptions ' and a search option set with fields that depend on the value of SearchMethod.

1 Functions

1-420

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

 findstatesOptions

1-421

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

1 Functions

1-422

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

 findstatesOptions

1-423

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

1 Functions

1-424

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

To specify field values in SearchOptions , create a default findstatesOptions set and modify
the fields using dot notation. Any fields that you do not modify retain their default values.

opt = findstatesOptions;
opt.SearchOptions.Tolerance = 0.02;
opt.SearchOptions.Advanced.MaxBisections = 30;

Output Arguments
opt — Option set for findstates
findstatesOptions option set

Option set for findstates, returned as an findstatesOptions option set.

Version History
Introduced in R2012a

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

See Also
findstates | idpar

 findstatesOptions

1-425

fnorm
Pointwise peak gain of FRD model

Syntax
fnrm = fnorm(sys)
fnrm = fnorm(sys,ntype)

Description
fnrm = fnorm(sys) computes the pointwise 2-norm of the frequency response contained in the
FRD model sys, that is, the peak gain at each frequency point. The output fnrm is an FRD object
containing the peak gain across frequencies.

fnrm = fnorm(sys,ntype) computes the frequency response gains using the matrix norm
specified by ntype. See norm for valid matrix norms and corresponding NTYPE values.

Version History
Introduced in R2006a

See Also
norm | abs

1 Functions

1-426

forecast
Forecast identified model output

Syntax
yf = forecast(sys,PastData,K)
yf = forecast(sys,PastData,K,FutureInputs)

yf = forecast(___ ,opts)

[yf,x0,sysf] = forecast(___)
[yf,x0,sysf,yf_sd,x,x_sd] = forecast(___)

forecast(sys,PastData,K, ___)
forecast(sys,Linespec,PastData,K, ___)
forecast(sys1,...,sysN,PastData,K, ___)
forecast(sys1,Linespec1,...,sysN,LinespecN,PastData,K, ___)

Description
yf = forecast(sys,PastData,K) forecasts the output of an identified time series model sys, K
steps into the future using past measured data, PastData.

forecast performs prediction into the future, in a time range beyond the last instant of measured
data. In contrast, the predict command predicts the response of an identified model over the time
span of measured data. Use predict to determine if the predicted result matches the observed
response of an estimated model. If sys is a good prediction model, consider using it with forecast.

yf = forecast(sys,PastData,K,FutureInputs) uses the future values of the inputs,
FutureInputs, to forecast the response of an identified model with input channels.

yf = forecast(___ ,opts) uses the option set, opts, to specify additional forecast options. Use
opts with any of the previous input argument combinations.

[yf,x0,sysf] = forecast(___) also returns the estimated values for initial states, x0, and a
forecasting model, sysf, and can include any of the previous input argument combinations.

[yf,x0,sysf,yf_sd,x,x_sd] = forecast(___) also returns estimated standard deviation of
the output, yf_sd, state trajectory, x, and standard deviation of the trajectory, x_sd. Use with any of
the previous input argument combinations.

forecast(sys,PastData,K, ___) plots the forecasted output. Use with any of the previous input
argument combinations.

To change display options, right-click the plot to access the context menu. For example, to view the
estimated standard deviation of the forecasted output, select Confidence Region from the context
menu. For more details about the menu, see “Tips” on page 1-439.

forecast(sys,Linespec,PastData,K, ___) uses Linespec to specify the line type, marker
symbol, and color.

 forecast

1-427

forecast(sys1,...,sysN,PastData,K, ___) plots the forecasted outputs for multiple identified
models. forecast automatically chooses colors and line styles.

forecast(sys1,Linespec1,...,sysN,LinespecN,PastData,K, ___) uses the line type,
marker symbol, and color specified for each system.

Examples

Forecast Future Values of a Sinusoidal Signal

Forecast the values of a sinusoidal signal using an AR model.

Generate and plot data.

data = iddata(sin(0.1*[1:100])',[]);
plot(data)

Fit an AR model to the sine wave.

sys = ar(data,2);

Forecast the values into the future for a given time horizon.

K = 100;
p = forecast(sys,data,K);

1 Functions

1-428

K specifies the forecasting time horizon as 100 samples. p is the forecasted model response.

Plot the forecasted data.

plot(data,'b',p,'r'), legend('measured','forecasted')

Alternatively, plot the forecasted output using the syntax forecast(sys,data,K).

Forecast Response of Time Series Model

Obtain past data, and identify a time series model.

load iddata9 z9
past_data = z9.OutputData(1:50);
model = ar(z9,4);

z9 is an iddata object that contains measured output only.

model is an idpoly time series model.

Specify initial conditions for forecasting.

opt = forecastOptions('InitialCondition','e');

Plot the forecasted system response for a given time horizon.

 forecast

1-429

K = 100;
forecast(model,past_data,K,opt);
legend('Measured','Forecasted')

Plot Forecasted Output With Specified Line Type

Obtain past data, and identify a time series model.

load iddata9 z9
past_data = z9.OutputData(1:50);
model = ar(z9,4);

z9 is an iddata object that contains measured output only.

Plot the forecasted system response for a given time horizon as a red dashed line.

K = 100;
forecast(model,'r--',past_data,K);

1 Functions

1-430

The plot also displays the past data by default. To change display options, right-click the plot to
access the context menu. For example, to view the estimated standard deviation of the forecasted
output, select ConfidenceRegion from the context menu. To specify number of standard deviations
to plot, double-click the plot and open the Property Editor dialog box. In the dialog box, in the
Options tab, specify the number of standard deviations in Confidence Region for Identified
Models. The default value is 1 standard deviation.

Forecast Model Response for Known Future Inputs

Obtain past data, future inputs, and an identified linear model.

load iddata1 z1
z1 = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh');
past_data = z1(1:100);
future_inputs = z1.u(101:end);
sys = polyest(z1,[2 2 2 0 0 1],'IntegrateNoise',true);

z1 is an iddata object that contains integrated data. sys is an idpoly model. past_data contains
the first 100 data points of z1.

future_inputs contains the last 200 data points of z1.

Forecast the system response into the future for a given time horizon and future inputs.

 forecast

1-431

K = 200;
[yf,x0,sysf,yf_sd,x,x_sd] = forecast(sys,past_data,K,future_inputs);

yf is the forecasted model response, and yf_sd is the standard deviation of the output. x0 is the
estimated value for initial states, and sysf is the forecasting state-space model. Also returned are the
state trajectory, x, and standard deviation of the trajectory, x_sd.

Plot the forecasted response.

UpperBound = iddata(yf.OutputData+3*yf_sd,[],yf.Ts,'Tstart',yf.Tstart);
LowerBound = iddata(yf.OutputData-3*yf_sd,[],yf.Ts,'Tstart',yf.Tstart);
plot(past_data(:,:,[]),yf(:,:,[]),UpperBound,'k--',LowerBound,'k--')
legend({'Measured','Forecasted','3 sd uncertainty'},'Location','best')

Plot the state trajectory.

t = z1.SamplingInstants(101:end);
subplot(3,1,1)
plot(t,x(:,1),t,x(:,1)+3*x_sd(:,1),'k--',t,x(:,1)-3*x_sd(:,1),'k--')
title('X_1')

subplot(3,1,2)
plot(t, x(:,2),t,x(:,2)+3*x_sd(:,2),'k--',t, x(:,2)-3*x_sd(:,2),'k--')
title('X_2')

subplot(3,1,3)
plot(t,x(:,3),t,x(:,3)+3*x_sd(:,3),'k--',t, x(:,3)-3*x_sd(:,3),'k--')
title('X_3')

1 Functions

1-432

The response uncertainty does not grow over the forecasting time span because of the specification
of future inputs.

Forecast Response of Multi-Output Nonlinear Time Series Model

Load data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','predprey2data'));
z = iddata(y,[],0.1);
set(z,'Tstart',0,'OutputUnit',{'Population (in thousands)',...
 'Population (in thousands)'},'TimeUnit','Years');

z is a two output time-series data set (no inputs) from a 1-predator 1-prey population. The population
exhibits a decline in predator population due to crowding. The data set contains 201 data samples
covering 20 years of evolution.

The changes in the predator (y1) and prey (y2) population can be represented as:

y1(t) = p1 * y1(t − 1) + p2 * y1(t − 1) * y2(t − 1)

y2(t) = p3 * y2(t − 1)− p4 * y1(t − 1) * y2(t − 1)− p5 * y2(t − 1)2

The nonlinearity in the predator and prey populations can be fit using a nonlinear ARX model with
custom regressors.

 forecast

1-433

Use part of the data as past data.

past_data = z(1:100);

Specify the standard regressors.

na = [1 0; 0 1];
nb = [];
nk = [];

Specify the custom regressors.

C = {{'y1(t-1)*y2(t-1)'};{'y1(t-1)*y2(t-1)','y2(t-1)^2'}};

Estimate a nonlinear ARX model using past_data as estimation data.

sys = nlarx(past_data,[na nb nk],'idWaveletNetwork','CustomRegressors',C);

Compare the simulated output of sys with measured data to ensure it is a good fit.

compare(past_data,sys);

Plot the forecasted output of sys.

forecast(sys,past_data,101);
legend('Measured','Forecasted');

1 Functions

1-434

Reproduce Forecasting Results by Simulation

Obtain past data, future inputs, and identified linear model.

load iddata3 z3
past_data = z3(1:100);
future_inputs = z3.u(101:end);
sys = polyest(z3,[2 2 2 0 0 1]);

Forecast the system response into the future for a given time horizon and future inputs.

K = size(future_inputs,1);
[yf,x0,sysf] = forecast(sys,past_data,K,future_inputs);

yf is the forecasted model response, x0 is the estimated value for initial states, and sysf is the
forecasting state-space model.

Simulate the forecasting state-space model with inputs, future_inputs, and initial conditions, x0.

opt = simOptions;
opt.InitialCondition = x0;
ys = sim(sysf,future_inputs(1:K),opt);

Plot the forecasted and simulated outputs.

 forecast

1-435

t = yf.SamplingInstants;
plot(t,yf.OutputData,'b',t,ys,'.r');
legend('Forecasted Output','Simulated Output')

Simulation of forecasting model, sysf, with inputs, future_inputs, and initial conditions, x0,
yields the forecasted output, yf.

Input Arguments
sys — Identified model
linear model | nonlinear model

Identified model whose output is to be forecasted, specified as one of the following:

• Linear model — idpoly, idproc, idss, idtf, or idgrey
• Nonlinear model — idnlgrey, idnlhw, or idnlarx

If a model is unavailable, estimate sys from PastData using commands such as ar, arx, armax,
nlarx, and ssest.

PastData — Past input-output time-domain data
iddata object | matrix of doubles

Past input-output time-domain data, specified as one of the following:

1 Functions

1-436

• iddata object — Use observed input and output signals to create an iddata object. For time-
series data (no inputs), specify as an iddata object with no inputs iddata(output,[]).

• Matrix of doubles — For discrete-time models only. Specify as an N-by-Ny matrix for time-series
data. Here, N is the number of observations and Ny is the number of outputs.

For models with Nu inputs, specify PastData as an N-by-(Ny+Nu) matrix.

K — Time horizon of forecasting
positive integer

Time horizon of forecasting, specified as a positive integer. The output, yf, is calculated K steps into
the future, such that the prediction time horizon is Ts*K.

FutureInputs — Future input values
[] | matrix of doubles | iddata object | cell array of matrices

Future input values, specified as one of the following:

• [] — Future input values are assumed to be zero, or equal to input offset levels (if they are
specified in opts). For time series models, specify as [].

• iddata object — Specify as an iddata object with no outputs.
• K-by-Nu matrix of doubles — K is the forecast horizon, and Nu is the number of inputs.

If you have data from multiple experiments, you can specify a cell array of matrices, one for each
experiment in PastData.

opts — Forecast options
forecastOptions option set

Forecast options, specified as a forecastOptions option set.

Linespec — Line style, marker, and color
character vector

Line style, marker, and color, specified as a character vector. For example, 'b' or 'b+:'.

For more information about configuring Linespec, see the Linespec argument of plot.

Output Arguments
yf — Forecasted response
iddata object

Forecasted response, returned as an iddata object. yf is the forecasted response at times after the
last sample time in PastData. yf contains data for the time interval T0+(N+1:N+K)*T1, where T0
= PastData.Tstart and T1 = PastData.Ts. N is the number of samples in PastData.

x0 — Estimated initial states
column vector | cell array

Estimated initial states at the start of forecasting, returned as a column vector of size equal to the
number of states. Use x0 with the forecasting model sysf to reproduce the result of forecasting by
pure simulation.

 forecast

1-437

If PastData is multi-experiment, x0 is a cell array of size Ne, where Ne is the number of
experiments.

When sys is not a state-space model (idss, idgrey, or idnlgrey), the definition of states depends
on if sys is linear or nonlinear:

• Linear model (idpoly, idproc, idtf) – sys is converted to a discrete-time state-space model,
and x0 is returned as the states of the converted model at a time-point beyond the last data in
PastData.

If conversion of sys to idss is not possible, x0 is returned empty. For example, if sys is a MIMO
continuous-time model with irreducible internal delays.

• Nonlinear model (idnlhw or idnlarx) — For a definition of the states of idnlarx and idnlhw
models, see “Definition of idnlarx States” on page 1-685, and “Definition of idnlhw States” on page
1-715.

sysf — Forecasting model
discrete-time idss | idnlarx | idnlhw | idnlgrey | cell array of models

Forecasting model, returned as one of the following:

• Discrete-time idss — If sys is a discrete-time idss model, sysf is the same as sys. If sys is a
linear model that is not a state-space model (idpoly, idproc, idtf), or is a continuous-time
state-space model (idss, idgrey), sys is converted to a discrete-time idss model. The
converted model is returned in sysf.

• idnlarx, idnlhw, or idnlgrey— If sys is a nonlinear model, sysf is the same as sys.
• Cell array of models — If PastData is multiexperiment, sysf is an array of Ne models, where Ne

is the number of experiments.

Simulation of sysf using sim, with inputs, FutureInputs, and initial conditions, x0, yields yf as
the output. For time-series models, FutureInputs is empty.

yf_sd — Estimated standard deviations of forecasted response
matrix | cell array

Estimated standard deviations of forecasted response, returned as a K-by-Ny matrix, where K is the
forecast horizon, and Ny is the number of outputs. The software computes the standard deviation by
taking into account the model parameter covariance, initial state covariance, and additive noise
covariance. The additive noise covariance is stored in the NoiseVariance property of the model.

If PastData is multiexperiment, yf_sd is a cell array of size Ne, where Ne is the number of
experiments.

yf_sd is empty if sys is a nonlinear ARX (idnlarx) or Hammerstein-Wiener model (idnlhw). yf_sd
is also empty if sys does not contain parameter covariance information, that is if getcov(sys) is
empty. For more information, see getcov.

x — Forecasted state trajectory
matrix | cell array

Forecasted state trajectory, returned as a K-by-Nx matrix, where K, the forecast horizon and Nx is the
number of states. x are the states of the forecasting model.

If PastData is multiexperiment, x is a cell array of size Ne, where Ne is the number of experiments.

1 Functions

1-438

If sys is linear model other than a state-space model (not idss or idgrey), then it is converted to a
discrete-time state-space model, and the states of the converted model are calculated. If conversion
of sys to idss is not possible, x is returned empty. For example, if sys is a MIMO continuous-time
model with irreducible internal delays.

x is empty if sys is a nonlinear ARX (idnlarx) or Hammerstein-Wiener model (idnlhw).

x_sd — Estimated standard deviations of forecasted states
matrix | cell array

Estimated standard deviations of forecasted states x, returned as a K-by-Ns matrix, where K, the
forecast horizon and Ns is the number of states. The software computes the standard deviation by
taking into account the model parameter covariance, initial state covariance, and additive noise
covariance. The additive noise covariance is stored in the NoiseVariance property of the model.

If PastData is multiexperiment, x_sd is a cell array of size Ne, where Ne is the number of
experiments.

If sys is linear model other than a state-space model (not idss or idgrey), then it is converted to a
discrete-time state-space model, and the states and standard deviations of the converted model are
calculated. If conversion of sys to idss is not possible, x_sd is returned empty. For example, if sys
is a MIMO continuous-time model with irreducible internal delays.

x_sd is empty if sys is a nonlinear ARX (idnlarx) or Hammerstein-Wiener model (idnlhw).

Tips
• Right-clicking the plot opens the context menu, where you can access the following options:

• Systems — Select systems to view forecasted output. By default, the forecasted output of all
systems is plotted.

• Data Experiment — For multi-experiment data only. Toggle between data from different
experiments.

• Characteristics — View the following data characteristics:

• Peak Value — View peak value of the data.
• Mean Value — View mean value of the data.
• Confidence Region — View the estimated standard deviation of the forecasted output. To

specify number of standard deviations to plot, double-click the plot and open the Property
Editor dialog box. Specify the number of standard deviations in the Options tab, in
Confidence Region for Identified Models. The default value is 1 standard deviation.

The confidence region is not generated for nonlinear ARX and Hammerstein-Wiener models
and models that do not contain parameter covariance information.

• Show Past Data — Plot the past output data used for forecasting. By default, the past output
data is plotted.

• I/O Grouping — For datasets containing more than one input or output channel. Select
grouping of input and output channels on the plot.

• None — Plot input-output channels in their own separate axes.
• All — Group all input channels together and all output channels together.

 forecast

1-439

• I/O Selector — For datasets containing more than one input or output channel. Select a subset
of the input and output channels to plot. By default, all output channels are plotted.

• Grid — Add grids to the plot.
• Normalize — Normalize the y-scale of all data in the plot.
• Full View — Return to full view. By default, the plot is scaled to full view.
• Properties — Open the Property Editor dialog box to customize plot attributes.

Version History
Introduced in R2012a

See Also
forecastOptions | predict | compare | sim | ar | arx | ssest | iddata

Topics
“Forecast Output of Dynamic System”
“Forecast Multivariate Time Series”
“Time Series Prediction and Forecasting for Prognosis”
“Introduction to Forecasting of Dynamic System Response”

1 Functions

1-440

forecastOptions
Option set for forecast

Syntax
opt = forecastOptions
opt = forecastOptions(Name,Value)

Description
opt = forecastOptions creates the default option set for forecast. Use dot notation to modify
this option set. Any options that you do not modify retain their default values.

opt = forecastOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Examples

Specify Input Signal Offset for Model Forecasting

Create a default option set for forecast.

opt = forecastOptions;

Specify the input offset for a single-input data set as 5.

opt.InputOffset = 5;

You can now use this option set for forecasting. Before forecasting model response, the forecast
command subtracts this offset value from the past input data signal.

Specify Handling of Initial Conditions During Model Forecasting

Create an option set for forecast using zero initial conditions.

opt = forecastOptions('InitialCondition','z');

Specify Output Offset for Forecasting Multi-Experiment Data

Load past measured data from two experiments.

load iddata1
load iddata2

z1 and z2 are iddata objects that store SISO input-output data. Create a two-experiment data set
from z1 and z2.

 forecastOptions

1-441

z = merge(z1,z2);

Estimate a transfer function model with 2 poles using the multi-experiment data.

sys = tfest(z,2);

Specify the offset as -1 and 1 for the output signals of the two experiments.

opt = forecastOptions('OutputOffset',[-1 1]);

OutputOffset is specified as an Ny-by-Ne matrix where Ny is the number of outputs in each
experiment, and Ne is the number of experiments. In this example, Ny is 1 and Ne is 2.

Using the option set opt, forecast the response of the model 10 time steps into the future. The
software subtracts the offset value OutputOffset(i,j) from the output signal i of experiment j
before using the data in the forecasting algorithm. The removed offsets are added back to generate
the final result.

y = forecast(sys,z,10,opt)

y =
Time domain data set containing 2 experiments.

Experiment Samples Sample Time
 Exp1 10 0.1
 Exp2 10 0.1

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

y is an iddata object that returns the forecasted response corresponding to each set of past
experimental data.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: forecastOptions('InitialCondition','e') specifies that the software estimates
the initial conditions of the measured input-output data such that the 1-step prediction error for
observed output is minimized.

InitialCondition — Handling of initial conditions
'e' (default) | 'z' | idpar object x0Obj

Handling of initial conditions, specified as the comma-separated pair consisting of
'InitialCondition' and one of the following values:

1 Functions

1-442

• 'z' — Zero initial conditions.
• 'e' — Estimate initial conditions such that the 1-step prediction error is minimized for the

observed output.

For nonlinear grey-box models, only those initial states i that are designated as free in the model
(sys.InitialStates(i).Fixed = false) are estimated. To estimate all the states of the
model, first specify all the Nx states of the idnlgrey model sys as free.

for i = 1:Nx
sys.InitialStates(i).Fixed = false;
end

Similarly, to fix all the initial states to values specified in sys.InitialStates, first specify all
the states as fixed in the sys.InitialStates property of the nonlinear grey-box model.

• x0obj — Specification object created using idpar. Use this object for discrete-time state-space
models only (idss, idgrey, and idnlgrey). Use x0obj to impose constraints on the initial states
by fixing their value or specifying minimum or maximum bounds.

InputOffset — Input signal offset
[] (default) | column vector | matrix

Input signal offset for time-domain data, specified as the comma-separated pair consisting of
'InputOffset' and one of the following values:

• [] — No input offsets.
• A column vector of length Nu, where Nu is the number of inputs. When you use the forecast

command, the software subtracts the offset value InputOffset(i) from the ith input signals in
the past and future input values. You specify these values in the PastData and FutureInputs
arguments of forecast. The software then uses the offset subtracted inputs to forecast the model
response.

• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix,
where Ne is the number of experiments. The software subtracts the offset value
InputOffset(i,j) from the ith input signal of the jth experiment in the PastData and
FutureInputs arguments of forecast before forecasting.

OutputOffset — Output signal offset
[] (default) | column vector | matrix

Output signal offset for time-domain data, specified as the comma-separated pair consisting of
'OutputOffset' and one of the following values:

• [] — No output offsets.
• A column vector of length Ny, where Ny is the number of outputs. When you use the forecast

command, the software subtracts the offset value OutputOffset(i) from the ith past output
signal that you specify in the PastData argument of forecast. The software then uses the offset
subtracted output to compute the detrended forecasts. The removed offsets are added back to the
detrended forecasts to generate the final result.

• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as an Ny-by-Ne matrix,
where Ne is the number of experiments. Before forecasting, the software subtracts the offset
value OutputOffset(i,j) from the ith output signal of the jth experiment in the PastData
argument of forecast. For an example, see “Specify Output Offset for Forecasting Multi-
Experiment Data” on page 1-441.

 forecastOptions

1-443

Output Arguments
opt — Option set for forecast
forecastOptions option set

Option set for forecast, retuned as a forecastOptions option set.

Version History
Introduced in R2012a

See Also
forecast | idpar

Topics
“Introduction to Forecasting of Dynamic System Response”

1 Functions

1-444

fpe
Akaike’s Final Prediction Error for estimated model

Syntax
value = fpe(model)
value = fpe(model1,...,modeln)

Description
value = fpe(model) returns the Final Prediction Error (FPE) value for the estimated model.

value = fpe(model1,...,modeln) returns the FPE value for multiple estimated models.

Examples

Compute Final Prediction Error of Estimated Model

Estimate a transfer function model.

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

Compute the Final Prediction Error (FPE) value.

value = fpe(sys)

value = 1.7252

Alternatively, use the Report property of the model to access the value.

sys.Report.Fit.FPE

ans = 1.7252

Pick Model with Optimal Tradeoff Between Accuracy and Complexity Using FPE Criterion

Estimate multiple Output-Error (OE) models and use Akaike's Final Prediction Error (FPE) value to
pick the one with optimal tradeoff between accuracy and complexity.

Load the estimation data.

load iddata2

Specify model orders varying in 1:4 range.

 fpe

1-445

nf = 1:4;
nb = 1:4;
nk = 0:4;

Estimate OE models with all possible combinations of chosen order ranges.

NN = struc(nf,nb,nk);
models = cell(size(NN,1),1);
for ct = 1:size(NN,1)
 models{ct} = oe(z2, NN(ct,:));
end

Compute the small sample-size corrected AIC values for the models, and return the smallest value.

V = fpe(models{:});
[Vmin, I] = min(V);

Return the optimal model that has the smallest AICc value.

models{I}

ans =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)
 B(z) = 1.067 z^-2

 F(z) = 1 - 1.824 z^-1 + 1.195 z^-2 - 0.2307 z^-3

Sample time: 0.1 seconds

Parameterization:
 Polynomial orders: nb=1 nf=3 nk=2
 Number of free coefficients: 4
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using OE on time domain data "z2".
Fit to estimation data: 86.53%
FPE: 0.9809, MSE: 0.9615

Input Arguments
model — Identified model
idtf | idgrey | idpoly | idproc | idss | idnlarx, | idnlhw | idnlgrey

Identified model, specified as one of the following model objects:

• idtf
• idgrey
• idpoly
• idproc
• idss
• idnlarx, except nonlinear ARX model that includes a binary-tree or neural network nonlinearity

estimator

1 Functions

1-446

• idnlhw
• idnlgrey

Output Arguments
value — Final Prediction Error (FPE) value
scalar | vector

Final Prediction Error (FPE) value, returned as a scalar or vector. For multiple models, value is a
row vector where value(k) corresponds to the kth estimated model modelk.

More About
Akaike's Final Prediction Error (FPE)

Akaike's Final Prediction Error (FPE) criterion provides a measure of model quality by simulating the
situation where the model is tested on a different data set. After computing several different models,
you can compare them using this criterion. According to Akaike's theory, the most accurate model has
the smallest FPE.

If you use the same data set for both model estimation and validation, the fit always improves as you
increase the model order and, therefore, the flexibility of the model structure.

Akaike's Final Prediction Error (FPE) is defined by the following equation:

FPE = det 1
N∑1

N
e t, θ N e t, θ N

T 1 + d N
1− d N

where:

• N is the number of values in the estimation data set.
• e(t) is a ny-by-1 vector of prediction errors.
• θN represents the estimated parameters.

• d is the number of estimated parameters.

If number of parameters exceeds the number of samples, FPE is not computed when model
estimation is performed (model.Report.FPE is empty). The fpe command returns NaN.

Tips
• The software computes and stores the FPE value during model estimation. If you want to access

this value, see the Report.Fit.FPE property of the model.

Version History
Introduced before R2006a

 fpe

1-447

References
[1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR,

1999. See sections 7.4 and 16.4.

See Also
aic | goodnessOfFit

Topics
“Loss Function and Model Quality Metrics”

1 Functions

1-448

frdata
Access data for frequency response data (FRD) object

Syntax
[response,freq] = frdata(sys)
[response,freq,covresp] = frdata(sys)
[response,freq,Ts,covresp] = frdata(sys,'v')
[response,freq,Ts] = frdata(sys)

Description
[response,freq] = frdata(sys) returns the response data and frequency samples of the FRD
model sys. For an FRD model with Ny outputs and Nu inputs at Nf frequencies:

• response is an Ny-by-Nu-by-Nf multidimensional array where the (i,j) entry specifies the
response from input j to output i.

• freq is a column vector of length Nf that contains the frequency samples of the FRD model.

See the frd reference page for more information on the data format for FRD response data.

[response,freq,covresp] = frdata(sys) also returns the covariance covresp of the
response data resp for idfrd model sys. The covariance covresp is a 5D-array where
covH(i,j,k,:,:) contains the 2-by-2 covariance matrix of the response resp(i,j,k). The (1,1)
element is the variance of the real part, the (2,2) element the variance of the imaginary part and
the (1,2) and (2,1) elements the covariance between the real and imaginary parts.

For SISO FRD models, the syntax

[response,freq] = frdata(sys,'v')

forces frdata to return the response data as a column vector rather than a 3-dimensional array (see
example below). Similarly

[response,freq,Ts,covresp] = frdata(sys,'v') for an IDFRD model sys returns covresp as
a 3-dimensional rather than a 5-dimensional array.

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.

Other properties of sys can be accessed with get or by direct structure-like referencing (e.g.,
sys.Frequency).

Arguments
The input argument sys to frdata must be an FRD model.

Examples

 frdata

1-449

Extract Data from Frequency Response Data Model

Create a frequency response data model by computing the response of a transfer function on a grid of
frequencies.

H = tf([-1.2,-2.4,-1.5],[1,20,9.1]);
w = logspace(-2,3,101);
sys = frd(H,w);

sys is a SISO frequency response data (frd) model containing the frequency response at 101
frequencies.

Extract the frequency response data from sys.

[response,freq] = frdata(sys);

response is a 1-by-1-by-101 array. response(1,1,k) is the complex frequency response at the
frequency freq(k).

Version History
Introduced before R2006a

See Also
frd | get | set | idfrd | freqresp | spectrum

1 Functions

1-450

freqresp
Evaluate system response over a grid of frequencies

Syntax
[H,wout] = freqresp(sys)
H = freqresp(sys,w)
H = freqresp(sys,w,units)
[H,wout,covH] = freqresp(sys, ___)

Description
Use freqresp to evaluate the system response over a grid of frequencies. To obtain the magnitude
and phase data as well as plots of the frequency response, use bode instead.

[H,wout] = freqresp(sys) returns the frequency response of the dynamic system model sys at
frequencies wout. freqresp automatically determines the frequencies based on the dynamics of
sys. For more information about frequency response, see “Frequency Response” on page 1-455.

H = freqresp(sys,w) returns the frequency response on the real frequency grid specified by the
vector w.

H = freqresp(sys,w,units) explicitly specifies the frequency units of w with units.

[H,wout,covH] = freqresp(sys, ___) also returns the covariance covH of the frequency
response. Use this syntax only when sys is an identified model of one of the types listed in “Identified
LTI Models” (Control System Toolbox).

Examples

Frequency Response of SISO System

For this example, consider the following SISO state-space model:

A =
−1 . 5 −2

1 0
B =

0 . 5
0

C = 0 1 D = 0

Create the SISO state-space model defined by the following state-space matrices:

A = [-1.5,-2;1,0];
B = [0.5;0];
C = [0,1];
D = 0;
sys = ss(A,B,C,D);

Compute the frequency response of the system.

[H,wout] = freqresp(sys);
size(H)

 freqresp

1-451

ans = 1×3

 1 1 56

H contains the frequency response at 56 frequencies that are automatically chosen based on the
dynamics of sys.

size(wout)

ans = 1×2

 56 1

wout contains the corresponding 56 frequencies.

Compute Frequency Response of System

Create the following 2-input, 2-output system:

sys =
0 1

s + 1
s− 1
s + 2 1

sys11 = 0;
sys22 = 1;
sys12 = tf(1,[1 1]);
sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];

Compute the frequency response of the system.

[H,wout] = freqresp(sys);

H is a 2-by-2-by-45 array. Each entry H(:,:,k) in H is a 2-by-2 matrix giving the complex frequency
response of all input-output pairs of sys at the corresponding frequency wout(k). The 45
frequencies in wout are automatically selected based on the dynamics of sys.

Compute Frequency Response on Specified Frequency Grid

Create the following 2-input, 2-output system:

sys =
0 1

s + 1
s− 1
s + 2 1

sys11 = 0;
sys22 = 1;

1 Functions

1-452

sys12 = tf(1,[1 1]);
sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];

Create a logarithmically-spaced grid of 200 frequency points between 10 and 100 radians per second.

w = logspace(1,2,200);

Compute the frequency response of the system on the specified frequency grid.

H = freqresp(sys,w);

H is a 2-by-2-by-200 array. Each entry H(:,:,k) in H is a 2-by-2 matrix giving the complex frequency
response of all input-output pairs of sys at the corresponding frequency w(k).

Compute Frequency Response and Associated Covariance

Compute the frequency response and associated covariance for an identified process model at its
peak response frequency.

Load estimation data z1.

load iddata1 z1

Estimate a SISO process model using the data.

model = procest(z1,'P2UZ');

Compute the frequency at which the model achieves the peak frequency response gain. To get a more
accurate result, specify a tolerance value of 1e-6.

[gpeak,fpeak] = getPeakGain(model,1e-6);

Compute the frequency response and associated covariance for model at its peak response
frequency.

[H,wout,covH] = freqresp(model,fpeak);

H is the response value at fpeak frequency, and wout is the same as fpeak.

covH is a 5-dimensional array that contains the covariance matrix of the response from the input to
the output at frequency fpeak. Here covH(1,1,1,1,1) is the variance of the real part of the
response, and covH(1,1,1,2,2) is the variance of the imaginary part. The covH(1,1,1,1,2) and
covH(1,1,1,2,1) elements are the covariance between the real and imaginary parts of the
response.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

 freqresp

1-453

• LTI models such as ss, tf, and zpk models.
• Sparse state-space models, such as sparss or mechss models.
• Generalized or uncertain state-space models such as genss or uss models. (Using uncertain

models requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value to
evaluate the frequency response.

• For uncertain control design blocks, the function evaluates the frequency response at the
nominal value and random samples of the model.

• Identified state-space models, such as idss models.

For a complete list of models, see “Dynamic System Models”.

w — Frequency values to evaluate system response
vector of scalar values | vector of complex values

Frequency values to evaluate system response, specified as either a vector of scalar values or a
vector of complex values. Specify frequencies in units of rad/TimeUnit, where TimeUnit is the
time units specified in the TimeUnit property of sys.

You can specify the frequency in terms of the Laplace variable s or z based on whether sys is a
continuous-time or discrete-time model, respectively. For instance, if you want to evaluate the
frequency response of a system sys at a frequency value of w rad/s, then specify the values in terms
of

• s = jw, if sys is in continuous-time.
• z = ejwT, if sys is in discrete-time. Here, T is the sample time.

units — Units of the values in the input frequency vector
rad/TimeUnit (default) | 'cycles/TimeUnit' | 'rad/s' | ...

Units of the frequencies in the input frequency vector w, specified as one of the following values:

• 'rad/TimeUnit' — radians per the time unit specified in the TimeUnit property of sys
• 'cycles/TimeUnit' — cycles per the time unit specified in the TimeUnit property of sys
• 'rad/s'
• 'Hz'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rpm'

Output Arguments
H — Frequency response values
array

Frequency response values, returned as an array.

When sys is

1 Functions

1-454

• An individual dynamic system model with Ny outputs and Nu inputs, H is a 3D array with
dimensions Ny-by-Nu-by-Nw, where Nw is the number of frequency points. Thus, H(:,:,k) is the
response at the frequency w(k) or wout(k).

• A model array of size [Ny Nu S1 ... Sn], H is an array with dimensions Ny-by-Nu-by-Nw-by-S1-
by-...-by-Sn] array.

• A frequency response data model (such as frd, genfrd, or idfrd), freqresp(sys,w) evaluates
to NaN for values of w falling outside the frequency interval defined by sys.frequency. The
freqresp command can interpolate between frequencies in sys.frequency. However,
freqresp cannot extrapolate beyond the frequency interval defined by sys.frequency.

wout — Output frequencies corresponding to the frequency response
vector

Output frequencies corresponding to the frequency response H, returned as a vector. When you omit
w from the inputs to freqresp, the command automatically determines the frequencies of wout
based on the system dynamics. If you specify w, then wout = w

covH — Covariance of the frequency response
array

Covariance of the frequency response, returned as a 5D array. For instance, covH(i,j,k,:,:)
contains the 2-by-2 covariance matrix of the response from the ith input to the jth output at
frequency w(k). The (1,1) element of this 2-by-2 matrix is the variance of the real part of the
response. The (2,2) element is the variance of the imaginary part. The (1,2) and (2,1) elements are
the covariance between the real and imaginary parts of the response.

More About
Frequency Response

In continuous time, the frequency response at a frequency ω is the transfer function value at s = jω.
For state-space models, this value is given by

H(jω) = D + C(jωI − A)−1B

In discrete time, the frequency response is the transfer function evaluated at points on the unit circle
that correspond to the real frequencies. freqresp maps the real frequencies w(1),..., w(N) to points
on the unit circle using the transformation z = e jωTs. Ts is the sample time. The function returns the
values of the transfer function at the resulting z values. For models with unspecified sample time,
freqresp uses Ts = 1.

Algorithms
For transfer functions or zero-pole-gain models, freqresp evaluates the numerator(s) and
denominator(s) at the specified frequency points. For continuous-time state-space models (A, B, C, D),
the frequency response is

D + C(jω− A)−1B, ω =ω1, …, ωN

For efficiency, A is reduced to upper Hessenberg form and the linear equation (jω − A)X = B is solved
at each frequency point, taking advantage of the Hessenberg structure. The reduction to Hessenberg

 freqresp

1-455

form provides a good compromise between efficiency and reliability. For more details on this
technique, see [1] (Control System Toolbox).

Version History
Introduced before R2006a

References
[1] Laub, A.J., "Efficient Multivariable Frequency Response Computations," IEEE Transactions on

Automatic Control, AC-26 (1981), pp. 407-408.

See Also
evalfr | bode | nyquist | nichols | sigma | interp | spectrum

1 Functions

1-456

fselect
Select frequency points or range in FRD model

Syntax
subsys = fselect(sys,fmin,fmax)
subsys = fselect(sys,index)

Description
subsys = fselect(sys,fmin,fmax) takes an FRD model sys and selects the portion of the
frequency response between the frequencies fmin and fmax. The selected range [fmin,fmax]
should be expressed in the FRD model units. For an IDFRD model, the SpectrumData,
CovarianceData and NoiseCovariance values, if non-empty, are also selected in the chosen
range.

subsys = fselect(sys,index) selects the frequency points specified by the vector of indices
index. The resulting frequency grid is

sys.Frequency(index)

Version History
Introduced before R2006a

See Also
interp | fcat | fdel | frd | idfrd

 fselect

1-457

generateMATLABFunction
Package: idneuralstatespace

Generate MATLAB functions that evaluate the state and output functions of a neural state-space
object, and their Jacobians

Syntax
generateMATLABFunction(nss,stateFcnName)
generateMATLABFunction(nss,stateFcnName,outputFcnName)

Description
This function generates evaluation functions for the state, output, and Jacobians of a neural state-
space object. You can use these functions to simulate the neural state-space system and to generate
C/C++ code for deployment purposes, for applications such as nonlinear state estimation and model
predictive control. To properly execute, the generated functions require the Deep Learning Toolbox™
and the data files that store network information, which are also generated in the process. For more
information on the state and output functions of a neural state-space object, see the corresponding
properties of idNeuralStateSpace. For more information on Nonlinear MPC design, see
“Nonlinear MPC” (Model Predictive Control Toolbox).

generateMATLABFunction(nss,stateFcnName) generates, in the current folder, two MATLAB
functions that calculate the state of nss and its Jacobians, respectively. The second argument is the
desired name of the state function. The state Jacobians function has the same name with the suffix
Jacobian attached at the end. If stateFcnName is empty, no state function or data file is generated.

generateMATLABFunction(nss,stateFcnName,outputFcnName) also specifies the name of the
output function as a third argument. The output Jacobians function has the same name with the suffix
Jacobian attached at the end. If outFcnName is empty, no output function or data file is generated.

Note When nss has a number of outputs equal to its number of states, the generated output returns
only the states. Therefore its Jacobian with respect to the state (the C matrix) is an identity and its
Jacobian with respect to the input (the D matrix) is zero.

When nss has a number of outputs greater than its number of states, the generated output function
only contains the non-trivial outputs, that is the ones related to y2(t) = H(t,x,u). In other words, the
generated function is only based on the second network in the OutputNetwork property of nss. For
more information, see idNeuralStateSpace.

Examples

Generate MATLAB Functions From Neural State-Space Object

Use idNeuralStateSpace to create a continuous-time neural state-space object with two states,
one inputs, one output, and direct feedthrough from input to output.

nss = idNeuralStateSpace(3,NumInputs=2,NumOutputs=3+1,HasFeedthrough=true)

1 Functions

1-458

The state and output networks of nss are initialized randomly. Fix the random generator seed for
reproducibility.

rng(0)

Use generateMATLABFunction to generate evaluation functions for the state, the output, and their
Jacobians, from nss.

generateMATLABFunction(nss,"xdotFcn","yFcn")

Evaluate the state function.

xdotFcn(rand(3,1),rand(2,1))

ans = 3×1

 -0.4544
 0.0984
 0.3419

Evaluate the state Jacobian function.

[A,B] = xdotFcnJacobian(rand(3,1),rand(2,1))

A = 3×3

 -0.1288 -0.3136 0.3468
 0.0013 0.0034 0.4129
 0.1110 0.1616 0.0234

B = 3×2

 -0.1504 -0.0315
 -0.0011 0.0257
 0.0168 0.1618

Display the Jacobian of the output function.

type("yFcnJacobian")

function [C, D] = yFcnJacobian(x,u)
%% auto-generated output Jacobian function of neural state space system
%# codegen
C1 = eye(3);
D1 = zeros(3,2);
persistent OutputNetwork
MATname = 'yFcnData';
if isempty(OutputNetwork)
 OutputNetwork = coder.load(MATname);
end
out = [x;u];
J = eye(length(out));
% hidden layer #1
Jfc = OutputNetwork.fc1.Weights;
out = OutputNetwork.fc1.Weights*out + OutputNetwork.fc1.Bias;
Jac = deep.internal.coder.jacobian.tanh(out);

 generateMATLABFunction

1-459

out = deep.internal.coder.tanh(out);
J = Jac*Jfc*J;
% hidden layer #2
Jfc = OutputNetwork.fc2.Weights;
out = OutputNetwork.fc2.Weights*out + OutputNetwork.fc2.Bias;
Jac = deep.internal.coder.jacobian.tanh(out);
out = deep.internal.coder.tanh(out);
J = Jac*Jfc*J;
% output layer
J = OutputNetwork.output.Weights*J;
% generate Jacobian matrices
C2 = J(:,1:3);
D2 = J(:,4:5);
C = [C1; C2];
D = [D1; D2];

You can use these functions to simulate the neural state-space system and to generate C/C++ code
for deployment purposes.

Input Arguments
nss — Neural state-space system
idNeuralStateSpace object

Neural state-space system, specified as an idNeuralStateSpace object.
Example: myNrlSS

stateFcnName — Name of the generated state function
string | character vector

Name of the generated state function, specified as a string or character vector. If a file with the
specified name (with .m extension) already exists in the current MATLAB folder, it is overwritten. If
you specify an invalid file name, it is automatically converted to a valid name. A file that contains data
needed to execute the function is also generated, with the same name and the .mat extension. The
generated function that calculates the state Jacobians has the same name with the additional
Jacobian suffix. If stateFcnName is empty, no state function or data file is generated.
Example: "xdotFcn"

outputFcnName — Name of the generated output function
string | character vector

Name of the generated output function, specified as a string or character vector. If a file with the
specified name (with .m extension) already exists in the current MATLAB folder, it is overwritten. If
you specify an invalid file name, it is automatically converted to a valid name. A file that contains data
needed to execute the function is also generated, with the same name and the .mat extension. The
generated function that calculates the output Jacobians has the same name with the additional
Jacobian suffix. If outFcnName is empty, no output function or data file is generated.
Example: "yFcn"

Version History
Introduced in R2022b

1 Functions

1-460

See Also
Objects
idNeuralStateSpace | nssTrainingADAM | nssTrainingSGDM | idss | idnlgrey

Functions
createMLPNetwork | nssTrainingOptions | nlssest | idNeuralStateSpace/evaluate |
idNeuralStateSpace/linearize | sim

Blocks
Neural State-Space Model

Topics
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

 generateMATLABFunction

1-461

get
Access model property values

Syntax
Value = get(sys,'PropertyName')
Struct = get(sys)

Description
Value = get(sys,'PropertyName') returns the current value of the property PropertyName of
the model object sys. 'PropertyName' can be the full property name (for example, 'UserData')
or any unambiguous case-insensitive abbreviation (for example, 'user'). See reference pages for the
individual model object types for a list of properties available for that model.

Struct = get(sys) converts the TF, SS, or ZPK object sys into a standard MATLAB structure
with the property names as field names and the property values as field values.

Without left-side argument,

get(sys)

displays all properties of sys and their values.

Examples

Display Model Property Values

Create the following discrete-time SISO transfer function model:

H(z) = 1
z + 2

Specify the sample time as 0.1 seconds and input channel name as Voltage.

h = tf(1,[1 2],0.1,'InputName','Voltage')

h =

 From input "Voltage" to output:
 1

 z + 2

Sample time: 0.1 seconds
Discrete-time transfer function.

Display all the properties of the transfer function.

get(h)

1 Functions

1-462

 Numerator: {[0 1]}
 Denominator: {[1 2]}
 Variable: 'z'
 IODelay: 0
 InputDelay: 0
 OutputDelay: 0
 InputName: {'Voltage'}
 InputUnit: {''}
 InputGroup: [1x1 struct]
 OutputName: {''}
 OutputUnit: {''}
 OutputGroup: [1x1 struct]
 Notes: [0x1 string]
 UserData: []
 Name: ''
 Ts: 0.1000
 TimeUnit: 'seconds'
 SamplingGrid: [1x1 struct]

Display the numerator of the transfer function.

num = get(h,'Numerator')

num = 1x1 cell array
 {[0 1]}

The numerator data is stored as a cell array, thus the Numerator property is a cell array containing
the row vector [0 1].

num{1}

ans = 1×2

 0 1

Display the sample time Ts of the transfer function.

get(h,'Ts')

ans = 0.1000

Alternatively, use dot notation to access the property value.

h.Ts

ans = 0.1000

Tips
An alternative to the syntax

Value = get(sys,'PropertyName')

is the structure-like referencing

Value = sys.PropertyName

 get

1-463

For example,

sys.Ts
sys.A
sys.user

return the values of the sample time, A matrix, and UserData property of the (state-space) model
sys.

Version History
Introduced before R2006a

See Also
frdata | set | ssdata | tfdata | idssdata | polydata | getpvec | getcov

1 Functions

1-464

getcov
Parameter covariance of identified model

Syntax
cov_data = getcov(sys)
cov_data = getcov(sys,cov_type)
cov_data = getcov(sys,cov_type,'free')

Description
cov_data = getcov(sys) returns the raw covariance of the parameters of an identified model.

• If sys is a single model, then cov_data is an np-by-np matrix. np is the number of parameters of
sys.

• If sys is a model array, then cov_data is a cell array of size equal to the array size of sys.

cov_data(i,j,k,...) contains the covariance data for sys(:,:,i,j,k,...).

cov_data = getcov(sys,cov_type) returns the parameter covariance as either a matrix or a
structure, depending on the covariance type that is specified.

cov_data = getcov(sys,cov_type,'free') returns the covariance data of only the free model
parameters.

Examples

Obtain Raw Parameter Covariance for Identified Model

Obtain the identified model.

load iddata1 z1
sys = tfest(z1,2);

Get the raw parameter covariance for the model.

cov_data = getcov(sys)

cov_data = 5×5

 1.2131 -4.3949 -0.0309 -0.5531 0
 -4.3949 115.0838 1.8598 10.6660 0
 -0.0309 1.8598 0.0636 0.1672 0
 -0.5531 10.6660 0.1672 1.2433 0
 0 0 0 0 0

cov_data contains the covariance matrix for the parameter vector
[sys.Numerator,sys.Denominator(2:end),sys.IODelay].

 getcov

1-465

sys.Denominator(1) is fixed to 1 and not treated as a parameter. The covariance matrix entries
corresponding to the delay parameter (fifth row and column) are zero because the delay was not
estimated.

Obtain Raw Parameter Covariance for Identified Model Array

Obtain the identified model array.

load iddata1 z1;
sys1 = tfest(z1,2);
sys2 = tfest(z1,3);
sysarr = stack(1,sys1,sys2);

sysarr is a 2-by-1 array of continuous-time, identified transfer functions.

Get the raw parameter covariance for the models in the array.

cov_data = getcov(sysarr)

cov_data=2×1 cell array
 {5x5 double}
 {7x7 double}

cov_data is a 2-by-1 cell array. cov_data{1} and cov_data{2} are the raw parameter covariance
matrices for sys1 and sys2.

Obtain Raw Covariance of Estimated Parameters of Identified Model

Load the estimation data.

load iddata1 z1
z1.y = cumsum(z1.y);

Estimate the model.

init_sys = idtf([100 1500],[1 10 10 0]);
init_sys.Structure.Numerator.Minimum = eps;
init_sys.Structure.Denominator.Minimum = eps;
init_sys.Structure.Denominator.Free(end) = false;
opt = tfestOptions('SearchMethod','lm');
sys = tfest(z1,init_sys,opt);

sys is an idtf model with six parameters, four of which are estimated.

Get the covariance matrix for the estimated parameters.

cov_type = 'value';
cov_data = getcov(sys,cov_type,'free')

cov_data = 4×4
105 ×

1 Functions

1-466

 0.0269 -0.1237 -0.0001 -0.0017
 -0.1237 1.0221 0.0016 0.0133
 -0.0001 0.0016 0.0000 0.0000
 -0.0017 0.0133 0.0000 0.0002

cov_data is a 4x4 covariance matrix, with entries corresponding to the four estimated parameters.

Obtain Factored Parameter Covariance for Identified Model

Obtain the identified model.

load iddata1 z1
sys = tfest(z1,2);

Get the factored parameter covariance for the model.

cov_type = 'factors';
cov_data = getcov(sys,cov_type);

Obtain Factored Parameter Covariance for Identified Model Array

Obtain the identified model array.

load iddata1 z1
sys1 = tfest(z1,2);
sys2 = tfest(z1,3);
sysarr = stack(1,sys1,sys2);

sysarr is a 2-by-1 array of continuous-time, identified transfer functions.

Get the factored parameter covariance for the models in the array.

cov_type = 'factors';
cov_data = getcov(sysarr,cov_type)

cov_data=2×1 struct array with fields:
 R
 T
 Free

cov_data is a 2-by-1 structure array. cov_data(1) and cov_data(2) are the factored covariance
structures for sys1 and sys2.

Obtain Factored Covariance of Estimated Parameters of Identified Model

Load the estimation data.

load iddata1 z1
z1.y = cumsum(z1.y);

 getcov

1-467

Estimate the model.

init_sys = idtf([100 1500],[1 10 10 0]);
init_sys.Structure.Numerator.Minimum = eps;
init_sys.Structure.Denominator.Minimum = eps;
init_sys.Structure.Denominator.Free(end) = false;
opt = tfestOptions('SearchMethod','lm');
sys = tfest(z1,init_sys,opt);

sys, an idtf model, has six parameters, four of which are estimated.

Get the factored covariance for the estimated parameters.

cov_type = 'factors';
cov_data = getcov(sys,cov_type,'free');

Input Arguments
sys — Identified model
idtf, idss, idgrey, idpoly, idproc, idnlarx, idnlhw, or idnlgrey object | model array

Identified model, specified as an idtf, idss, idgrey, idpoly, idproc, idnlarx, idnlhw, or
idnlgrey model or an array of such models.

The getcov command returns cov_data as [] for idnlarx and idnlhw models because these
models do not store parameter covariance data.

cov_type — Covariance type
'value' (default) | 'factors'

Covariance return type, specified as either 'value' or 'factors'.

• If cov_type is 'value', then cov_data is returned as a matrix (raw covariance).
• If cov_type is 'factors', then cov_data is returned as a structure containing the factors of

the covariance matrix.

Use this option for fetching the covariance data if the covariance matrix contains nonfinite values,
is not positive definite, or is ill conditioned. You can calculate the response uncertainty using the
covariance factors instead of the numerically disadvantageous covariance matrix.

This option does not offer a numerical advantage in the following cases:

• sys is estimated using certain instrument variable methods, such as iv4.
• You have explicitly specified the parameter covariance of sys using the deprecated

CovarianceMatrix model property.

Data Types: char

Output Arguments
cov_data — Parameter covariance of sys
matrix or cell array of matrices | structure or cell array of structures

1 Functions

1-468

Parameter covariance of sys, returned as a matrix, cell array of matrices, structure, or cell array of
structures. cov_data is [] for idnlarx and idnlhw models.

• If sys is a single model and cov_type is 'value', then cov_data is an np-by-np matrix. np is
the number of parameters of sys.

The value of the nonzero elements of this matrix is equal to
sys.Report.Parameters.FreeParCovariance when sys is obtained via estimation. The row
and column entries that correspond to fixed parameters are zero.

• If sys is a single model and cov_type is 'factors', then cov_data is a structure with fields:

• R — Usually an upper triangular matrix.
• T — Transformation matrix.
• Free — Logical vector of length np, indicating if a model parameter is free (estimated) or not.

np is the number of parameters of sys.

To obtain the covariance matrix using the factored form, enter:

Free = cov_factored.Free;
T = cov_factored.T;
R = cov_factored.R;
np = nparams(sys);
cov_matrix = zeros(np);
cov_matrix(Free, Free) = T*inv(R'*R)*T';

For numerical accuracy, calculate T*inv(R'*R)*T' as X*X', where X = T/R.
• If sys is a model array, then cov_data is a cell array of size equal to the array size of sys.

cov_data(i,j,k,...) contains the covariance data for sys(:,:,i,j,k,...).

Version History
Introduced in R2012a

See Also
nparams | setcov | rsample | sim | simsd | getpvec

Topics
“What Is Model Covariance?”
“Types of Model Uncertainty Information”

 getcov

1-469

getDelayInfo
Get input/output delay information for idnlarx model structure

Syntax
DELAYS = getDelayInfo(MODEL)
DELAYS = getDelayInfo(MODEL,TYPE)

Description
DELAYS = getDelayInfo(MODEL) obtains the maximum delay in each input and output variable of
an idnlarx model.

DELAYS = getDelayInfo(MODEL,TYPE) lets you choose between obtaining maximum delays
across all input and output variables or maximum delays for each output variable individually. When
delays are obtained for each output variable individually a matrix is returned, where each row is a
vector containing ny+nu maximum delays for each output variable, and:

• ny is the number of outputs of MODEL.
• nu is the number of inputs of MODEL.

Delay information is useful for determining the number of states in the model. For nonlinear ARX
models, the states are related to the set of delayed input and output variables that define the model
structure (regressors). For example, if an input or output variable p has a maximum delay of D
samples, then it contributes D elements to the state vector:

p(t-1), p(t-2), ...p(t-D)

The number of states of a nonlinear ARX model equals the sum of the maximum delays of each input
and output variable. For more information about the definition of states for idnlarx models, see
“Definition of idnlarx States” on page 1-685

Input Arguments
getDelayInfo accepts the following arguments:

• MODEL: idnlarx model.
• TYPE: (Optional) Specifies whether to obtain channel delays 'channelwise' or 'all' as follows:

• 'all': Default value. DELAYS contains the maximum delays across each output (vector of ny
+nu entries, where [ny, nu] = size(MODEL)).

• 'channelwise': DELAYS contains delay values separated for each output (ny-by-(ny+nu)
matrix).

Output Arguments
• DELAYS: Contains delay information in a vector of length ny+nu arranged with output channels

preceding the input channels, i.e., [y1, y2,.., u1, u2,..].

1 Functions

1-470

Examples

Get Input and Output Delay Information for Nonlinear ARX Model

Create a two-output, three-input nonlinear ARX model.

M = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0],'idLinear');

Compute the maximum delays for each output variable individually.

Del = getDelayInfo(M,'channelwise')

Del = 2×5

 2 0 2 1 0
 1 0 1 5 0

The matrix Del contains the maximum delays for the first and second output of model M. You can
interpret the contents of matrix Del as follows:

• In the dynamics for output 1 (y1), the maximum delays in channels y1, y2, u1, u2, u3 are 2, 0, 2, 1,
and 0 respectively.

• Similarly, in the dynamics for output 2 (y2) of the model, the maximum delays in channels y1, y2,
u1, u2, u3 are 1, 0, 1, 5, and 0 respectively.

Find maximum delays for all the input and output variables in the order y1, y2, u1, u2, u3.

Del = getDelayInfo(M,'all')

Del = 1×5

 2 0 2 5 0

Note, The maximum delay across all output equations can be obtained by executing MaxDel =
max(Del,[],1). Since input u2 has 5 delays (the fourth entry in Del), there are 5 terms
corresponding to u2 in the state vector. Applying this definition to all I/O channels, the complete state
vector for model M becomes:

X(t) = [y1(t − 1), y1(t − 2), u1(t − 1), u1(t − 2), u2(t − 1), u2(t − 2), u2(t − 3), u2(t − 4), u2(t − 5)]

Version History
Introduced in R2008b

See Also
data2state | getreg | idnlarx

 getDelayInfo

1-471

getexp
Specific experiments from multiple-experiment data set

Syntax
d1 = getexp(data,ExperimentNumber)
d1 = getexp(data,ExperimentName)

Description
d1 = getexp(data,ExperimentNumber) retrieves specific experiments from multiple-experiment
data set. data is an iddata object that contains several experiments. d1 is another iddata object
containing the indicated experiment(s). ExperimentNumber is the experiment number as in d1 =
getexp(data,3) or d1 = getexp(data,[4 2]).

d1 = getexp(data,ExperimentName) specifies the experiment name as in
d1 = getexp(data,'Period1') or d1 = getexp(data,{'Day1','Day3'}).

See merge (iddata) and iddata for how to create multiple-experiment data objects.

You can also retrieve the experiments using a fourth subscript, as in d1 =
data(:,:,:,ExperimentNumber). Type help iddata/subsref for details on this.

Version History
Introduced before R2006a

1 Functions

1-472

getinit
Values of idnlgrey model initial states

Syntax
getinit(model)
getinit(model,prop)

Arguments
model

Name of the idnlgrey model object.
Property

Name of the InitialStates model property field, such as 'Name', 'Unit', 'Value',
'Minimum', 'Maximum', and 'Fixed'.

Default: 'Value'.

Description
getinit(model) gets the initial-state values in the 'Value' field of the InitialStates model
property.

getinit(model,prop) gets the initial-state values of the prop field of the InitialStates model
property. prop can be 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

The returned values are an Nx-by-1 cell array of values, where Nx is the number of states.

Version History
Introduced in R2007a

See Also
getpar | idnlgrey | setinit | setpar

 getinit

1-473

getoptions
Package:

Return plot options handle or plot options property

Syntax
p = getoptions(h)
p = getoptions(h,propertyName)

Description
You can use getoptions to obtain the plot handle options or properties list and use it to customize
the plot, such as modify the axes labels, limits and units. For a list of the properties and values
available for each plot type, see “Properties and Values Reference” (Control System Toolbox). To
customize an existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox).

p = getoptions(h) returns the plot options handle associated with plot handle h. p contains all
the settable options for a given response plot.

p = getoptions(h,propertyName) returns the specified options property, propertyName, for
the plot with handle h. You can use this to interrogate a plot handle.

Examples

Impulse Plot with Specified Grid Color

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a
impulse plot with red colored grid lines.

Create the MIMO state-space model sys_mimo.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

1 Functions

1-474

Create an impulse plot with plot handle h and use getoptions for a list of the options available.

h = impulseplot(sys_mimo)

h =

 resppack.timeplot

p = getoptions(h)

p =

 Normalize: 'off'
 SettleTimeThreshold: 0.0200
 RiseTimeLimits: [0.1000 0.9000]
 TimeUnits: 'seconds'
 ConfidenceRegionNumberSD: 1
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]

 getoptions

1-475

 XLim: {3x1 cell}
 YLim: {3x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {3x1 cell}

Use setoptions to update the plot with the required customization.

setoptions(h,'Grid','on','GridColor',[1 0 0]);

The impulse plot automatically updates when you call setoptions. For MIMO models,
impulseplot produces a grid of plots, each plot displaying the impulse response of one I/O pair.

Bode Plot with Specified Frequency Scale and Units

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a
Bode plot with linear frequency scale, specify frequency units in Hz and turn the grid on.

Create the MIMO state-space model sys_mimo.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;

1 Functions

1-476

sys_mimo = ss(A,B,C,D);
size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

Create a Bode plot with plot handle h and use getoptions for a list of the options available.

h = bodeplot(sys_mimo);
p = getoptions(h)

p =

 FreqUnits: 'rad/s'
 FreqScale: 'log'
 MagUnits: 'dB'
 MagScale: 'linear'
 MagVisible: 'on'
 MagLowerLimMode: 'auto'
 PhaseUnits: 'deg'
 PhaseVisible: 'on'
 PhaseWrapping: 'off'
 PhaseMatching: 'off'
 PhaseMatchingFreq: 0
 ConfidenceRegionNumberSD: 1
 MagLowerLim: 0
 PhaseMatchingValue: 0
 PhaseWrappingBranch: -180
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {6x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {6x1 cell}

Use setoptions to update the plot with the requires customization.

setoptions(h,'FreqScale','linear','FreqUnits','Hz','Grid','on');

 getoptions

1-477

The Bode plot automatically updates when you call setoptions. For MIMO models, bodeplot
produces an array of Bode plots, each plot displaying the frequency response of one I/O pair.

Input Arguments
h — Plot handle
plot handle object

Plot handle, specified as a plot handle object. For example, h is a mpzplot object for a pole-zero or
I/O pole-zero plot.

propertyName — Specific property name
string | character vector

Specific property name, specified as a string or character vector. For a list of the properties and
values available for each plot type, see “Properties and Values Reference” (Control System Toolbox).

Output Arguments
p — Plot options handle
plot options handle object

Plot options handle, returned as a plot options handle object. For example, p is a PZMapOptions
object for a pole-zero or I/O pole-zero plot.

1 Functions

1-478

Version History
Introduced in R2012a

See Also
setoptions

Topics
“Properties and Values Reference” (Control System Toolbox)
“Customizing Response Plots from the Command Line” (Control System Toolbox)

 getoptions

1-479

getpar
Obtain attributes such as values and bounds of linear model parameters

Syntax
value = getpar(sys,'value')
free = getpar(sys,'free')
bounds = getpar(sys,'bounds')
label = getpar(sys,'label')
getpar(sys)

Description
value = getpar(sys,'value') returns the parameter values of the model sys. If sys is a model
array, the returned value is a cell array of size equal to the model array.

free = getpar(sys,'free') returns the free or fixed status of the parameters.

bounds = getpar(sys,'bounds') returns the minimum and maximum bounds on the parameters.

label = getpar(sys,'label') returns the labels for the parameters.

getpar(sys) prints a table of parameter values, labels, free status and minimum and maximum
bounds.

Examples

Get Parameter Values

Get the parameter values of an estimated ARMAX model.

Estimate an ARMAX model.

load iddata8
init_data = z8(1:100);
na = 1;
nb = [1 1 1];
nc = 1;
nk = [0 0 0];
sys = armax(init_data,[na nb nc nk]);

Get the parameter values.

val = getpar(sys,'value')

val = 5×1

 -0.7519
 -0.4341
 0.4442
 0.0119

1 Functions

1-480

 0.3431

To set parameter values, use sys = setpar(sys,'value',value).

Get Free Parameters and Their Bounds

Get the free parameters and their bounds for a process model.

Construct a process model, and set its parameter values and free status.

m = idproc('P2DUZI');
m.Kp = 1;
m.Tw = 100;
m.Zeta = .3;
m.Tz = 10;
m.Td = 0.4;
m.Structure.Td.Free = 0;

Here, the value of Td is fixed.

Get the parameter values.

Val = getpar(m,'Value')

Val = 5×1

 1.0000
 100.0000
 0.3000
 0.4000
 10.0000

Get the free statuses of the parameters.

Free = getpar(m,'Free')

Free = 5x1 logical array

 1
 1
 1
 0
 1

The output indicates that Td is a fixed parameter and the remaining parameters are free.

Get the default bounds on the parameters.

MinMax = getpar(m,'bounds')

MinMax = 5×2

 -Inf Inf

 getpar

1-481

 0 Inf
 0 Inf
 0 Inf
 -Inf Inf

Extract the values of the free parameters.

FreeValues = Val(Free)

FreeValues = 4×1

 1.0000
 100.0000
 0.3000
 10.0000

Extract the bounds on the free parameters.

FreeValBounds = MinMax(Free,:)

FreeValBounds = 4×2

 -Inf Inf
 0 Inf
 0 Inf
 -Inf Inf

Get Parameter Labels

Get the parameter labels of an estimated ARMAX model.

Estimate an ARMAX model.

load iddata8;
init_data = z8(1:100);
na = 1;
nb = [1 1 1];
nc = 1;
nk = [0 0 0];
sys = armax(init_data,[na nb nc nk]);

Assign parameter labels.

sys.Structure.A.Info(2).Label = 'a2';

Get the parameter labels.

label = getpar(sys,'label')

label = 5x1 cell
 {'a2' }
 {0x0 char}
 {0x0 char}

1 Functions

1-482

 {0x0 char}
 {0x0 char}

Obtain a Table of Model Parameter Attributes

Obtain a table of all model parameter attributes of an ARMAX model.

Estimate an ARMAX model.

load iddata8;
init_data = z8(1:100);
na = 4;
nb = [3 2 3];
nc = 2;
nk = [0 0 0];
sys = armax(init_data,[na nb nc nk]);

Get all parameter attributes.

getpar(sys)

--
 # Label Value Free Min. Max.
--
 1. -1.4328 1 -Inf Inf
 2. 0.497 1 -Inf Inf
 3. 0.22904 1 -Inf Inf
 4. -0.09849 1 -Inf Inf
 5. -0.10246 1 -Inf Inf
 6. 1.1671 1 -Inf Inf
 7. 0.39579 1 -Inf Inf
 8. 0.97219 1 -Inf Inf
 9. 0.026995 1 -Inf Inf
 10. -0.17113 1 -Inf Inf
 11. 0.16155 1 -Inf Inf
 12. 0.48468 1 -Inf Inf
 13. -1.8871 1 -Inf Inf
 14. 0.97391 1 -Inf Inf

Input Arguments
sys — Identified linear model
idss | idproc | idgrey | idtf | idpoly | array of model objects

Identified linear model, specified as an idss, idpoly, idgrey, idtf, or idfrd model object or an
array of model objects.

Output Arguments
value — Parameter values
vector of doubles

 getpar

1-483

Parameter values, returned as a double vector of length nparams(sys).

free — Free or fixed status of parameters
vector of logical values

Free or fixed status of parameters, returned as a logical vector of length nparams(sys).

bounds — Minimum and maximum bounds on parameters
matrix of doubles

Minimum and maximum bounds on parameters, returned as a double matrix of size nparams(sys)-
by-2. The first column contains the minimum bound, and the second column the maximum bound.

label — Parameter labels
cell array of character vectors

Parameter labels, returned as a cell array of character vectors of length nparams(sys). For
example, {'a2','a3'}, if nparams(sys) is two.

Version History
Introduced in R2013b

See Also
setpar | getpvec | getcov | tfdata | polydata | idssdata

1 Functions

1-484

getpar
Parameter values and properties of idnlgrey model parameters

Syntax
getpar(model)
getpar(model,prop)

Arguments
model

Name of the idnlgrey model object.
Property

Name of the Parameters model property field, such as 'Name', 'Unit', 'Value', 'Minimum',
'Maximum', or 'Fixed'.

Default: 'Value'.

Description
getpar(model) gets the model parameter values in the 'Value' field of the Parameters model
property.

getpar(model,prop) gets the model parameter values in the prop field of the Parameters model
property. prop can be 'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.

The returned values are an Np-by-1 cell array of values, where Np is the number of parameters.

Version History
Introduced in R2007a

See Also
getinit | idnlgrey | setinit | setpar | getpvec

 getpar

1-485

getpvec
Obtain model parameters and associated uncertainty data

Syntax
pvec = getpvec(sys)
[pvec,pvec_sd] = getpvec(sys)
[___] = getpvec(sys,'free')

Description
pvec = getpvec(sys) returns a vector, pvec, containing the values of all the parameters of the
identified model sys.

[pvec,pvec_sd] = getpvec(sys) also returns the 1 standard deviation value of the uncertainty
associated with the parameters of sys. If the model covariance information for sys is not available,
pvec_sd is [].

[___] = getpvec(sys,'free') returns data for only the free parameters of sys, using any of
the output arguments in previous syntaxes. For idnlarx and idnlhw models, all parameters are
treated as free.

Input Arguments
sys

Identified model.

Identified model, specified as an idtf, idss, idgrey, idpoly, idproc, idnlarx, idnlhw, or
idnlgrey model or an array of such models.

Output Arguments
pvec

Values of the parameters of sys.

If sys is an array of models, then pvec is a cell array with parameter value vectors corresponding to
each model in sys. pvec is [] for idnlarx and idnlhw models that have not been estimated.

pvec_sd

1 standard deviation value of the parameters of sys.

If the model covariance information for sys is not available, pvec_sd is []. Thus, pvec_sd is always
[] for idnlarx and idnlhw models because these models do not store parameter covariance
information.

If sys is an array of models, then pvec_sd is a cell array with standard deviation vectors
corresponding to each model in sys.

1 Functions

1-486

Examples

Retrieve Parameter Values from Estimated Model

Load the estimation data.

load iddata1 z1;

Estimate a transfer function model.

sys = tfest(z1,3);

Retrieve the parameter values from the estimated model.

pvec = getpvec(sys);

Retrieve Parameter Values and Standard Deviations from Estimated Model

Load the estimation data

load iddata2 z2;

Estimate a state-space model.

sys = ssest(z2,3);

Retrieve the model parameters, pvec, and associated standard deviations, pvec_sd, from the
estimated model.

[pvec,pvec_sd] = getpvec(sys);

Retrieve Values of Free Parameters from Estimated Model

Load the estimation data.

load iddata2 z2;

Estimate a state-space model.

sys = ssest(z2,3);

Retrieve the values of the free parameters from the estimated model.

pvec = getpvec(sys,'free');

Version History
Introduced in R2012a

 getpvec

1-487

See Also
setpvec | getcov | idssdata | tfdata | zpkdata

1 Functions

1-488

getreg
Regressor expressions and numerical values in nonlinear ARX model

Syntax
Rs = getreg(model)
Rm = getreg(model,data)
Rm = getreg(model,data,init)
Rm = getreg(___ ,'Type',regressorType)

Description
Rs = getreg(model) returns expressions for computing regressors in the nonlinear ARX model.
model is an idnlarx object. A typical use of the regression matrices built by getreg is to generate
input data when you want to evaluate the output of a mapping function such as idWaveletNetwork
using evaluate. For example, the following pair of commands evaluates the output of a mapping
function model.

Regressor_Value = getreg(model,data,'z')
y = evaluate(model.OutputFcn,RegressorValue)

These commands are equivalent to the command:

y = predict(model,data,1,predictOptions('InitialCondition','z'))

Rm = getreg(model,data) returns regressor values as a timetable for the specified input/
output data set data.

Rm = getreg(model,data,init) uses the initial conditions that are specified in init. The first N
rows of each regressor matrix depend on the initial states init, where N is the maximum delay in the
regressors (see getDelayInfo).

Rm = getreg(___ ,'Type',regressorType) returns the names of the regressors of the specified
regressorType. For example, use the command Rm = getreg(model,'Type','input') to
return the names of only the input regressors.

Input Arguments
data

iddata object containing measured data or numeric matrix that contains the values of the output
and input variables in the order [model.OutputName model.InputName].

init
Initial conditions of your data:

• 'z' (default) specifies zero initial state.
• NaN denotes unknown initial conditions.
• Real column vector containing the initial state values. For more information on initial states,

see Definition of idnlarx States in idnlarx. For multiple-experiment data, this is a matrix
where each column specifies the initial state of the model corresponding to that experiment.

 getreg

1-489

• iddata object containing input and output samples at time instants before to the first sample
in data. When the iddata object contains more samples than the maximum delay in the
model, only the most recent samples are used. The number of samples required is equal to
max(getDelayInfo(model)).

model
iddata object representing nonlinear ARX model.

regressorType
Type of regressor to return, specified as one of the following:

• 'all' (default) — All regressors
• 'input' — Only input regressors
• 'output' — Only output regressors
• 'standard' — Only linear and polynomial regressors
• 'custom' — Only custom regressors

Output Arguments
Rm

timetable of regressor values for all or a specified subset of regressors. Each column in Rm
contains as many rows as there are data samples. For a model with nr regressors, Rm contains
one column for each regressor. When data contains multiple experiments, Rm is a cell array
where each element corresponds to a timetable of regressor values for an experiment.

Rs
Regressor expressions represented as a cell array of character vectors. For example, the
expression 'u1(t-2)' computes the regressor by delaying the input signal u1 by two time
samples. Similarly, the expression 'y2(t-1)' computes the regressor by delaying the output
signal y2 by one time sample.

The order of regressors in Rs corresponds to regressor indices in the idnlarx object property
model.RegressorUsage.

Examples

Get Regressor Expressions and Values, and Evaluate Predicted Model Output

Load sample data u and y.

 load twotankdata;
 Ts = 0.2;

Sample time is 0.2 sec.

Create data object and use first 1000 samples for estimation.

 z = iddata(y,u,Ts);
 ze = z(1:1000);

Estimate nonlinear ARX model.

1 Functions

1-490

 model = nlarx(ze,[3 2 1]);

Get regressor expressions.

 Rs = getreg(model)

Rs = 5x1 cell
 {'y1(t-1)'}
 {'y1(t-2)'}
 {'y1(t-3)'}
 {'u1(t-1)'}
 {'u1(t-2)'}

Get regressor values.

 Rm = getreg(model,ze)

Rm=1000×5 timetable
 Time y1(t-1) y1(t-2) y1(t-3) u1(t-1) u1(t-2)
 _______ ________ ________ ________ _______ _______

 0.2 sec 0 0 0 0 0
 0.4 sec 0.1003 0 0 10 0
 0.6 sec 0.094621 0.1003 0 10 10
 0.8 sec 0.084424 0.094621 0.1003 10 10
 1 sec 0.081449 0.084424 0.094621 10 10
 1.2 sec 0.08546 0.081449 0.084424 10 10
 1.4 sec 0.083002 0.08546 0.081449 10 10
 1.6 sec 0.08443 0.083002 0.08546 10 10
 1.8 sec 0.092793 0.08443 0.083002 10 10
 2 sec 0.099804 0.092793 0.08443 10 10
 2.2 sec 0.10559 0.099804 0.092793 10 10
 2.4 sec 0.1081 0.10559 0.099804 10 10
 2.6 sec 0.12108 0.1081 0.10559 10 10
 2.8 sec 0.12404 0.12108 0.1081 10 10
 3 sec 0.13551 0.12404 0.12108 10 10
 3.2 sec 0.13405 0.13551 0.12404 10 10
 ⋮

Evaluate and plot model output for one-step-prediction.

 Y = evaluate(model.OutputFcn,Rm.Variables);
 plot(1:1000,Y)
 title('Predicted Model Output Using evaluate')

 getreg

1-491

The previous result is equivalent to the result obtained by using predict in the following commands.

 Y_p = predict(model,ze,1,'z');
 Y = Y_p.OutputData;
 plot(Y)
 title('Predicted Model Output Using predict')

1 Functions

1-492

Version History
Introduced in R2007a

getreg returns regressor values in timetable
Behavior changed in R2021a

Starting in R2021a, getreg returns single-experiment data in a timetable of regressor values
instead of a matrix or a cell array of values as in previous versions.

See Also
idnlarx | linearRegressor | polynomialRegressor | customRegressor | evaluate

Topics
“Identifying Nonlinear ARX Models”

 getreg

1-493

getStateEstimate
Extract best state estimate and covariance from particles

Syntax
State = getStateEstimate(pf)
[State,StateCovariance] = getStateEstimate(pf)

Description
State = getStateEstimate(pf) returns the best state estimate based on the current set of
particles. The estimate is extracted based on the StateEstimationMethod property from the
particleFilter object, pf.

[State,StateCovariance] = getStateEstimate(pf) also returns the covariance of the state
estimate. The covariance is a measure of the uncertainty of the state estimate. Not all state
estimation methods support covariance output. In this case, getStateEstimate returns
StateCovariance as [].

The State and StateCovariance information can directly be accessed as properties of the particle
filter object pf, as pf.State and pf.StateCovariance. However, when both these quantities are
needed, using the getStateEstimation method with two output arguments is more
computationally efficient.

Examples

State Estimation using Particle Filter

Create a particle filter, and set the state transition and measurement likelihood functions.

myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);

Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.

initialize(myPF, 1000, [2;0], eye(2));

Pick the mean state estimation and systematic resampling methods.

myPF.StateEstimationMethod = 'mean';
myPF.ResamplingMethod = 'systematic';
myPF

myPF =
 particleFilter with properties:

 NumStateVariables: 2
 NumParticles: 1000
 StateTransitionFcn: @vdpParticleFilterStateFcn
 MeasurementLikelihoodFcn: @vdpMeasurementLikelihoodFcn
 IsStateVariableCircular: [0 0]

1 Functions

1-494

 ResamplingPolicy: [1x1 particleResamplingPolicy]
 ResamplingMethod: 'systematic'
 StateEstimationMethod: 'mean'
 StateOrientation: 'column'
 Particles: [2x1000 double]
 Weights: [1.0000e-03 1.0000e-03 1.0000e-03 ...]
 State: 'Use the getStateEstimate function to see the value.'
 StateCovariance: 'Use the getStateEstimate function to see the value.'

Assuming a measurement 2.1, run one predict and correct step.

[PredictedState, PredictedStateCovariance] = predict(myPF);
[CorrectedState, CorrectedStateCovariance] = correct(myPF,2.1);

Get the best state estimate and covariance based on the StateEstimationMethod property.

[State, StateCovariance] = getStateEstimate(myPF)

State = 2×1

 2.1018
 -0.1413

StateCovariance = 2×2

 0.0175 -0.0096
 -0.0096 0.5394

Input Arguments
pf — Particle filter
particleFilter object

Particle filter, specified as an object. See particleFilter for more information.

Output Arguments
State — Best state estimate
[] (default) | vector

Best state estimate, defined as a vector based on the condition of the StateOrientation property:

• If StateOrientation is 'row' then State is a 1-by-NumStateVariables vector
• If StateOrientation is 'column' then State is a NumStateVariables-by-1 vector

StateCovariance — Current estimate of state estimation error covariance
NumStateVariables-by-NumStateVariables array (default) | [] | array

Current estimate of state estimation error covariance, defined as an NumStateVariables-by-
NumStateVariables array. StateCovariance is calculated based on the
StateEstimationMethod. If you specify a state estimation method that does not support
covariance, then the function returns StateCovariance as [].

 getStateEstimate

1-495

Version History
Introduced in R2017b

See Also
correct | particleFilter | initialize | predict

Topics
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
“What Is Online Estimation?”

1 Functions

1-496

getTrend
Create trend information object to store offset, mean, and trend information for time-domain signals
stored in iddata object

Syntax
T = getTrend(data)
T = getTrend(data,0)
T = getTrend(data,1)

Description
T = getTrend(data) constructs a TrendInfo object to store offset, mean, or linear trend
information for detrending or retrending data. You can assign specific offset and slope values to T.
You can then apply the trend information in T to either data or to other iddata objects by using
detrend or retrend.

T = getTrend(data,0) computes the means of input and output signals and stores them as the
InputOffset and OutputOffset properties of T, respectively.

T = getTrend(data,1) computes a best-fit straight line for both input and output signals and
stores them as properties of T. The following code represents the straight line:

ULine = Tr.InputOffset + (time-t0)*Tr.InputSlope
YLine = Tr.OutputOffset + (time-t0)*Tr.OutputSlope

Here, time is equal to Z.SamplingInstants and t0 is equal to data.Tstart.

Examples

Remove Offsets from Data

Remove a specified offset from input and output signals.

Load SISO data containing vectors u2 and y2.

load dryer2

Create a data object with a sample time of 0.08 seconds and plot it.

data = iddata(y2,u2,0.08);
plot(data)

 getTrend

1-497

The data has a nonzero mean value.

Store the data offset and trend information in a TrendInfo object.

T = getTrend(data);

Assign offset values to the TrendInfo object.

T.InputOffset = 5;
T.OutputOffset = 5;

Subtract the offsets from the data.

data_d = detrend(data,T);

Plot the detrended data on the same plot.

hold on
plot(data_d)

1 Functions

1-498

View the mean value removed from the data.

get(T)

ans = struct with fields:
 DataName: 'data'
 InputOffset: 5
 OutputOffset: 5
 InputSlope: 0
 OutputSlope: 0

Compute and Store Means of Input and Output Signals

Compute input-output signal means, store them, and detrend the data.

Load SISO data containing vectors u2 and y2.

load dryer2

Create a data object with a sample time of 0.08 seconds.

data = iddata(y2,u2,0.08);

Compute the mean of the data.

 getTrend

1-499

T = getTrend(data,0);

Remove the mean from the data.

data_d = detrend(data,T);

Plot the original and detrended data on the same plot.

plot(data,data_d)

Combine Computed and Customized Trend Information for MISO Data

Load and plot data that contains two input channels and one output channel.

load z7lintrend z7L
plot(z7L)

1 Functions

1-500

The output channel of z7L contains a linear trend that is not present in the input channels. Compute
the trend information.

T = getTrend(z7L,1)

Trend specifications for data "z7L" with 2 input(s), 1 output(s), 1 experiment(s):
 DataName: 'z7L'
 InputOffset: [-0.0764 -0.0683]
 OutputOffset: -0.2642
 InputSlope: [4.8338e-04 3.1642e-04]
 OutputSlope: 0.0268

Limit the trend information to the output channel only by setting the input trend values to 0.

T.InputOffset = [0 0];
T.InputSlope = [0 0];
T

Trend specifications for data "z7L" with 2 input(s), 1 output(s), 1 experiment(s):
 DataName: 'z7L'
 InputOffset: [0 0]
 OutputOffset: -0.2642
 InputSlope: [0 0]
 OutputSlope: 0.0268

Remove the linear trend from the data.

z7d = detrend(z7L,T);
plot(z7d)

 getTrend

1-501

The trend is no longer in the output data and the input data is unchanged.

Input Arguments
data — Time-domain input-output data
iddata object

Time-domain input-output data, specified as an iddata object containing one or more sets of time-
domain signals. The iddata object can contain SISO, MIMO, or multiexperiment data. The signal sets
can contain either input and output data or output data only.

Output Arguments
T — Trend information
trendInfo object

Trend information, returned as a TrendInfo object.

Version History
Introduced in R2009a

1 Functions

1-502

See Also
detrend | retrend | TrendInfo

Topics
“Handling Offsets and Trends in Data”

 getTrend

1-503

goodnessOfFit
Goodness of fit between test and reference data for analysis and validation of identified models

Syntax
fit = goodnessOfFit(x,xref,cost_func)

Description
goodnessOfFit returns fit values that represent the error norm between test and reference data
sets. If you want to compare and visualize simulated model output with measurement data, see also
compare.

fit = goodnessOfFit(x,xref,cost_func) returns the goodness of fit between the test data x
and the reference data xref using the cost function cost_func. fit is a quantitative representation
of the closeness of x to xref. To perform multiple test-to-reference fit comparisons, you can specify x
and xref as cell arrays of equal size that contain multiple test and reference data sets. With cell
array inputs, fit returns an array of fit values.

Examples

Calculate Goodness of Fit Between Estimated and Measured Data

Find the goodness of fit between measured output data and the simulated output of an estimated
model.

Obtain the measured output.

load iddata1 z1
yref = z1.y;

z1 is an iddata object containing measured input-output data. z1.y is the measured output.

Estimate a second-order transfer function model and simulate the model output y_est.

sys = tfest(z1,2);
y_est = sim(sys,z1(:,[],:));

Calculate the goodness of fit, or error norm, between the measured and estimated outputs. Specify
the normalized root mean squared error (NRMSE) as the cost function.

cost_func = 'NRMSE';
y = y_est.y;
fit = goodnessOfFit(y,yref,cost_func)

fit = 0.2943

Alternatively, you can use compare to calculate the fit. compare uses the NRMSE cost function, and
expresses the fit percentage using the one's complement of the error norm. The fit relationship

1 Functions

1-504

between compare and goodnessOfFit is therefore fitcompare = 1− fitgof * 100. A compare result of
100% is equivalent to a goodnessOfFit result of 0.

Specify an initial condition of zero to match the initial condition that goodnessOfFit assumes.

opt = compareOptions('InitialCondition','z');
compare(z1,sys,opt);

The fit results are equivalent.

Goodness of Fit for Multiple Data Sets

Find the goodness of fit between measured and estimated outputs for two models.

Obtain the input-output measurements z2 from iddata2. Copy the measured output into reference
output yref.

load iddata2 z2
yref = z2.y;

Estimate second-order and fourth-order transfer function models using z2.

sys2 = tfest(z2,2);
sys4 = tfest(z2,4);

 goodnessOfFit

1-505

Simulate both systems to get estimated outputs.

y_sim2 = sim(sys2,z2(:,[],:));
y2 = y_sim2.y;
y_sim4 = sim(sys4,z2(:,[],:));
y4 = y_sim4.y;

Create cell arrays from the reference and estimated outputs. The reference data set is the same for
both model comparisons, so create identical reference cells.

yrefc = {yref yref};
yc = {y2 y4};

Compute fit values for the three cost functions.

fit_nrmse = goodnessOfFit(yc,yrefc,'NRMSE')

fit_nrmse = 1×2

 0.1429 0.1342

fit_nmse = goodnessOfFit(yc,yrefc,'NMSE')

fit_nmse = 1×2

 0.0204 0.0180

fit_mse = goodnessOfFit(yc,yrefc,'MSE')

fit_mse = 1×2

 1.0811 0.9539

A fit value of 0 indicates a perfect fit between reference and estimated outputs. The fit value rises as
fit goodness decreases. For all three cost functions, the fourth-order model produces a better fit than
the second-order model.

Input Arguments
x — Data to test
matrix (default) | cell array

Data to test, specified as a matrix or cell array.

• For a single test data set, specify an Ns-by-N matrix, where Ns is the number of samples and N is
the number of channels. You must specify cost_fun as 'NRMSE' or 'NMSE' to use multiple-
channel data.

• For multiple test data sets, specify a cell array of length Nd, where Nd is the number of test-to-
reference pairs and each cell contains one data matrix.

x must not contain any NaN or Inf values.

xref — Reference data
matrix (default) | cell array

1 Functions

1-506

Reference data with which to compare x, specified as a matrix or cell array.

• For a single reference data set, specify an Ns-by-N matrix, where Ns is the number of samples and
N is the number of channels. xref must be the same size as x. You must specify cost_fun as
'NRMSE' or 'NMSE' to use multiple-channel data.

• For multiple reference data sets, specify a cell array of length Nd, where Nd is the number of test-
to-reference pairs and each cell contains one reference data matrix. As with the individual data
matrices, the cell array sizes for x and xref must match. Each ith element of fit corresponds to
the pairs of the ith cells of x and xref.

xref must not contain any NaN or Inf values.

cost_func — Cost function
'MSE' | 'NRMSE' | 'NMSE'

Cost function to determine goodness of fit, specified as one of the following values. In the equations,
the value fit applies to a single pairing of test and reference data sets.

Value Description Equation Notes
'MSE' Mean squared error

f it = x− xref 2

Ns

where Ns is the number
of samples and ‖
indicates the 2-norm of
a vector.

fit is a scalar.

'NRMSE' Normalized root mean
squared error f it(i)

= xref (: , i)− x(: , i)
xref (: , i)−mean(xref (: , i))

where ‖ indicates the 2-
norm of a vector. fit is
a row vector of length N
and i = 1,...,N, where N
is the number of
channels.

fit is a row vector.
'NRMSE' is the cost
function used by
compare.

'NMSE' Normalized mean
squared error f it(i)

= xref (: , i)− x(: , i) 2

xref (: , i)−mean(xref (: , i)) 2

fit is a row vector.

Output Arguments
fit — Goodness of fit
scalar | row vector | cell array

Goodness of fit between test and reference data pairs, returned as a scalar, a row vector, or a cell
array.

 goodnessOfFit

1-507

• For a single test and reference data set pair, fit is returned as a scalar or row vector.

• If cost_fun is 'MSE', then fit is a scalar.
• If cost_fun is 'NRMSE' or 'NMSE', then fit is a column vector of length N, where N is the

number of channels.
• For multiple test and data set and reference pairs, where x and xref are cell arrays of length ND,

fit is returned as a vector or a matrix.

• If cost_fun is 'MSE', then fit is a row vector of length ND.
• If cost_fun is 'NRMSE' or 'NMSE', then fit is a matrix of size N-by- Nd, where N is the

number of channels (data columns) and Nd represents the number of test pairs. Each element
of fit contains the goodness of fit values for the corresponding test data and reference pair.

Each element of fit contains the goodness of fit values for the corresponding test data and
reference pair.

Possible values for individual fit elements depend on the selection of cost_func.

• If cost_func is 'MSE', each fit value is a positive scalar that grows with the error between test
and reference data. A fit value of 0 indicates a perfect match between test and reference data.

• If cost_func is 'NRMSE' or 'NMSE', fit values vary between -Inf and 1.

• 0 — Perfect fit to reference data (zero error)
• -Inf — Bad fit
• 1 — x is no better than a straight line at matching xref

Version History
Introduced in R2012a

goodnessOfFit: Fit result represents the error norm for all three cost functions, with a
value of zero indicating a perfect fit
Behavior changed in R2020a

goodnessOfFit now returns the error norm E as the fit value for all three cost functions (MSE,
NRMSE, and NMSE). Previously, goodnessOfFit returned the one's complement of the error norm,
1-E, for fit values that used the NRMSE or NMSE cost functions. This change allows consistent fit-
value interpretation across the three cost functions, with the ideal fit value of zero representing a
perfect fit.

Previously computed NRMSE and NMSE fit values are the one's complements of the fit values
computed with the current software. Similarly, the NRMSE fit value is now the one's complement of
the fit used in the percentage value that compare computes. For example, if the previous
goodnessOfFit fit value was 0.8, the current fit value is 0.2. A goodnessOfFit fit value of 0.2 is
equivalent to a compare fit percentage of 80%.

See Also
compare | fpe | aic | resid

1 Functions

1-508

greyest
Linear grey-box model estimation

Syntax
sys = greyest(data,init_sys)
sys = greyest(data,init_sys,opt)
[sys,x0] = greyest(___)

Description
sys = greyest(data,init_sys) estimates a linear grey-box model, sys, using time or frequency
domain data, data. The dimensions of the inputs and outputs of data and init_sys, an idgrey
model, must match. sys is an identified idgrey model that has the same structure as init_sys.

sys = greyest(data,init_sys,opt) estimates a linear grey-box model using the option set,
opt, to configure the estimation options.

[sys,x0] = greyest(___) returns the value of the initial states computed during estimation. You
can use this syntax with any of the previous input-argument combinations.

Input Arguments
data

Estimation data.

The dimensions of the inputs and outputs of data and init_sys must match.

For time-domain estimation, data is an iddata object containing the input and output signal values.

For frequency domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)
• iddata object with its Domain property set to 'Frequency'

init_sys

Identified linear grey-box model that configures the initial parameterization of sys.

init_sys, an idgrey model, must have the same input and output dimensions as data.

opt

Estimation options.

opt is an option set, created using greyestOptions, which specifies options including:

• Estimation objective
• Initialization choice

 greyest

1-509

• Disturbance model handling
• Numerical search method to be used in estimation

Output Arguments
sys

Estimated grey-box model, returned as an idgrey model. This model is created using the specified
initial system, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialSt
ate

Handling of initial states during estimation, returned as one of the following:

• 'model' — The initial state is parameterized by the ODE file used by the idgrey
model.

• 'zero' — The initial state is set to zero.
• 'estimate' — The initial state is treated as an independent estimation parameter.
• 'backcast' — The initial state is estimated using the best least squares fit.
• Vector of doubles of length Nx, where Nx is the number of states. For

multiexperiment data, a matrix with Ne columns, where Ne is the number of
experiments.

This field is especially useful to view how the initial states were handled when the
InitialState option in the estimation option set is 'auto'.

Disturban
ceModel

Handling of the disturbance component (K) during estimation, returned as one of the
following values:

• 'model' — K values are parameterized by the ODE file used by the idgrey model.
• 'fixed' — The value of the K property of the idgrey model is fixed to its original

value.
• 'none' — K is fixed to zero.
• 'estimate' — K is treated as an independent estimation parameter.

This field is especially useful to view the how the disturbance component was handled
when the DisturbanceModel option in the estimation option set is 'auto'.

1 Functions

1-510

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See greyestOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

 greyest

1-511

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information on using Report, see “Estimation Report”.

1 Functions

1-512

x0

Initial states computed during the estimation, returned as a matrix containing a column vector
corresponding to each experiment.

This array is also stored in the Parameters field of the model Report property.

Examples

Estimate Grey-Box Model

Estimate the parameters of a DC motor using the linear grey-box framework.

Load the measured data.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));
data = iddata(y, u, 0.1, 'Name', 'DC-motor');
data.InputName = 'Voltage';
data.InputUnit = 'V';
data.OutputName = {'Angular position', 'Angular velocity'};
data.OutputUnit = {'rad', 'rad/s'};
data.Tstart = 0;
data.TimeUnit = 's';

data is an iddata object containing the measured data for the outputs, the angular position, the
angular velocity. It also contains the input, the driving voltage.

Create a grey-box model representing the system dynamics.

For the DC motor, choose the angular position (rad) and the angular velocity (rad/s) as the outputs
and the driving voltage (V) as the input. Set up a linear state-space structure of the following form:

ẋ(t) =
0 1

0 −1
τ

x(t) +
0
G
τ

u(t)

y(t) =
1 0
0 1

x(t) .

τ is the time constant of the motor in seconds, and G is the static gain from the input to the angular
velocity in rad/(V*s) .

G = 0.25;
tau = 1;

init_sys = idgrey('motorDynamics',tau,'cd',G,0);

The governing equations in state-space form are represented in the MATLAB® file
motorDynamics.m. To view the contents of this file, enter edit motorDynamics.m at the MATLAB
command prompt.

G is a known quantity that is provided to motorDynamics.m as an optional argument.

τ is a free estimation parameter.

 greyest

1-513

init_sys is an idgrey model associated with motor.m.

Estimate τ.

sys = greyest(data,init_sys);

sys is an idgrey model containing the estimated value of τ.

To obtain the estimated parameter values associated with sys, use getpvec(sys).

Analyze the result.

opt = compareOptions('InitialCondition','zero');
compare(data,sys,Inf,opt)

sys provides a 98.35% fit for the angular position and an 84.42% fit for the angular velocity.

Estimate Grey-Box Model Using Regularization

Estimate the parameters of a DC motor by incorporating prior information about the parameters
when using regularization constants.

The model is parameterized by static gain G and time constant τ. From prior knowledge, it is known
that G is about 4 and τ is about 1. Also, you have more confidence in the value of τ than G and would
like to guide the estimation to remain close to the initial guess.

1 Functions

1-514

Load estimation data.

load regularizationExampleData.mat motorData

The data contains measurements of motor's angular position and velocity at given input voltages.

Create an idgrey model for DC motor dynamics. Use the function DCMotorODE that represents the
structure of the grey-box model.

mi = idgrey(@DCMotorODE,{'G', 4; 'Tau', 1},'cd',{}, 0);
mi = setpar(mi, 'label', 'default');

If you want to view the DCMotorODE function, type:

type DCMotorODE.m

function [A,B,C,D] = DCMotorODE(G,Tau,Ts)
%DCMOTORODE ODE file representing the dynamics of a DC motor parameterized
%by gain G and time constant Tau.
%
% [A,B,C,D,K,X0] = DCMOTORODE(G,Tau,Ts) returns the state space matrices
% of the DC-motor with time-constant Tau and static gain G. The sample
% time is Ts.
%
% This file returns continuous-time representation if input argument Ts
% is zero. If Ts>0, a discrete-time representation is returned.
%
% See also IDGREY, GREYEST.

% Copyright 2013 The MathWorks, Inc.

A = [0 1;0 -1/Tau];
B = [0; G/Tau];
C = eye(2);
D = [0;0];
if Ts>0 % Sample the model with sample time Ts
 s = expm([[A B]*Ts; zeros(1,3)]);
 A = s(1:2,1:2);
 B = s(1:2,3);
end

Specify regularization options Lambda.

opt = greyestOptions;
opt.Regularization.Lambda = 100;

Specify regularization options R.

opt.Regularization.R = [1, 1000];

You specify more weighting on the second parameter because you have more confidence in the value
of τ than G.

Specify the initial values of the parameters as regularization option θ*.

opt.Regularization.Nominal = 'model';

Estimate the regularized grey-box model.

 greyest

1-515

sys = greyest(motorData, mi, opt);

Version History
Introduced in R2012a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

Parallel computing support is available for estimation using the lsqnonlin search method (requires
Optimization Toolbox). To enable parallel computing, use greyestOptions, set SearchMethod to
'lsqnonlin', and set SearchOptions.Advanced.UseParallel to true.

For example:

opt = greyestOptions;
opt.SearchMethod = 'lsqnonlin';
opt.SearchOptions.Advanced.UseParallel = true;

See Also
idgrey | greyestOptions | iddata | idfrd | ssest | idnlgrey | pem

Topics
“Estimate Model Using Zero/Pole/Gain Parameters”
“Regularized Estimates of Model Parameters”

1 Functions

1-516

greyestOptions
Option set for greyest

Syntax
opt = greyestOptions
opt = greyestOptions(Name,Value)

Description
opt = greyestOptions creates the default options set for greyest.

opt = greyestOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialState — Handling of initial states
'auto' (default) | 'model' | 'zero' | 'estimate' | 'backcast'

Handling of initial states during estimation, specified as one of the following values:

• 'model' — The initial state is parameterized by the ODE file used by the idgrey model. The ODE
file must return 6 or more output arguments.

• 'zero' — The initial state is set to zero. Any values returned by the ODE file are ignored.
• 'estimate' — The initial state is treated as an independent estimation parameter.
• 'backcast' — The initial state is estimated using the best least squares fit.
• 'auto' — The software chooses the method to handle initial states based on the estimation data.
• Vector of doubles — Specify a column vector of length Nx, where Nx is the number of states. For

multiexperiment data, specify a matrix with Ne columns, where Ne is the number of experiments.
The specified values are treated as fixed values during the estimation process.

DisturbanceModel — Handling of disturbance component
'auto' (default) | 'model' | 'fixed' | 'none' | 'estimate'

Handling of the disturbance component (K) during estimation, specified as one of the following
values:

• 'model' — K values are parameterized by the ODE file used by the idgrey model. The ODE file
must return 5 or more output arguments.

 greyestOptions

1-517

• 'fixed' — The value of the K property of the idgrey model is fixed to its original value.
• 'none' — K is fixed to zero. Any values returned by the ODE file are ignored.
• 'estimate' — K is treated as an independent estimation parameter.
• 'auto' — The software chooses the method to handle how the disturbance component is handled

during estimation. The software uses the 'model' method if the ODE file returns 5 or more
output arguments with a finite value for K. Else, the software uses the 'fixed' method.

Note Noise model cannot be estimated using frequency domain data.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.

1 Functions

1-518

• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

• Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

 greyestOptions

1-519

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weighting of prediction errors in multi-output estimations
[] (default) | 'noise' | positive semidefinite symmetric matrix

Weighting of prediction errors in multi-output estimations, specified as one of the following values:

• 'noise' — Minimize det(E′ * E/N), where E represents the prediction error and N is the number
of data samples. This choice is optimal in a statistical sense and leads to maximum likelihood
estimates if nothing is known about the variance of the noise. It uses the inverse of the estimated
noise variance as the weighting function.

Note OutputWeight must not be 'noise' if SearchMethod is 'lsqnonlin'.
• Positive semidefinite symmetric matrix (W) — Minimize the trace of the weighted prediction error

matrix trace(E'*E*W/N), where:

• E is the matrix of prediction errors, with one column for each output, and W is the positive
semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-output models, or the reliability of corresponding
data.

• N is the number of data samples.
• [] — The software chooses between 'noise' and using the identity matrix for W.

This option is relevant for only multi-output models.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as a structure with the fields in the
following table. For more information on regularization, see “Regularized Estimates of Model
Parameters”.

Field Name Description Default
Lambda Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the
estimation cost.

The default value of 0 implies no regularization.

0

1 Functions

1-520

Field Name Description Default
R Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-
definite matrix. The length must be equal to the number of free
parameters of the model.

For black-box models, using the default value is recommended. For
structured and grey-box models, you can also specify a vector of np
positive numbers such that each entry denotes the confidence in the
value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where
npfree is the number of free parameters.

1

Nominal The nominal value towards which the free parameters are pulled
during estimation.

The default value of 0 implies that the parameter values are pulled
towards zero. If you are refining a model, you can set the value to
'model' to pull the parameters towards the parameter values of the
initial model. The initial parameter values must be finite for this
setting to work.

0

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

 greyestOptions

1-521

SearchMethod Description
'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

1 Functions

1-522

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

 greyestOptions

1-523

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

1 Functions

1-524

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

 greyestOptions

1-525

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

1 Functions

1-526

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight
in the loss function. The standard deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors, divided by 0.7. For more information on
robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic loss function.
When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For
time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
• MaxSize — Specifies the maximum number of elements in a segment when input-output data is

split into segments.

MaxSize must be a positive integer.

Default: 250000
• StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

• s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0
• z — Specifies the maximum distance of all poles from the origin to test stability of discrete-

time models. A model is considered stable if all poles are within the distance z from the origin.

 greyestOptions

1-527

Default: 1+sqrt(eps)
• AutoInitThreshold — Specifies when to automatically estimate the initial state.

The initial state is estimated when

yp, z − ymeas
yp, e− ymeas

> AutoInitThreshold

• ymeas is the measured output.
• yp,z is the predicted output of a model estimated using zero initial states.
• yp,e is the predicted output of a model estimated using estimated initial states.

Applicable when InitialState is 'auto'.

Default: 1.05

Output Arguments
opt — Options set for greyest
greyestOptions option set

Option set for greyest, returned as an greyestOptions option set.

Examples

Create Default Options Set for Linear Grey Box Estimation

opt = greyestOptions;

Specify Options for Linear Grey Box Estimation

Create an options set for greyest using the 'backcast' algorithm to initialize the state. Specify
Display as 'on'.

opt = greyestOptions('InitialState','backcast','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = greyestOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';

Version History
Introduced in R2012a

Renaming of Estimation and Analysis Options

1 Functions

1-528

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References

[1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates”. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3–8,
2005. Oxford, UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

See Also
greyest | idgrey | idnlgrey | pem | ssest

Topics
“Loss Function and Model Quality Metrics”

 greyestOptions

1-529

hasdelay
True for linear model with time delays

Syntax
B = hasdelay(sys)
B = hasdelay(sys,'elem')

Description
B = hasdelay(sys) returns 1 (true) if the model sys has input delays, output delays, I/O delays, or
internal delays, and 0 (false) otherwise. If sys is a model array, then B is true if least one model in
sys has delays.

B = hasdelay(sys,'elem') returns a logical array of the same size as the model array sys. The
logical array indicates which models in sys have delays.

Version History
Introduced in R2012a

See Also
absorbDelay | totaldelay

1 Functions

1-530

idCustomNetwork
Custom network function for nonlinear ARX and Hammerstein-Wiener models

Description
An idCustomNetwork object implements a custom network function, and is a nonlinear mapping
function for estimating nonlinear ARX and Nonlinear Hammerstein-Wiener models. The mapping
function, which is also referred to as a nonlinearity, uses a combination of linear weights, an offset
and a nonlinear function to compute its output. The nonlinear function contains custom unit functions
that operate on a ridge combination (weighted linear sum) of inputs.

Mathematically, idCustomNetwork is a function that maps m inputs X(t) = [x(t1),x2(t),…,xm(t)]T to a
scalar output y(t) using the following relationship:

y(t) = y0 + Χ(t)TPL + C(Χ(t))

Here:

• X(t) is an m-by-1 vector of inputs, or regressors.
• y0 is the output offset, a scalar.
• P is an m-by-p projection matrix, where m is the number of regressors and is p is the number of

linear weights. m must be greater than or equal to p.
• L is a p-by-1 vector of weights.
• C(X) is a sum of dilated and translated custom unit functions. The total number of unit functions is

referred to as the number of units n of the network.

 idCustomNetwork

1-531

For the definition of the unit function term C(X) , see “More About” on page 1-536.

Use idCustomNetwork as the value of the OutputFcn property of an idnlarx model or the
InputNonlinearity and OutputLinearity properties of an idnlhw object. For example, specify
idCustomNetwork when you estimate an idnlarx model with the following command.

sys = nlarx(data,regressors,idCustomNetwork)

When nlarx estimates the model, it essentially estimates the parameters of the idCustomNetwork
function.

You can configure the idCustomNetwork function to disable components and fix parameters. To omit
the linear component, set LinearFcn.Use to false. To omit the offset, set Offset.Use to false.
To specify known values for the linear function and the offset, set their Value attributes directly and
set the corresponding Free attributes to False. Use evaluate to compute the output of the
function for a given vector of inputs.

Creation

Syntax
C = idCustomNetwork(H)
C = idCustomNetwork(H,numUnits)
C = idCustomNetwork(H,numUnits,UseLinearFcn)
C = idCustomNetwork(H,numUnits,UseLinearFcn,UseOffset)

Description

C = idCustomNetwork(H) creates a nonlinear mapping object with a user-defined unit function
using the function handle H. H must point to a function of the form [f,g,a] = function_name(x),
where f is the value of the function, g = df/dx, and a indicates the unit function active range [-a
a] where g is significantly nonzero. Hammerstein-Wiener models require that your custom function
have only one input and one output.

C = idCustomNetwork(H,numUnits) specifies the number of unit functions numUnits.

C = idCustomNetwork(H,numUnits,UseLinearFcn) specifies whether the function uses a linear
function as a subcomponent.

C = idCustomNetwork(H,numUnits,UseLinearFcn,UseOffset) specifies whether the function
uses an offset term y0 parameter.

Input Arguments

H — Function handle
function handle

Function handle that points to a custom function of the form [f,g,a] = function_name(x),
specified as a function handle. The function that H points to must be vectorized. That is, for a vector
or matrix x, the output arguments f and g must have the same size as x when computed element by
element.

This argument sets the C.NonlinearFcn.UnitFcn property.

1 Functions

1-532

numUnits — Number of units
10 (default) | positive integer

Number of units, specified as a positive integer. numUnits determines the number of custom unit
functions.

This argument sets the C.NonlinearFcn.NumberOfUnits property.

UseLinearFcn — Option to use linear function
true (default) | false

Option to use the linear function subcomponent, specified as true or false. This argument sets the
value of the C.LinearFcn.Use property.

UseOffset — Option to use offset term
true (default) | false

Option to use an offset term, specified as true or false. This argument sets the value of the
C.Offset.Use property.

Properties
Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

LinearFcn — Parameters of linear function
linear function property values (default)

Parameters of the linear function, specified as follows:

• Use — Option to use the linear function in the custom network, specified as a scalar logical. The
default value is true.

• Value — Linear weights that compose L', specified as a 1-by-p vector.
• InputProjection — Input projection matrix P, specified as an m-by-p matrix, that transforms

the detrended input vector of length m into a vector of length p. For Hammerstein-Wiener models,
InputProjection is equal to 1.

• Free — Option to update entries of Value during estimation, specified as a 1-by-p logical vector.
The software honors the Free specification only if the starting value of Value is finite. The default
value is true.

The software computes the output of LinearFcn as FL(t) = Χ(t)TPL.

Offset — Parameters of offset term
offset property values

 idCustomNetwork

1-533

Parameters of the offset term, specified as follows:

• Use — Option to use the offset in the custom network, specified as a scalar logical. The default
value is true.

• Value — Offset value, specified as a scalar.
• Free — Option to update Value during estimation, specified as a scalar logical. The software

honors the Free specification of false only if the value of Value is finite. The default value is
true.

NonlinearFcn — Parameters of nonlinear function
nonlinear function property values

Parameters of the nonlinear function, specified as follows:

• UnitFcn — Function handle that points to a custom function of the form [f,g,a] =
function_name(x). The function that UnitFcn points to must be vectorized. That is, for a
vector or matrix x, the output arguments f and g must have the same size as x when computed
element by element.

• NumberOfUnits — Number of units, specified as a positive integer. NumberOfUnits determines
the number n of custom functions.

• Parameters — Parameters of idCustomNetwork, specified as in the following table:

Field Name Description Default

InputProject
ion

Projection matrix Q, specified as an m-by-q matrix. Q
transforms the detrended input vector (X − X) of length m
into a vector of length q. Typically, Q has the same
dimensions as the linear projection matrix P. In this case, q is
equal to p, which is the number of linear weights.

For Hammerstein-Wiener models, InputProjection is
equal to 1.

[]

OutputCoeffi
cient

custom function output coefficients si, specified as an n-by-1
vector.

[]

Translation Translation matrix, specified as an n-by-q matrix of
translation row vectors ci.

[]

Dilation Dilation coefficients bi, specified as an n-by-1 vector. []

• Free — Option to estimate parameters, specified as a logical scalar. If all the parameters have
finite values, such as when the idCustomNetwork object corresponds to a previously estimated
model, then setting Free to false causes the parameters of the nonlinear function S(X) to remain
unchanged during estimation. The default value is true.

Examples

Estimate Nonlinear ARX Model with idCustomNetwork as Output Function

Load the data

load iddata1 z1

1 Functions

1-534

Create an idCustomNetwork object that uses gaussunit as the unit function.

H = @gaussunit;
C = idCustomNetwork(@gaussunit);

Set properties of C using dot notation. Fix the value of the offset to 0.2 and set the number of unit
functions to 15.

C.Offset.Value = 0.2;
C.Offset.Free = false;
C.NonlinearFcn.NumberOfUnits = 15

C =
Custom Network

 Nonlinear Function: Custom Network with 15 units and "gaussunit" unit function
 Linear Function: uninitialized
 Output Offset: fixed to 0.2

 Inputs: {1x0 cell}
 Outputs: {1x0 cell}
 NonlinearFcn: 'Custom units and their parameters'
 LinearFcn: 'Linear function parameters'
 Offset: 'Offset parameters'

Create model regressors.

Reg = linearRegressor([z1.OutputName z1.InputName],{1:4 0:4});

Estimate the nonlinear ARX model.

sys = nlarx(z1,Reg,C)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Custom Network with 15 units and "gaussunit" unit function
Sample time: 0.1 seconds

Status:
Termination condition: Maximum number of iterations reached..
Number of iterations: 20, Number of function evaluations: 231

Estimated using NLARX on time domain data "z1".
Fit to estimation data: 75.54% (prediction focus)
FPE: 4.531, MSE: 1.16
More information in model's "Report" property.

 idCustomNetwork

1-535

Estimate Hammerstein-Wiener Model with idCustomNetwork as Output Nonlinearity

Load the data.

load throttledata

Create an idCustomNetwork object C that uses gaussunit as the unit function. Include input
arguments that specify 10 units and exclude the linear function and the offset.

H = @gaussunit;
C = idCustomNetwork(@gaussunit,10,false,false)

C =
Custom Network

 Nonlinear Function: Custom Network with 10 units and "gaussunit" unit function
 Linear Function: not in use
 Output Offset: not in use

 Inputs: {1x0 cell}
 Outputs: {1x0 cell}
 NonlinearFcn: 'Custom units and their parameters'
 LinearFcn: 'Linear function parameters'
 Offset: 'Offset parameters'

Estimate the Hammerstein-Wiener Model using orders [4 4 1], no input nonlinearity, and C as the
output nonlinearity.

sys = nlhw(ThrottleData,[4 4 1],[],C)

sys =

Hammerstein-Wiener model with 1 output and 1 input

Linear transfer function corresponding to the orders nb = 4, nf = 4, nk = 1

Input nonlinearity: None
Output nonlinearity: Custom Network with 10 units and "gaussunit" unit function
Sample time: 0.01 seconds

Status:
Termination condition: Maximum number of iterations reached..
Number of iterations: 20, Number of function evaluations: 262

Estimated using NLHW on time domain data "ThrottleData".
Fit to estimation data: 53.16%
FPE: 310.1, MSE: 242
More information in model's "Report" property.

More About
Custom Nonlinear Function C(X)

The custom nonlinear function is a sum of the dilated and translated unit functions, and is described
by the following equation:

1 Functions

1-536

C(X) = ∑
i = 1

n
sif (XTQbi + ci)

Here:

• Q is an m-by-q projection matrix, where m ≥ q.
• s1, s2, …, sn are scalar weights called output coefficients.
• b1, b2, …, bn are q-by-1 vectors called dilation coefficients .
• c1, c2, …, cn are scalars called translations.
• f(z) is a function, also called a unit function, that takes a scalar input and returns a scalar output.

Here, z is a scalar of the form biXTQ + ci.

Algorithms
idCustomNetwork uses an iterative search technique for estimating parameters.

Version History
Introduced in R2007a

Previous idnlarx data normalization information moved from mapping object properties to
idnlarx Normalization property
Behavior changed in R2022a

Information related to data normalization was moved from the idCustomNetwork mapping object
level to the model level. The Normalization property of the idnlarx model contains the data
centering and scaling information that the estimation process computes. In addition, the regressor-
selection process for the mapping objects has also moved to the model level. The model now passes
the actual regressor names rather than the selection indices to the mapping object, eliminating the
need for an index property at the mapping object level.

The following table summarizes the mapping object subproperties that were eliminated. For more
information, see the Normalization property of idnlarx.

Main
Properties /
Subproperties

Input Output LinearMdl Offset NonlinearMdl

Mean X X
Range X X
Minimum X X X
Maximum X X X
SelectedInpu
tIndex

 X X

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

 idCustomNetwork

1-537

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

Use of previous nonlinearity estimator properties is not recommended
Not recommended starting in R2021a

Starting in R2021a, the properties of the mapping objects, previously known as nonlinearity
estimators, have been reorganized. These objects are wavenet (W), sigmoidnet (S),
treepartition (T), customnet (C), and linear (L). The property changes do not apply to
neuralnet. The use of the pre-R2021a properties in the following table is discouraged. However, the
software still accepts commands that set these properties. There are no plans to exclude such
commands at this time.

Pre-R2021a Property R2021a Property Applicable Mapping Objects
NumberOfUnits NonlinearFcn.NumberOfUni

ts
W,S,T,C

LinearTerm LinearFcn.Use, Offset.Use W,S,C
Parameters Split into three pieces:

• LinearFcn.Value
• Offset.Value
• NonlinearFcn.Parameter

s

W,S,T,C,L

linear (L) excludes
NonlinearFcn.Parameters.

Options NonlinearFcn.Structure W,T

See Also
nlhw | nlarx | idnlhw | idnlarx | evaluate

1 Functions

1-538

Topics
“Available Mapping Functions for Nonlinear ARX Models”
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

 idCustomNetwork

1-539

iddata
Input-output data and its properties for system identification in the time or frequency domain

Description
Use the iddata object to encapsulate input and output measurement data for the system you want to
identify. System identification functions use these measurements to estimate a model. Model
validation functions use the input measurements to provide the input for simulations, and the output
measurements to compare how well the estimated model response fits the original data.

iddata objects can contain a single set of measurements or multiple sets. Each set of data
corresponds to an experiment. The objects have the following characteristics, which are encoded in
the object properties on page 1-542:

• Data can be in the frequency domain or the time domain. You can convert objects from one
domain to the other.

• In the time domain, the data can be uniformly or nonuniformly sampled. To use the iddata object
for estimation, however, the data must be uniformly sampled, and the input and output data for
each experiment must be recorded at the same time instants.

• You can specify data properties, such as the sample time, start time, time points, frequency
sample points, and intersample behavior.

• You can provide labels and comments to differentiate and annotate data components, experiments,
and the object as a whole.

To access the object properties, use dot notation. For example, suppose that you create an iddata
object with the command sys = iddata(ym,um,Tsamp), where ym is measured output data, um is
measured input data, and Tsamp is the sample time. iddata stores these variables in the properties
InputData, OutputData, and Ts, respectively. You can view or modify the data using
sys.InputData, sys.OutputData, and sys.Ts. For an example of using dot notation to view and
modify properties, see “View and Modify Properties” on page 1-551.

Creation
Syntax
data = iddata(y,u,Ts)
data = iddata(y,[],Ts)

data = iddata(y,u,Ts,'Frequency',W)

data = iddata(___ ,Name,Value)

Description
Use Time-Domain Data

data = iddata(y,u,Ts) creates an iddata object containing a time-domain output signal y and
input signal u. Ts specifies the sample time of the experimental data.

1 Functions

1-540

You can use iddata to create a multiexperiment iddata object by specifying y and u as cell arrays.
Alternatively, you can create single-experiment iddata objects and use merge (iddata) to
combine the objects into one multiexperiment iddata object. For more information on
multiexperiment iddata objects, see “Create Multiexperiment Data at the Command Line”.

data = iddata(y,[],Ts) creates an iddata object for time-series data. The object contains a
time-domain output signal y and an empty input signal []. Ts specifies the sample time of the
experimental data.

Use Frequency-Domain Data

data = iddata(y,u,Ts,'Frequency',W) creates an iddata object containing frequency-domain
data. W sets the iddata property Frequency to a vector of frequencies. Typically, y and u are the
discrete Fourier transform of time-domain signals.

Configure Additional Properties

data = iddata(___ ,Name,Value) sets additional properties using name-value pair arguments.
Specify Name,Value after any of the input argument combinations in the previous syntaxes.

Input Arguments

y — Output signal from system
column vector | matrix | cell array | []

Output signal from a system, specified as one of the following:

• An N-by-1 vector for a single output system, where N is the number of observations
• An N-by-Ny matrix for a multiple-output system, where Ny is the number of output channels
• An Ne element cell array for a multiexperiment data set, where Ne is the number of experiments

and each cell contains the output signals for one experiment
• [] for a system that has no output signal, such as when only the input signal is recorded

y must be in the same domain as the input data u. If the data is in the time domain, y and u must be
recorded at the same time instants.

If you use the iddata object for estimation, y and u must be uniformly sampled. If the nonuniformity
is small, you may be able to able to convert your data into a uniformly sampled set with enough
integrity that the converted data supports estimation. For more information on techniques you can
try, see interp1 and “Missing Data in MATLAB”.

y sets the OutputData property of the iddata object.

u — Input signal to system
column vector | matrix | cell array | []

Input signal to a system, specified as one of the following:

• An N-by-1 vector for a single input system, where N is the number of observations
• An N-by-Nu matrix for a multiple-input system, where Nu is the number of input channels
• An Ne element cell array for a multiexperiment data set, where Ne is the number of experiments

and each cell contains the input signals for one experiment
• [] for a system that has no input signal, such as a time series

 iddata

1-541

u must be in the same domain as output data y. If the data is in the time domain, y and u must be
recorded at the same time instants.

If you use the iddata object for estimation, y and u must be uniformly sampled. If the nonuniformity
is small, you may be able to able to convert your data into a uniformly sampled set with enough
integrity that the converted data supports estimation. For more information on techniques you can
try, see interp1 and “Missing Data in MATLAB”.

u sets the InputData property of the iddata object.

Ts — Sample time
1 (default) | scalar | 0 | []

Sample time in the units specified by the property TimeUnit, specified as one of the following:

• A scalar when y and u are uniformly sampled.
• 0 for continuous-time data in the frequency domain.
• [] when y and u are not uniformly sampled and you specify the time values in the property

SamplingInstants. For nonuniform sampling, y and u must be in the time domain.

Ts sets the Ts property of the iddata object.

Properties
Domain — Data time or frequency domain
'Time' (default) | 'Frequency'

Data time or frequency domain, specified as either:

• 'Time' — Data is in the time domain
• 'Frequency' — Data is in the frequency domain

ExperimentName — Name of each data set
{'Exp1';'Exp2';…} (default) | cell array

Name of each data set contained in the iddata object, specified as an Ne-by-1 cell array of character
vectors, where Ne is the number of experiments. Each cell contains the name of the corresponding
experiment. For instance, {'MyMeas1';'MyMeas2';'MyMeas3'} contains experiment names for a
three-experiment iddata object.

Frequency — Frequency values
column vector | cell array

Frequency values for frequency-domain data, specified as either:

• An N-by-1 vector, where N is the number of frequency values in a single experiment
• A 1-by-Ne cell array, where Ne is the number of experiments and each cell contains the frequency

vector for the corresponding experiment. The frequency vectors must all be in the same units.

FrequencyUnit — Frequency units for frequency-domain data
'rad/TimeUnit' (default) | 'cycles/TimeUnit' | 'rad/s' | 'Hz' | 'kHz' | 'MHz' | 'GHz' |
'rpm'

Frequency units for frequency-domain data, specified as one of the following:

1 Functions

1-542

1 A scalar for a single experiment.

A 1-by-Ne cell array, where Ne is the number of experiments. Because all Frequency vectors
must have the same units, all values of FrequencyUnit must be the same.

Changing this property does not scale or convert the data. Modifying the property changes only the
interpretation of the existing data.

InputData — Input signal values
vector | matrix | cell array of matrices

Input signal values to the system, specified as one of the following:

• For a single experiment, an N-by-Nu matrix, where N is the number of data samples and Nu is the
number of input channels

• For multiple experiments, a cell array containing Ne single-experiment matrices, where Ne is the
number of experiments

When accessing InputData from the command line, you can use the shorthand form u. For example,
u1 = data.InputData is equivalent to u1 = data.u.

InputName — Input channel names
{'u1';'u2';…} (default) | cell array of character vectors

Input channel names, specified as an Nu-by-1 cell array, where Nu is the number of input channels.

InputUnit — Input channel units
cell array

Input channel units, specified as an Nu-by-1 cell array, where Nu is the number of input channels.
Each cell contains the units of the corresponding input channel.
Example: {'rad';'rad/s'}

InterSample — Intersample behavior
'zoh' (default) | 'foh' | 'bl' | cell array of character vectors

Intersample behavior for transformations between discrete time and continuous time, specified as a
character vector or as a cell array of character vectors. For each experiment, the possible values for
each input channel are:

• zoh — Zero-order hold maintains a piecewise-constant input signal between samples.
• foh — First-order hold maintains a piecewise-linear input signal between samples.
• bl — Band-limited behavior specifies that the continuous-time input signal has zero power above

the Nyquist frequency.

For a single experiment with a single input channel, InterSample contains one of the values in the
previous list. For multiple experiments, InterSample is an Nu-by-Ne cell array, where Nu is the
number of input channels and Ne is the number of experiments. Each cell contains the behavior value
associated with the experiment and input channel that the cell represents.

Name — Name of data set
' ' (default) | character vector

Name of the data set, specified as a character vector.

 iddata

1-543

Example: 'dryer data'

Notes — Comments about data set
' ' (default) | character vector | cell array

Comments about the data set, specified as a character vector or, for multiexperiment data sets, an Ne-
by-1 cell array of character vectors, where Ne is the number of experiments.
Example: {'data from experiment 1';data from experiment 2'}

OutputData — Output signal values
vector | matrix

Output signal values from the system, specified as one of the following:

• For a single experiment, an N-by-Ny matrix, where N is the number of data samples and Ny is the
number of output channels

• For multiple experiments, a cell array containing Ne single-experiment matrices, where Ne is the
number of experiments

When accessing OutputData from the command line, you can use the shorthand form y. For
example, y1 = data.InputData is equivalent to y1 = data.y.

OutputName — Output channel names
{'y1';'y2';…} (default) | cell array of character vectors

Output channel names, specified as an Ny-by-1 cell array, where Ny is the number of output channels.

OutputUnit — Output channel units
cell array

Output channel units, specified as an Ny-by-1 cell array, where Nu is the number of output channels.
Each cell contains the units of the corresponding input channel.
Example: {'rad';'rad/s'}

Period — Period of input signal
Inf (default) | double | vector | cell array | cell array of character vectors

Period of the input signal, specified as a double for each experiment. The value is either Inf for
nonperiodic input signals or the period in the units specified by the property TimeUnit for periodic
input signals.

• For a single experiment with a single input channel, Period contains a single value.
• For a multiple-input system, Period is an Nu-by-1 vector, where Nu is the number of input

channels and the kth entry contains the period of the kth input.
• For multiple-experiment data, Period is a 1-by-Ne cell array, where Ne is the number of

experiments and each cell contains a scalar or vector of periods for the corresponding experiment.

SamplingInstants — Time values for time-domain data
vector | cell array

Time values for time-domain data in units specified by TimeUnit, specified as:

• An N-by-1 vector, where N is the number of data points

1 Functions

1-544

• A 1-by-Ne cell array, where Ne is the number of experiments and each cell contains the sampling
instants for the corresponding experiment.

The values in SamplingInstants can be uniform or nonuniform. If you specify the Ts property, the
software computes uniform time values in SamplingInstants from Ts and Tstart. If you have
nonuniform sample points, specify the time values in SamplingInstants. The software then sets the
Ts property to empty. Estimation functions do not support nonuniform sampling.

TimeUnit — Units for time variable and sample time Ts
'seconds' (default) | 'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' |
'hours' | 'days' | 'weeks' | 'months' | 'years'

Units for the time variable and the sample time, specified as a scalar. This property applies to all
experiments in the data set.

Changing this property does not resample or convert the data. Modifying the property changes only
the interpretation of the existing data.

Ts — Sample time
1 (default) | positive scalar | 0 | [] | cell array

Sample time in units specified by TimeUnit, specified as a scalar or a cell array. For each
experiment, the value is one of the following:

• A scalar, when y and u are uniformly sampled
• 0 for continuous-time data in the frequency domain
• [] when y and u are non uniformly sampled and in the time domain, because the

SamplingInstants property sets the time values for such data.

For a single experiment, Ts is a scalar. For multiexperiment data, Ts is a 1-by-Ne cell array, where Ne
is the number of experiments and each cell contains the sample time for the corresponding
experiment.

For frequency-domain data, the software uses Ts to interpret the data.

• If Ts is 0, the software interprets inputs and outputs as continuous-time Fourier transforms
(CTFTs) of the corresponding signals.

• If Ts is a scalar, the software interprets inputs and outputs as discrete-time Fourier transforms
(DTFTs) of the corresponding signals with Ts as sample time.

Tstart — Start time for time-domain data
0 (default) | scalar | cell array

Start time for time-domain data, specified as:

• A scalar for a single experiment
• A 1-by-Ne cell array for multiple experiments, where Ne is the number of experiments and each

cell contains the start time for the corresponding experiment

UserData — Additional comments
[] (default) | any MATLAB data type

Additional comments on the data set, specified as any MATLAB data type.

 iddata

1-545

Object Functions
In general, any function applicable to system identification data is applicable to an iddata object.
These functions are of three general types.

1 Functions that both operate on and return iddata objects enable you to manipulate and process
iddata objects.

• Use fft and ifft to transform existing iddata objects to and from the time and frequency
domains. For example:

datafd = fft(Data);
datatd = ifft(Dataf);

• Use merge (iddata) to merge iddata objects into a single iddata object containing
multiple experiments. To extract an experiment from a multiexperiment iddata object, use
getexp. For example:

data123 = merge(data1,data2,data3);
data2 = getexp(data123,2);

For a more detailed example, see “Extract and Model Specific Data Segments”.
• Use preprocessing functions such as detrend or idfilt to filter data in iddata objects and

to remove bad data. For example:

data_d = detrend(data);
data_f = idfilt(data,filter);

2 Functions that perform analytical processing on iddata objects and create plots or return
specific parameters or values let you analyze data and determine inputs to use for estimation.

• Use analysis functions such as delayest and spa to compute variables such as time delay
and frequency spectrum.

3 Functions that use the data in iddata objects to estimate, simulate, and validate models let you
create dynamic models and evaluate how closely the model response matches validation data.

• Use estimation functions such as ssest and tfest to estimate models with specific
structures.

• Use validation functions such as compare and sim to simulate estimated models and compare
the simulated outputs with validation data and with other models.

The following lists contain a representative subset of the functions you can use with iddata
objects.

Data Visualization
plot Plot input and output channels of iddata object

Data Selection
getexp Specific experiments from multiple-experiment data set
merge (iddata) Merge data sets into iddata object

Data Preprocessing
detrend Subtract offset or trend from time-domain signals contained in iddata objects

1 Functions

1-546

retrend Add offsets or trends to time-domain data signals stored in iddata objects
idfilt Filter data using user-defined passbands, general filters, or Butterworth filters
diff Difference signals in iddata objects
misdata Reconstruct missing input and output data
idresamp Resample time-domain data by decimation or interpolation

Data Transformation
fft Fast Fourier transform (FFT) of iddata object
ifft Transform iddata objects from frequency to time domain

Data Analysis
realdata Determine whether iddata is based on real-valued signals
delayest Estimate time delay (dead time) from data
isreal Determine whether model parameters or data values are real
impulseest Nonparametric impulse response estimation
pexcit Level of excitation of input signals
feedback Identify possible feedback data
etfe Estimate empirical transfer functions and periodograms
spafdr Estimate frequency response and spectrum using spectral analysis with

frequency-dependent resolution
spa Estimate frequency response with fixed frequency resolution using spectral

analysis
iddataPlotOptions Option set for plot when plotting data contained in an iddata object

Model Estimation, Simulation, and Validation
ssest Estimate state-space model using time-domain or frequency-domain data
tfest Estimate transfer function model
ar Estimate parameters when identifying AR model or ARI model for scalar time series
sim Simulate response of identified model
findstates Estimate initial states of model
compare Compare identified model output with measured output
predict Predict identified model K-step-ahead output
goodnessOfFit Goodness of fit between test and reference data for analysis and validation of

identified models
procest Estimate process model using time-domain or frequency-domain data
resid Compute and test residuals

Examples

Time-Domain Data

Create an iddata object using single-input/single-output (SISO) time-domain data. The input and
output each contain 1000 samples with a sample time of 0.08 seconds.

load dryer2_data output input;
data = iddata(output,input,0.08)

data =

Time domain data set with 1000 samples.

 iddata

1-547

Sample time: 0.08 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

The software assigns the default channel name 'y1' to the first and only output channel. When the
output signal contains several channels, the software assigns the default names
'y1','y2',...,'yn'. Similarly, the software assigns the default channel name 'u1' to the first
and only input channel. For more information about naming channels, see “Naming, Adding, and
Removing Data Channels”.

Plot the data.

plot(data)

Adjacent plots display output data and input data.

Time-Series Data

Create an iddata object from time-series data. Time-series data has no input channel.

1 Functions

1-548

Load the output channel of a data set, and create an iddata object that has a sample time of 0.08
seconds.

load dryer2_data output
data = iddata(output,[],0.08)

data =

Time domain data set with 1000 samples.
Sample time: 0.08 seconds

Outputs Unit (if specified)
 y1

Plot the data.

plot(data)

You can use data for time-series model estimation.

Frequency-Domain Data

Create and examine an iddata object from complex-valued frequency-domain input-output data.
Convert the object into the time domain.

 iddata

1-549

Input and output data is sometimes expressed in the form of the Fourier transforms of time-domain
input-output signals. You can encapsulate this data in a frequency-domain iddata object.

Load the data, which consists of the complex-valued input-output frequency-domain data U and Y,
frequency vector W, and sample time Ts.

load demofr1 U Y W Ts

Create the frequency-domain iddata object data_fr.

data_fr = iddata(Y,U,Ts,'Frequency',W)

data_fr =

Frequency domain data set with responses at 501 frequencies.
Frequency range: 0 to 31.416 rad/seconds
Sample time: 0.1 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

Examine the properties. Frequency-domain iddata objects include frequency-specific properties,
such as Frequency for the frequency vector and FrequencyUnit for frequency units. In contrast,
time-domain iddata objects include time-specific properties such as Tstart and
SamplingInstants for time-domain data.

get(data_fr)

ans = struct with fields:
 Domain: 'Frequency'
 Name: ''
 OutputData: [501x1 double]
 y: 'Same as OutputData'
 OutputName: {'y1'}
 OutputUnit: {''}
 InputData: [501x1 double]
 u: 'Same as InputData'
 InputName: {'u1'}
 InputUnit: {''}
 Period: Inf
 InterSample: 'zoh'
 Ts: 0.1000
 FrequencyUnit: 'rad/TimeUnit'
 Frequency: [501x1 double]
 TimeUnit: 'seconds'
 ExperimentName: 'Exp1'
 Notes: {}
 UserData: []

Assign the contents of the frequency property to the variable F.

F = data_fr.Frequency;

Get the frequency units of the data. The property TimeUnit sets the units of the sample time.

1 Functions

1-550

frequ = data_fr.FrequencyUnit

frequ =
'rad/TimeUnit'

timeu = data_fr.TimeUnit

timeu =
'seconds'

Convert data_fr back into the time domain by using the inverse Fourier transform function ifft.

data_t = ifft(data_fr)

data_t =

Time domain data set with 1000 samples.
Sample time: 0.1 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

get(data_t)

ans = struct with fields:
 Domain: 'Time'
 Name: ''
 OutputData: [1000x1 double]
 y: 'Same as OutputData'
 OutputName: {'y1'}
 OutputUnit: {''}
 InputData: [1000x1 double]
 u: 'Same as InputData'
 InputName: {'u1'}
 InputUnit: {''}
 Period: Inf
 InterSample: 'zoh'
 Ts: 0.1000
 Tstart: 0.1000
 SamplingInstants: [1000x1 double]
 TimeUnit: 'seconds'
 ExperimentName: 'Exp1'
 Notes: {}
 UserData: []

View and Modify Properties

View properties of an iddata object. Modify the properties both during and after object creation.

Load input and output data.

load dryer2_data input output

 iddata

1-551

Create an iddata object.

data = iddata(output,input,0.08)

data =

Time domain data set with 1000 samples.
Sample time: 0.08 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

View all properties of the iddata object.

get(data)

ans = struct with fields:
 Domain: 'Time'
 Name: ''
 OutputData: [1000x1 double]
 y: 'Same as OutputData'
 OutputName: {'y1'}
 OutputUnit: {''}
 InputData: [1000x1 double]
 u: 'Same as InputData'
 InputName: {'u1'}
 InputUnit: {''}
 Period: Inf
 InterSample: 'zoh'
 Ts: 0.0800
 Tstart: 0.0800
 SamplingInstants: [1000x1 double]
 TimeUnit: 'seconds'
 ExperimentName: 'Exp1'
 Notes: {}
 UserData: []

You can specify properties when you create an iddata object using name-value pair arguments.
Create an iddata object from the same data inputs, but change the experiment name from its default
setting to Dryer2.

data = iddata(output,input,0.08,'ExperimentName','Dryer2')

data =

Experiment Dryer2.Time domain data set with 1000 samples.
Sample time: 0.08 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

1 Functions

1-552

To change property values for an existing iddata object, use dot notation. Change the sample time
property Ts to 0.05 seconds.

data.Ts = 0.05

data =

Experiment Dryer2.Time domain data set with 1000 samples.
Sample time: 0.05 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

Property names are not case sensitive. Also, if the first few letters uniquely identify the property, you
do not need to type the entire property name.

data.exp = "Dryer2 January 2015"

data =

Experiment Dryer2 January 2015.Time domain data set with 1000 samples.
Sample time: 0.05 seconds

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

You can use data.y as a shorthand for data.OutputData to access the output values, or use
data.u as a shorthand for data.InputData to access the input values.

y_data = data.y;
u_data = data.u;

Version History
Introduced before R2006a

See Also
idfrd | idinput

Topics
“Representing Data in MATLAB Workspace”
“Create Multiexperiment Data at the Command Line”
“Representing Time- and Frequency-Domain Data Using iddata Objects”
“Managing iddata Objects”

 iddata

1-553

iddataPlotOptions
Option set for plot when plotting data contained in an iddata object

Syntax
opt = iddataPlotOptions('time')
opt = iddataPlotOptions('frequency')
opt = iddataPlotOptions(___ ,'identpref')

Description
opt = iddataPlotOptions('time') creates the default option set for plotting time-domain data.
Use dot notation to customize the option set, if needed.

opt = iddataPlotOptions('frequency') creates a default option set for plotting frequency-
domain data. Use dot notation to customize the option set, if needed.

opt = iddataPlotOptions(___ ,'identpref') initializes the plot options with the System
Identification Toolbox preferences. This syntax can include any of the input argument combinations in
the previous syntaxes. Use this syntax to change a few plot options but otherwise use your toolbox
preferences.

Examples

Create Option Set for Plotting Time-Domain Data

Create an options set with default options for time-domain data.

opt = iddataPlotOptions('time');

Specify plot properties, such as time units and grid. View the plot in minutes

 opt.TimeUnits = 'minutes';
 % Turn grid on
 opt.Grid = 'on';

Create a plot using the specified options.

load iddata1 z1
h = plot(z1, opt);

1 Functions

1-554

Change Orientation of Input-Output Data Axes

Generate data with two inputs and one output.

z = iddata(randn(100,1),rand(100,2));

Configure a time plot.

opt = iddataPlotOptions('time');

Plot the data.

h = plot(z,opt);

 iddataPlotOptions

1-555

Change the orientation of the plots such that all inputs are plotted in one column, and all outputs are
in a second column.

opt.Orientation = 'two-column';
h = plot(z,opt);

1 Functions

1-556

Alternatively, use setoptions.

setoptions(h,'Orientation','two-column')

You can also change the orientation by right-clicking the plot and choosing Orientation in the
context menu.

Create Option Set for Plotting Frequency-Domain Data

Create an option set with default options for frequency-domain data.

opt = iddataPlotOptions('frequency');

Specify plot properties, such as phase visibility and frequency units.

opt.PhaseVisible = 'off';
opt.FreqUnits = 'Hz';

Create a plot with the specified options.

load iddata7 z7
zf = fft(z7);
h = plot(zf,opt);

 iddataPlotOptions

1-557

Initialize a Plot Using Toolbox Preferences

opt = iddataPlotOptions('time','identpref');

Output Arguments
opt — Option set for plot
iddataPlotOptions option set

Option set containing the specified options for plot. The structure has the following fields:

1 Functions

1-558

Field Description
Title, XLabel, YLabel Text and style for axes labels and plot title,

specified as a structure array with the following
fields:

• String — Title and axes label text, specified
as a character vector.

Default Title: 'Input-Output Data'

Default XLabel: 'Time'

Default YLabel: 'Amplitude'
• FontSize — Font size, specified as scalar

value greater than 0.
Default: 8

• FontWeight — Thickness of text, specified as
one of the following values: 'Normal' |
'Bold'
Default: 'Normal'

• Font Angle — Text character angle, specified
as one of the following values: 'Normal' |
'Italic'
Default: 'Normal'

• Color — Color of text, specified as vector of
RGB values between 0 to 1.
Default: [0,0,0]

• Interpreter — Interpretation of text
characters, specified as one of the following
values: 'tex' | 'latex'| 'none'

 iddataPlotOptions

1-559

Field Description
Default: 'tex'

TickLabel Tick label style, specified as a structure array with
the following fields:

• FontSize — Font size, specified as scalar
value greater than 0.
Default: 8

• FontWeight — Thickness of text, specified as
one of the following values: 'Normal' |
'Bold'
Default: 'Normal'

• Font Angle — Text character angle, specified
as one of the following values: 'Normal' |
'Italic'
Default: 'Normal'

• Color — Color of text, specified as vector of
RGB values between 0 to 1 | character vector
of color name | 'none'. For example, for
yellow color, specify as one of the following: [1
1 0], 'yellow', or 'y'.
Default: [0,0,0]

Grid Show or hide the grid, specified as one of the
following values: 'off' | 'on'

Default: 'off'
GridColor Color of the grid lines, specified as one of the

following values: vector of RGB values in the range
[0,1] | character vector of color name | 'none'.
For example, for yellow color, specify as one of the
following: [1 1 0], 'yellow', or 'y'.

Default: [0.15,0.15,0.15]
XlimMode, YlimMode Axes limit modes, specified as one of the following

values:

• 'auto' — The axis limits are based on the data
plotted

• 'manual' — The values explicitly set with
Xlim, Ylim

Default: 'auto'
Xlim, Ylim Axes limits, specified as maximum and minimum

values.

Default: [0 1]

1 Functions

1-560

Field Description
IOGrouping Grouping of input-output pairs, specified as one of

the following values: 'none' | 'inputs' |
'outputs'|'all'

Default: 'none'

 iddataPlotOptions

1-561

Field Description
InputLabels, OutputLabels Input and output label styles on individual plot

axes, specified as a structure array with the
following fields:

• FontSize — Font size, specified as data type
scalar.
Default: 8

• FontWeight — Thickness of text, specified as
one of the following values: 'Normal' |
'Bold'
Default: 'Normal'

• Font Angle — Text character angle, specified
as one of the following values: 'Normal' |
'Italic'
Default: 'Normal'

• Color — Color of text, specified as a vector of
RGB values between 0 to 1 | character vector
of color name | 'none'. For example, for
yellow color, specify as one of the following: [1
1 0], 'yellow', or 'y'.
Default: [0.4,0.4,0.4]

• Interpreter — Interpretation of text
characters, specified as one of the following
values: 'tex' | 'latex'| 'none'
Default: 'tex'

InputVisible, OutputVisible Visibility of input and output channels, specified as
one of the following values: 'off' | 'on'

Default: 'on'

1 Functions

1-562

Field Description
Orientation Orientation of the input and output data plots,

specified as one of the following values:

• 'two-row' — Plot all outputs in one row and
all inputs in a second row

• 'two-column' — Plot all outputs in one
column and all inputs in a second column

• 'single-row' — Plot all inputs and outputs in
one row

• 'single-column'— Plot all inputs and
outputs in one column

Default: 'two-row'.
For time-domain data plots only:

Field Description
TimeUnits Time units, specified as one of the following

values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

You can also specify 'auto' which uses time
units specified in the TimeUnit property of the
data. For multiple systems with different time
units, the units of the first system is used.

Normalize Normalize responses, specified as one of the
following values: 'on' |'off'

Default: 'off'

 iddataPlotOptions

1-563

Field Description
For frequency-domain data plots only:

Field Description
FreqUnits Frequency units, specified as one of the following

values:

• 'Hz'
• 'rad/second'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses
frequency units rad/TimeUnit relative to
system time units specified in the TimeUnit
property. For multiple systems with different
time units, the units of the first system are used.

FreqScale Frequency scale, specified as one of the
following values: 'linear' | 'log'

Default: 'log'

1 Functions

1-564

Field Description
Field Description
MagUnits Magnitude units, specified as one of the

following values: 'dB' | 'abs'

Default: 'dB'
MagScale Magnitude scale, specified as one of the

following values: 'linear' | 'log'

Default: 'linear'
MagVisible Magnitude plot visibility, specified as one of the

following values: 'on' | 'off'

Default: 'on'
MagLowerLimMode Enables a lower magnitude limit, specified as one

of the following values: 'auto' | 'manual'

Default: 'auto'
MagLowerLim Lower magnitude limit, , specified as data type

double. It is typically decided by the range of
the amplitudes the plotted data takes.

PhaseUnits Phase units, specified as one of the following
values: 'deg' | 'rad'

Default: 'deg'
PhaseVisible Phase plot visibility, specified as one of the

following values: 'on' | 'off'

Default: 'on'
PhaseWrapping Enable phase wrapping, specified as one of the

following values: 'on' | 'off'

Default: 'off'
PhaseWrappingBranch Phase value at which the plot wraps accumulated

phase when PhaseWrapping is set to 'on'.

Default: –180 (phase wraps into the interval [–
180º,180º))

PhaseMatching Enable phase matching, specified as one of the
following values: 'on' | 'off'

Default: 'off'
PhaseMatchingFreq Frequency for matching phase, specified as data

type double.
PhaseMatchingValue The value to which phase responses are matched

closely, specified as a real number representing
the desired phase value PhaseMatchingFreq.

 iddataPlotOptions

1-565

Version History
Introduced in R2014a

See Also
plot | identpref

1 Functions

1-566

idDeadZone
Create a dead-zone nonlinearity estimator object

Syntax
NL = idDeadZone
NL = idDeadZone('ZeroInterval',[a,b])

Description
NL = idDeadZone creates a default dead-zone nonlinearity estimator object for estimating
Hammerstein-Wiener models. The interval in which the dead-zone exists (zero interval) is set to [NaN
NaN]. The initial value of the zero interval is determined from the estimation data range, during
estimation using nlhw. Use dot notation to customize the object properties, if needed.

NL = idDeadZone('ZeroInterval',[a,b]) creates a dead-zone nonlinearity estimator object
initialized with zero interval, [a,b].

Alternatively, use NL = idDeadZone([a,b]).

Object Description
idDeadZone is an object that stores the dead-zone nonlinearity estimator for estimating
Hammerstein-Wiener models.

Use idDeadZone to define a nonlinear function y = F(x, θ), where y and x are scalars, and θ
represents the parameters a and b, which define the zero interval.

The dead-zone nonlinearity function has the following characteristics:

a ≤ x < b F(x) = 0
x < a F(x) = x− a
x ≥ b F(x) = x− b

For example, in the following plot, the dead-zone is in the interval [-4,4].

 idDeadZone

1-567

The value F(x) is computed by evaluate(NL,x), where NL is the idDeadZone object.

For idDeadZone object properties, see “Properties” on page 1-571.

Examples

Create a Default Dead-Zone Nonlinearity Estimator

NL = idDeadZone;

Specify the zero interval.

NL.ZeroInterval = [-4,5];

Estimate a Hammerstein-Wiener Model with Dead-zone Nonlinearity

Load estimation data.

load twotankdata;
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);

Create an idDeadZone object, and specify the initial guess for the zero-interval.

1 Functions

1-568

OutputNL = idDeadZone('ZeroInterval',[-0.1 0.1]);

Estimate model with no input nonlinearity.

m = nlhw(z1,[2 3 0],[],OutputNL);

Estimate MIMO Hammerstein-Wiener Model

Load the estimation data.

load motorizedcamera;

Create an iddata object.

z = iddata(y,u,0.02,'Name','Motorized Camera','TimeUnit','s');

z is an iddata object with 6 inputs and 2 outputs.

Specify the model orders and delays.

Orders = [ones(2,6),ones(2,6),ones(2,6)];

Specify the same nonlinearity estimator for each input channel.

InputNL = idSaturation;

Specify different nonlinearity estimators for each output channel.

 OutputNL = [idDeadZone,idWaveletNetwork];

Estimate the Hammerstein-Wiener model.

sys = nlhw(z,Orders,InputNL,OutputNL);

To see the shape of the estimated input and output nonlinearities, plot the nonlinearities.

plot(sys)

 idDeadZone

1-569

Click on the input and output nonlinearity blocks on the top of the plot to see the nonlinearities.

Input Arguments
[a,b] — Zero interval
[NaN NaN] (default) | 2–element row vector

Zero interval of the dead-zone, specified as a 2–element row vector of doubles.

The dead-zone nonlinearity is initialized at the interval [a,b]. The interval values are adjusted to the
estimation data by nlhw. To remove the lower limit, set a to -Inf. The lower limit is not adjusted

1 Functions

1-570

during estimation. To remove the upper limit, set b to Inf. The upper limit is not adjusted during
estimation.

When the interval is [NaN NaN], the initial value of the zero interval is determined from the
estimation data range during estimation using nlhw.
Example: [-2 1]

Properties
ZeroInterval

Zero interval of the dead-zone, specified as a 2–element row vector of doubles.

Default: [NaN NaN]

Free

Option to fix or free the parameters of ZeroInterval, specified as a 2–element logical row vector.
When you set an element of Free to false, the corresponding value in ZeroInterval remains fixed
during estimation to the initial value that you specify.

Default: [true true]

Output Arguments
NL — Dead-zone nonlinearity estimator object
idDeadZone object

Dead-zone nonlinearity estimator object, returned as an idDeadZone object.

Version History
Introduced in R2007a

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear

 idDeadZone

1-571

Pre-R2021b Name R2021b Name
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
nlhw | idnlhw

Topics
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

1 Functions

1-572

identpref
Set System Identification Toolbox preferences

Syntax
identpref

Description
identpref opens a Graphical User Interface (GUI) which allows you to change the System
Identification Toolbox preferences. Preferences set in this GUI affect future plots only (existing plots
are not altered).

Your preferences are stored to disk (in a system-dependent location) and will be automatically
reloaded in future MATLAB sessions using the System Identification Toolbox software.

Version History
Introduced in R2012a

See Also
Topics
“Toolbox Preferences Editor”

 identpref

1-573

idFeedforwardNetwork
Multilayer feedforward neural network mapping function for nonlinear ARX models (requires Deep
Learning Toolbox)

Description
An idFeedforwardNetwork object implements a neural network function, and is a nonlinear
mapping object for estimating nonlinear ARX models. This mapping object lets you use network
objects that are created using Deep Learning Toolbox in nonlinear ARX models.

Mathematically, idFeedforwardNetwork is a function that maps m inputs X(t) = [x(t1),x2(t),…,xm(t)]T

to a scalar output y(t), using a multilayer feedforward (static) neural network, as defined in Deep
Learning Toolbox.

You create multi-layer feedforward neural networks by using commands such as feedforwardnet,
cascadeforwardnet and linearlayer. When you create the network,

• Designate the input and output sizes to be unknown by leaving them at the default value of zero
(recommended method). When estimating a nonlinear ARX model using the nlarx command, the
software automatically determines the input and output sizes of the network.

• Initialize the sizes manually by setting input and output ranges to m-by-2 and 1-by-2 matrices,
respectively, where m is the number of nonlinear ARX model regressors and the range values are
minimum and maximum values of regressors and output data, respectively.

See “Examples” on page 1-0 for more information.

Use evaluate(net_estimator,x) to compute the value of the function defined by the
idFeedforwardNetwork object net_estimator at input value x. When used for nonlinear ARX

1 Functions

1-574

model estimation, x represents the model regressors for the output for which the
idFeedforwardNetwork object is assigned as the nonlinearity estimator.

You cannot use idFeedforwardNetwork when the Focus option in nlarxOptions is
'simulation' because the underlying network object is considered to be nondifferentiable for
estimation. Minimization of simulation error requires differentiable nonlinear functions.

Use idFeedforwardNetwork as the value of the OutputFcn property of an idnlarx model. For
example, specify idFeedforwardNetwork when you estimate an idnlarx model with the following
command.

sys = nlarx(data,regressors,idFeedforwardNetwork)

When nlarx estimates the model, it essentially estimates the parameters of the
idFeedforwardNetwork function.

Creation

Syntax
net_estimator = idFeedforwardNetwork(Network)

Description

net_estimator = idFeedforwardNetwork(Network) creates a feedforward neural network
mapping object that is based on the feedforward (static) network object Network that has been
created using one of the neural network commands feedforwardnet, cascadeforwardnet, or
linearlayer. Network must represent a static mapping between the inputs and output without I/O
delays or feedback. The number of outputs of the network, if assigned, must be set to one. For a
multiple-output nonlinear ARX models, create a separate idFeedforwardNetwork object for each
output—that is, each element of the output function must represent a single-output network object.

Properties
Network — Feedforward neural network
Network object

Feedforward neural network object, typically created using feedforwardnet, cascadeforwardnet
or linearlayer.

Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

 idFeedforwardNetwork

1-575

Free — Option to train the network
true (default) | false

Option to train the neural network, specified as true or false. Set Free to false when the neural
network you are using has already been trained and is known to provide good fit results. The Free
property is especially useful when your idnlarx model has multiple outputs that each use a neural
network. Setting Free to false for well trained networks allows processing time to be focused on
the networks that do need training.

Examples

Create Nonlinear Mapping Object Using Feedforward Neural Network

Create a neural network mapping object that uses a feedforward neural network with three hidden
layers, transfer functions of types logsig, radbas,and purelin, and unknown input and output
sizes.

Create a neural network.

net = feedforwardnet([4 6 1]);
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'radbas';
net.layers{3}.transferFcn = 'purelin';

View the network diagram.

view(net)

1 Functions

1-576

Create a neural network mapping object.

net_estimator = idFeedforwardNetwork(net);

Estimate Nonlinear ARX Model Using Feedforward Neural Network Mapping Object

Create a single-layer, cascade-forward network with unknown input and output sizes and use this
network for nonlinear ARX model estimation.

Create a cascade-forward neural network with 20 neurons and unknown input/output sizes.

net = cascadeforwardnet(20);

Create a feedforward neural network mapping object.

net_estimator = idFeedforwardNetwork(net);

Load the estimation data.

 idFeedforwardNetwork

1-577

load twotankdata
data = iddata(y,u,0.2);

Estimate a nonlinear ARX model sys.

sys = nlarx(data,[2 2 1],net_estimator);

Compare the model response to the measured output signal.

1 Functions

1-578

compare(data,sys)

The plot shows good agreement between the measured signal and the simulated model output signal.

Initialize Input-Output Sizes of Neural Network Nonlinearity Estimator

Initialize the input-output sizes of a two-layer feed-forward neural network based on estimation data,
and use this network for nonlinear ARX estimation.

Load estimation data.

load iddata7 z7
z7 = z7(1:200);

Create a template nonlinear ARX model with no nonlinearity.

model = idnlarx([4 4 4 1 1],[]);

This model has six regressors and is used to define the regressors. The range of regressor values for
input-output data in z7 is then used to set the input ranges in the neural network object, as shown in
the next steps.

Obtain the model regressor values.

 idFeedforwardNetwork

1-579

R = getreg(model,'all',z7);
R = R.Variables;

Create a two-layer, feed-forward neural network and initialize the network input and output
dimensions to 2 and 1, respectively. Use 5 neurons for first layer and 7 for second layer.

net = feedforwardnet([5 7]);

Determine input range.

InputRange = [min(R);max(R)].';

Initialize input dimensions of estimator.

net.inputs{1}.range = InputRange;

Determine output range.

OutputRange = [min(z7.OutputData),max(z7.OutputData)];

Initialize output dimensions of estimator and the choice of training function.

net.outputs{net.outputConnect}.range = OutputRange;
net.trainFcn = 'trainbfg';

Create a neural network nonlinearity estimator.

net_estimator = idFeedforwardNetwork(net);

Specify the nonlinearity estimator in the model.

model.Nonlinearity = net_estimator;

Estimate the parameters of the network to minimize the prediction error between data and model.
Estimate model.

model = nlarx(z7,model);

1 Functions

1-580

Compare model's predicted response to measured output signal.

compare(z7(1:100),model,1)

 idFeedforwardNetwork

1-581

Algorithms
The nlarx command uses the train method of the network object, defined in the Deep Learning
Toolbox software, to compute the network parameter values.

Version History
Introduced in R2007a

Previous idnlarx data normalization information moved from mapping object properties to
idnlarx Normalization property
Behavior changed in R2022a

Information related to data normalization was moved from the idFeedforwardNetwork mapping
object level to the model level. The Normalization property of the idnlarx model contains the
data centering and scaling information that the estimation process computes. In addition, the
regressor-selection process for the mapping objects has also moved to the model level. The model
now passes the actual regressor names rather than the selection indices to the mapping object,
eliminating the need for an index property at the mapping object level.

The following table summarizes the mapping object subproperties that were eliminated. For more
information, see the Normalization property of idnlarx.

1 Functions

1-582

Main
Properties /
Subproperties

Input Output LinearMdl Offset NonlinearMdl

Mean X X
Range X X
Minimum X X X
Maximum X X X
SelectedInpu
tIndex

 X X

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
nlarx | idnlarx | evaluate | network | feedforwardnet | cascadeforwardnet | linearlayer

Topics
“Available Mapping Functions for Nonlinear ARX Models”

 idFeedforwardNetwork

1-583

idfilt
Filter data using user-defined passbands, general filters, or Butterworth filters

Syntax
Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter,causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)

Description
Zf = idfilt(Z,filter) filters data using user-defined passbands, general filters, or Butterworth
filters. Z is the data, defined as an iddata object. Zf contains the filtered data as an iddata object.
The filter can be defined in three ways:

• As an explicit system that defines the filter.

filter = idm or filter = {num,den} or filter = {A,B,C,D}

idm can be any SISO identified linear model or LTI model object. Alternatively the filter can be
defined as a cell array {A,B,C,D} of SISO state-space matrices or as a cell array {num,den} of
numerator/denominator filter coefficients.

• As a vector or matrix that defines one or several passbands.

filter=[[wp1l,wp1h];[wp2l,wp2h];;[wpnl,wpnh]]

The matrix is n-by-2, where each row defines a passband. A filter is constructed that gives the
union of these passbands. For time-domain data, it is computed as cascaded Butterworth filters or
order NF. The default value of NF is 5.

• For time-domain data — The passbands are in units of rad/TimeUnit, where TimeUnit is the
time units of the estimation data.

• For frequency-domain data — The passbands are in the frequency units (FrequencyUnit
property) of the estimation data.

For example, to define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2,Nyqf]

where Nyqf is the Nyquist frequency.
• For frequency-domain data, only the frequency response of the filter can be specified.

filter = Wf

Here Wf is a vector of possibly complex values that define the filter's frequency response, so that
the inputs and outputs at frequency Z.Frequency(kf) are multiplied by Wf(kf). Wf is a column
vector of length = number of frequencies in Z. If the data object has several experiments, Wf is a
cell array of length = # of experiments in Z.

Zf = idfilt(Z,filter,causality) specifies causality. For time-domain data, the filtering is
carried out in the time domain as causal filtering as default. This corresponds to a last argument

1 Functions

1-584

causality = 'causal'. With causality = 'noncausal', a noncausal, zero-phase filter is used
for the filtering (corresponding to filtfilt in the Signal Processing Toolbox product).

For frequency-domain data, the signals are multiplied by the frequency response of the filter. With the
filters defined as passband, this gives ideal, zero-phase filtering (“brickwall filters”). Frequencies that
have been assigned zero weight by the filter (outside the passband, or via the frequency response)
are removed from the iddata object Zf.

Zf = idfilt(Z,filter,'FilterOrder',NF) specifies the filter order. The time domain filters in
the pass-band case are calculated as cascaded Butterworth pass-band and stop-band filters. The
orders of these filters are 5 by default, which can be changed to an arbitrary integer NF.

It is common practice in identification to select a frequency band where the fit between model and
data is concentrated. Often this corresponds to bandpass filtering with a passband over the
interesting breakpoints in a Bode diagram. For identification where a disturbance model is also
estimated, it is better to achieve the desired estimation result by using the 'WeightingFilter'
option of the estimation command than just to prefilter the data. The values for 'WeightingFilter'
are the same as the argument filter in idfilt.

Algorithms
The Butterworth filter is the same as butter in the Signal Processing Toolbox product. Also, the
zero-phase filter is equivalent to filtfilt in that toolbox.

Version History
Introduced before R2006a

References
Ljung (1999), Chapter 14.

See Also
iddata | resample

 idfilt

1-585

idfrd
Frequency response data or model

Description
An idfrd object stores frequency response data over a range of frequency values. You can use an
idfrd object in two ways. You can use the object as estimation data for estimating a time-domain or
frequency-domain model, similarly to an iddata object. Or, you can use the object as a linear model,
similarly to how you use an idss state-space model or any other identified linear model. Use the
idfrd command to encapsulate frequency response data or to convert a linear time-domain or
frequency-domain dynamic model into a frequency response model.

Commands that accept iddata objects, such as the model estimation command ssest, generally
also accept idfrd objects. However, an idfrd object can contain data from only one experiment. It
does not have the multiexperiment capability that an iddata object has.

Commands that accept identified linear models, such as the analysis and validation commands
compare, sim, and bode, generally also accept idfrd models.

For a model of the form

y(t) = G(q)u(t) + H(q)e(t)

the transfer function estimate is G eiω and the additive noise spectrum Φv at the output is

Φv(ω) = λT H(eiωT) 2

Here, λ is the estimated variance of e(t) and T is the sample time.

For a continuous-time system, the noise spectrum is

Φv(ω) = λ H(eiω) 2

An idfrd object stores G eiω and Φv.

Creation
You can obtain an idfrd model in one of three ways.

• Create the model from frequency response data using the idfrd command. For example, create
an idfrd model that encapsulates frequency response data taken at specific frequencies using
the sample time Ts.

sysfr = idfrd(ResponseData,Freq,Ts)

For an example, see “Create idfrd Object from Frequency Response Data” on page 1-595.
• Estimate the model using a frequency response estimation command such as spa, using time-

domain, frequency-domain, or frequency response data.

1 Functions

1-586

sysfr = spa(data)

For more information about frequency response estimation commands, see spa, spafdr, and
etfe.

• Convert a linear model such as an idss model into an idfrd model by computing the frequency
response of the model.

sysfr = idfrd(sys)

For an example of linear model conversion, see “Convert Time-Domain Model to Frequency
Response Model” on page 1-598.

For information on functions you can use to extract information from or transform idfrd model
objects, see “Object Functions” on page 1-595.

Syntax
sysfr = idfrd(ResponseData,Frequency,Ts)
sysfr = idfrd(___ ,Name,Value)

sysfr = idfrd(sys)
sysfr = idfrd(sys,Frequency)
sysfr = idfrd(sys,Frequency,FrequencyUnits)

Description
Create Frequency Response Object

sysfr = idfrd(ResponseData,Frequency,Ts) creates a discrete-time idfrd object that stores
the frequency response ResponseData of a linear system at frequency values Frequency. Ts is the
sample time. For a continuous-time system, set Ts to 0.

sysfr = idfrd(___ ,Name,Value) sets additional properties using one or more name-value
arguments. Specify the name-value arguments after the first three arguments. For instance, to
specify the frequency units as MHz, use sysfr =
idfrd(ResponseData,Frequency,Ts,'FrequencyUnits','MHz').
Convert Linear Identified Model to Frequency Response Model

sysfr = idfrd(sys) converts a System Identification Toolbox or Control System Toolbox linear
model to frequency response data at default frequencies, including the output noise spectra and
spectra covariance.

sysfr = idfrd(sys,Frequency) computes the frequency response at frequencies Frequency,
where Frequency is expressed in radians/TimeUnit.

sysfr = idfrd(sys,Frequency,FrequencyUnits) interprets frequencies in the Frequency
vector in the units specified by FrequencyUnit.

Input Arguments

sys — Linear dynamic system model
linear dynamic system model

Linear dynamic system model, specified as a System Identification Toolbox or Control System Toolbox
linear model.

 idfrd

1-587

Properties
ResponseData — Frequency response data
3-D array of complex numbers

Frequency response data, specified as a 3-D array of complex numbers.

• For SISO systems, ResponseData is a vector of frequency response values at the frequency
points specified in the Frequency property.

• For MIMO systems with Nu inputs and Ny outputs, ResponseData is an Ny-by-Nu-by-Nf array,
where Nf is the number of frequency points.

ResponseData(ky,ku,kf) represents the frequency response from the input ku to the output
ky at the frequency Frequency(kf).

Frequency — Frequency points
column vector

Frequency points corresponding to ResponseData, specified as a column vector that contains Nf
points in the units specified by FrequencyUnit.

FrequencyUnit — Units for frequency vector
'rad/TimeUnit' (default) | 'cycles/TimeUnit' | 'rad/s' | 'Hz' | 'kHz' | 'MHz' | 'GHz' |
'rpm'

Units of the frequency vector in the Frequency property, specified as one of the following values:

• 'rad/TimeUnit'
• 'cycles/TimeUnit'
• 'rad/s'
• 'Hz'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rpm'

The units 'rad/TimeUnit' and 'cycles/TimeUnit' are relative to the time units specified in the
TimeUnit property.

Changing this property does not resample or convert the data. Modifying the property changes only
the interpretation of the existing data. Use chgTimeUnit to convert the data to different frequency
units.

SpectrumData — Power spectra and cross spectra
vector of complex numbers | 3-D array of complex numbers

Power spectra and cross spectra of the system output disturbances (noise), specified as a vector
(single-output system) or a 3-D array of complex numbers (multiple-output system). For response data
with Ny outputs and Nf frequency points, specify SpectrumData as an Ny-by-Ny-by-Nf array.

1 Functions

1-588

SpectrumData(ky1,ky2,kf) is the cross spectrum between the noise at output ky1 and the noise
at output ky2 at the frequency Frequency(kf). The power spectrum is the subset of the cross
spectrum where ky1 and ky2 are equal.

CovarianceData — Covariance of response
5-D numeric array

Covariance of SpectrumData, specified as a 5-D array with dimensions Ny-by-Nu-by-Nf-by-2-by-2,
where Ny is the number of outputs, Nu is the number of inputs, and Nf is the number of frequency
points.

CovarianceData(ky,ku,kf,:,:) is the 2-by-2 covariance matrix of SpectrumData(ky,ku,kf).
The (1,1) element is the variance of the real part, the (2,2) element is the variance of the imaginary
part, and the (1,2) and (2,1) elements are the covariance between the real and imaginary parts.
squeeze(CovarianceData(ky,ku,kf,:,:)) thus gives the covariance matrix of the
corresponding response.

If you obtain sysfr by converting a model sys, the value of CovarianceData depends on how you
obtained sys.

• If you obtained sys by identification, the software computes the estimated covariance for sysfr
from the uncertainty information in sys. The software uses Gauss' approximation formula for this
calculation for all model types, except grey-box models. For grey-box models (idgrey), the
software applies numerical differentiation.

• If you created sys by using commands such as idss, idtf, idproc, idgrey, or idpoly, then
the software sets CovarianceData for sysfr to [].

NoiseCovariance — Power spectra variance
numeric vector | 3-D numeric array | 0

Power spectra variance, specified as a vector (single-output system) or a 3-D array (multiple-output
system). For response data with Ny outputs and Nf frequency points, specify NoiseCovariance as an
Ny-by-Ny-by-Nf array. NoiseCovariance(ky1,ky2,kf) is the variance of the corresponding power
spectrum.

To eliminate the influence of the noise component from the model, specify NoiseCovariance as 0.
With zero covariance, the predicted output is the same as the simulated output.

InterSample — Intersample behavior
'zoh' | 'foh' | 'bl' | cell array of character vectors

Intersample behavior of the input signal for transformations between discrete time and continuous
time, specified as a character vector or as an Nu-by-1 cell array of character vectors, where Nu is the
number of input channels. This property is meaningful only when you are estimating continuous-time
models (sample time Ts > 0) from discrete-time data.

For each input channel, the possible values of InterSample are:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency (pi/sys.Ts rad/s). This behavior typically occurs when the input
signal is measured experimentally using an antialiasing filter and a sampler. Ideally, treat the data

 idfrd

1-589

as continuous-time. That is, if the signals used for the estimation of the frequency response were
subject to anti-aliasing filters, set sys.Ts to zero.

If you obtain sysfr by conversion of a model sys, then InterSample is equal to the Intersample
property of the iddata object that you used to estimate sys.

For more information on this property, see “Effect of Input Intersample Behavior on Continuous-Time
Models”.

IODelay — Transport delays
0 (default) | numeric array

Transport delays, specified as a numeric array containing a separate transport delay for each input-
output pair.

For continuous-time systems, transport delays are expressed in the time unit stored in the TimeUnit
property. For discrete-time systems, transport delays are expressed as integers denoting delays of a
multiple of the sample time Ts.

For a MIMO system with Ny outputs and Nu inputs, set IODelay as an Ny-by-Nu array. Each entry of
this array is a numerical value representing the transport delay for the corresponding input-output
pair. You can set IODelay to a scalar value to apply the same delay to all input-output pairs.

InputDelay — Input delay for each input channel
0 (default) | scalar | vector

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time
systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sample time Ts. For example, setting
InputDelay to 3 specifies a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

OutputDelay — Output delay for each output channel
0 (default)

For identified systems such as idfrd, OutputDelay is fixed to zero.

Ts — Sample time
1 (default) | 0 | positive scalar | -1

Sample time, specified as one of the following.

• Discrete-time model with a specified sampling time — a positive scalar representing the sampling
period expressed in the unit specified by the TimeUnit property of the model

• Continuous-time model — 0
• Discrete-time model with an unspecified sample time — -1

Changing this property does not discretize or resample the model. Use c2d and d2c to convert
between continuous- and discrete-time representations. Use d2d to change the sample time of a
discrete-time system.

1 Functions

1-590

TimeUnit — Units for time variable
'seconds' (default) | 'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' |
'hours' | 'days' | 'weeks' | 'months' | 'years'

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of
the following values.

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Changing this property does not resample or convert the data. Modifying the property changes only
the interpretation of the existing data. Use chgTimeUnit to convert data to different time units

InputName — Input channel names
'' (default) | character vector | cell array

Input channel names, specified as a character vector or cell array.

• Single-input model — Character vector. For example, 'controls'.
• Multi-input model — Cell array of character vectors.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For
example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

When you estimate a model using an iddata object data, the software automatically sets
InputName to data.InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

You can use input channel names in several ways, including:

• To identify channels on model display and plots
• To extract subsystems of MIMO systems
• To specify connection points when interconnecting models

InputUnit — Input channel units
'' (default) | character vector | cell array

Input channel units, specified as a character vector or cell array:

 idfrd

1-591

• Single-input model — Character vector
• Multi-input Model — Cell array of character vectors

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.

InputGroup — Input channel groups
structure with no fields (default) | structure

Input channel groups, specified as a structure. The InputGroup property lets you divide the input
channels of MIMO systems into groups so that you can refer to each group by name. In the
InputGroup structure, set field names to the group names, and field values to the input channels
belonging to each group.

For example, create input groups named controls and noise that include input channels 1 and 2
and channels 3 and 5, respectively.

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

You can then extract the subsystem from the controls inputs to all outputs using the following
syntax:

sys(:,'controls')

OutputName — Output channel names
'' (default) | character vector | cell array

Output channel names, specified as a character vector or cell array.

• Single-input model — Character vector. For example, 'measurements'
• Multi-input model — Cell array of character vectors

Alternatively, use automatic vector expansion to assign output names for multi-output models. For
example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

When you estimate a model using an iddata object data, the software automatically sets
OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

You can use output channel names in several ways, including:

• To identify channels on model display and plots
• To extract subsystems of MIMO systems
• To specify connection points when interconnecting models

OutputUnit — Output channel units
'' (default) | character vector | cell array

Output channel units, specified as a character vector or cell array.

1 Functions

1-592

• Single-input model — Character vector. For example, 'seconds'.
• Multi-input model — Cell array of character vectors.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

OutputGroup — Output channel groups
structure with no fields (default) | structure

Output channel groups, specified as a structure. The OutputGroup property lets you divide the
output channels of MIMO systems into groups and refer to each group by name. In the OutputGroup
structure, set field names to the group names, and field values to the output channels belonging to
each group.

For example, create output groups named temperature and measurement that include output
channel 1, and channels 3 and 5, respectively.

sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];

You can then extract the subsystem from all inputs to the measurement outputs using the following
syntax.

sys('measurement',:)

Name — System name
'' (default) | character vector

System name, specified as a character vector. For example, 'system_1'.

Notes — Notes on system
0-by-1 string (default) | string | character vector

Any text that you want to associate with the system, specified as a string or a cell array of character
vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are
dynamic system models, you can set their Notes properties as follows.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 'sys2 has a character vector.'

UserData — Data to associate with system
[] (default) | any MATLAB data type

Data to associate with the system, specified as any MATLAB data type.

 idfrd

1-593

SamplingGrid — Sampling grid
[] (default) | struct

Sampling grid for model arrays, specified as a structure.

For arrays of identified linear (IDLTI) models that you derive by sampling one or more independent
variables, this property tracks the variable values associated with each model. This information
appears when you show or plot the model array. Use this information to trace results back to the
independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values
to the sampled variable values associated with each model in the array. All sampling variables must
be numeric and scalar valued, and all arrays of sampled values must match the dimensions of the
model array.

For example, suppose that you collect data at various operating points of a system. You can identify a
model for each operating point separately and then stack the results together into a single system
array. You can tag the individual models in the array with information regarding the operating point.

nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)

Here, sys is an array containing three identified models obtained at 1000, 5000, and 10,000 rpm,
respectively.

For model arrays that you generate by linearizing a Simulink® model at multiple parameter values or
operating points, the software populates SamplingGrid automatically with the variable values that
correspond to each entry in the array.

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results when the
frequency-response model is obtained using estimation commands, such as spa, spafdr, and etfe.
Use Report to query a model for how it was estimated, including its:

• Estimation method
• Estimation options

The contents of Report are irrelevant if the model was created by construction.

f = logspace(-1,1,100);
[mag,phase] = bode(idtf([1 .2],[1 2 1 1]),f);
response = mag.*exp(1j*phase*pi/180);
sysfr = idfrd(response,f,0.08);
sysfr.Report.Method

ans =

 ''

If you obtain the frequency-response model using estimation commands, the fields of Report contain
information on the estimation data, options, and results.

1 Functions

1-594

load iddata3;
sysfr = spa(z3);sysfr.Report.Method

ans =

SPA

For more information on this property and how to use it, see the Output Arguments section of the
corresponding estimation command reference page and “Estimation Report”.

Object Functions
Many functions applicable to “Dynamic System Models” are also applicable to an idfrd model
object. These functions are of three general types.

• Functions that operate on and return idfrd model objects enable you to convert and manipulate
idfrd models.

• Functions that perform analytical and simulation functions on idfrd objects, such as bode and
sim

• Functions that retrieve or interpret model information, such as getcov

Unlike other identified linear models, you cannot directly convert an idfrd model into another model
type using commands such as idss or idtf. Instead, use the estimation command for the model you
want, using the idfrd object as the estimation data. For instance, use sys = ssest(sysfr,2) to
estimate a second-order state-space model from the frequency response data in idfrd model sysfr.
For an example of using an idfrd object as estimation data, see “Estimate Time-Domain Model Using
Frequency Response Data” on page 1-600.

The following lists contain a representative subset of the functions that you can use with idss
models.

Transformation and Manipulation
chgTimeUnit Change time units of dynamic system
chgFreqUnit Change frequency units of frequency-response data model
fselect Select frequency points or range in FRD model
frdata Access data for frequency response data (FRD) object
fcat Concatenate FRD models along frequency dimension

Analysis and Simulation
bode Bode plot of frequency response, or magnitude and phase data
spectrum Plot or return output power spectrum of time series model or disturbance spectrum of

linear input/output model

Information Extraction and Interpretation
get Access model property values
getcov Parameter covariance of identified model

Examples

 idfrd

1-595

Create idfrd Object from Frequency Response Data

Create an idfrd object from frequency response data.

Load the magnitude data AMP, the phase data PHA, and the frequency vector W. Set sample time Ts to
0.1.

load demofr AMP PHA W
Ts = 0.1;

Use the values of AMP and PHA to compute the complex-valued response response.

response = AMP.*exp(1j*PHA*pi/180);

Create an idfrd object to store response in the idfrd object frdata.

frdata = idfrd(response,W,Ts)

frdata =

IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s).
Response data is available at 1000 frequency points, ranging from 0.03142 rad/s to 31.42 rad/s.

Sample time: 0.1 seconds
Status:
Created by direct construction or transformation. Not estimated.

Plot the data.

bode(frdata)

1 Functions

1-596

frdata is a complex idfrd object with object properties that you can access using dot notation. For
example, confirm the value of Ts.

tsproperty = frdata.Ts

tsproperty = 0.1000

You can also set property values. Set the Name property to 'DC_Converter'.

frdata.Name = 'DC_Converter';

If you import frdata into the System Identification app, the app names this data
DC_Converter, and not the variable name frdata.

Use get to obtain the full set of property settings.

get(frdata)

 FrequencyUnit: 'rad/TimeUnit'
 Report: [1x1 idresults.frdest]
 SpectrumData: []
 CovarianceData: []
 NoiseCovariance: []
 InterSample: {'zoh'}
 ResponseData: [1x1x1000 double]
 IODelay: 0
 InputDelay: 0
 OutputDelay: 0

 idfrd

1-597

 InputName: {''}
 InputUnit: {''}
 InputGroup: [1x1 struct]
 OutputName: {''}
 OutputUnit: {''}
 OutputGroup: [1x1 struct]
 Notes: [0x1 string]
 UserData: []
 Name: 'DC_Converter'
 Ts: 0.1000
 TimeUnit: 'seconds'
 SamplingGrid: [1x1 struct]
 Frequency: [1000x1 double]

Convert Time-Domain Model to Frequency Response Model

Convert a state-space model to a frequency response model using the idfrd command.

Load the data z2 and estimate a second-order state-space model sys.

load iddata2 z2
sys = ssest(z2,2);

Convert sys to the idfrd model frsys.

frsys = idfrd(sys)

frsys =

IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for disturbances at the outputs.
Response data and disturbance spectra are available at 68 frequency points, ranging from 0.1 rad/s to 1000 rad/s.

Output channels: 'y1'
Input channels: 'u1'
Status:
Created by conversion from idss model.

Plot frsys.

bode(frsys)

1 Functions

1-598

frsys is an idfrd model that you can use as a dynamic system model or as estimation data for a
time-domain or frequency-domain model.

Create idfrd Object from Frequency Response of Time-Domain Model

Obtain the frequency response of a transfer function model and convert the response into an idfrd
object.

Construct a transfer function model with one zero and three poles.

systf = idtf([1 .2],[1 2 1 1]);

Use bode to obtain the frequency response of systf, in terms of magnitude and phase, for the
frequency vector f.

f = logspace(-1,1,100);
[mag,phase] = bode(systf,f);

Use the values of mag and phase to compute the complex-valued response response.

response = mag.*exp(1j*phase*pi/180);

Create an idfrd object frdata to store response, specifying a sample rate Ts of 0.8.

 idfrd

1-599

Ts = 0.8;
frdata = idfrd(response,f,Ts)

frdata =

IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s).
Response data is available at 100 frequency points, ranging from 0.1 rad/s to 10 rad/s.

Sample time: 0.8 seconds
Status:
Created by direct construction or transformation. Not estimated.

Plot the data.

bode(frdata)

frdata is a complex idfrd object.

Estimate Time-Domain Model Using Frequency Response Data

Estimate a transfer function model from time-domain data and convert the resulting idtf model to
an idfrd model. Estimate a new transfer function model from the frequency response data in the
idfrd model. Compare the model responses with the original data.

1 Functions

1-600

Load time-domain data z2 and use it to estimate a transfer function sys that has two poles and one
zero.

load iddata2 z2
sys = tfest(z2,2,1);

Convert sys to an idfrd model and plot the frequency response.

frsys = idfrd(sys);
bode(sys)

Estimate a new transfer function sys1 using the data from frsys as the estimation data.

sys1 = tfest(frsys,2,1);

Compare the responses of sys and sys1 with the original estimation data z2.

compare(z2,sys,sys1)

 idfrd

1-601

The model responses are identical.

Version History
Introduced before R2006a

See Also
bode | etfe | freqresp | nyquist | spa | spafdr | tfest

Topics
“Representing Frequency-Response Data Using idfrd Objects”
“Estimating Models Using Frequency-Domain Data”
“Frequency Domain Identification: Estimating Models Using Frequency Domain Data”

1 Functions

1-602

idGaussianProcess
Gaussian process regression mapping function for nonlinear ARX and Hammerstein-Wiener models
(requires Statistics and Machine Learning Toolbox)

Description
An idGaussianProcess object implements a Gaussian process (GP) regression model, and is a
nonlinear mapping function for estimating nonlinear ARX and Hammerstein-Wiener models. This
mapping object, which is also referred to as a nonlinearity, incorporates RegressionGP objects that
the mapping function creates using Statistics and Machine Learning Toolbox™. The mapping object
contains three components: an offset, a nonlinear component, which, in this case, is the GP kernel,
and a linear component that uses a combination of linear weights.

The input to the mapping object can be an internal signal of a nonlinear black-box model, such as one
of the following signals:

• Vector of the regressors of a nonlinear ARX model
• True model input of a Hammerstein-Wiener model
• Output of the linear block of a Hammerstein-Wiener model

Mathematically, idGaussianProcess is a function that maps m inputs X(t) = [x(t1),x2(t),…,xm(t)]T to
a scalar output y(t) using the following relationship:

y(t) = y0 + Χ(t)TPL + G(Χ(t), θ))

Here,

 idGaussianProcess

1-603

• X(t) is an m-by-1 vector of inputs, or regressors.
• y0 is the output offset, a scalar.
• P is an m-by-p projection matrix, where m is the number of regressors and p is the number of

linear weights. m must be greater than or equal to p.
• L is a p-by-1 vector of weights.
• G(X,θ) is the regressive Gaussian process that constitutes the kernel of the idGaussianProcess

object. G has a mean of zero and a covariance that the user specifies by choosing a kernel, and
can be expressed generally as

G(X) = GP(0, K(Xtest, Xtrain, θ))

A zero-mean Gaussian process G predicts the output Ytest for a given input Xtest using the following
relationship:

G(Xtest) = K(Xtest, Xtrain)[K(Xtrain, Xtrain) + σn2I]−1Ytrain

Here:

• K(Xtest,Xtrain) is the covariance kernel function.
• Xtrain is a matrix representing the set of training inputs.
• Xtest is a matrix representing the set of test inputs.
• Ytrain is the vector of outputs from the training set.
• σn is the standard deviation of the additive measurement noise.

Gaussian process modeling is especially useful when you have only limited measurement data. For
more information about creating GP regression models, see fitrgp.

Use idGaussianProcess as the value of the OutputFcn property of an idnlarx model or the
OutputNonlinearity property (but not the InputNonlinearity property) of an idnlhw object.
For example, specify idGaussianProcess when you estimate an idnlarx model with the following
command.

sys = nlarx(data,regressors,idGaussianProcess)

When nlarx estimates the model sys, it essentially estimates the parameters of the
idGaussianProcess function.

You can use a similar approach when you specify input or output linearities using the nlhw command.
For example, specify idGaussianProcess as an input nonlinearity with the following command.

sys = nlhw(data,orders,idGaussianProcess,idSaturation)

You can configure the idGaussianProcess function to disable components and fix parameters. To
omit the linear component, set LinearFcn.Use to false. To omit the offset, set Offset.Use to
false. To specify known values for the linear function and the offset, set their Value attributes
directly and set the corresponding Free attributes to False. To modify the estimation options, set
the option property in EstimationOptions. For example, to change the fit method to 'exact', use
G.EstimationOptions.FitMethod = 'exact'. Use evaluate to compute the output of the
function for a given vector of inputs.

1 Functions

1-604

Creation

Syntax
G = idGaussianProcess
G = idGaussianProcess(kernelFunction)
G = idGaussianProcess(kernelFunction,kernelParameters)
G = idGaussianProcess(kernelFunction,kernelParameters,UseLinearFcn)
G = idGaussianProcess(kernelFunction,kernelParameters,UseLinearFcn,UseOffset)

Description

G = idGaussianProcess creates an idGaussianProcess object G with the kernel function
'SquaredExponential' and default kernel parameters. The number of inputs is determined during
model estimation and the number of outputs is 1.

G = idGaussianProcess(kernelFunction) specifies a specific kernel.

G = idGaussianProcess(kernelFunction,kernelParameters) initializes the parameters of
the specified kernel to the values in kernelParameters.

G = idGaussianProcess(kernelFunction,kernelParameters,UseLinearFcn) specifies
whether the function uses a linear function as a subcomponent.

G = idGaussianProcess(kernelFunction,kernelParameters,UseLinearFcn,UseOffset)
specifies whether the function uses an offset term y0 parameter.

Input Arguments

kernelFunction — Kernel covariance function
'SquaredExponential' (default) | 'Exponential' | 'Matern32' | 'Matern52' |
'RationalQuadratic' | 'ARDSquaredExponential' | 'ARDExponential' | 'ARDMatern32' |
'ARDMatern52' | 'ARDRationalquadratic'

Kernel covariance function, specified as character array or string. For information about the
individual options, see Kernel (Covariance) Function in fitrgp.

This argument sets the G.Kernel.KernelFunction property.

kernelParameters — Initial values for kernel parameters
vector

Initial values for the kernel parameters, specified as a vector. The size of the vector and the values
depend on the choice of kernelFunction. For more information, see Kernel Parameters in fitrgp.

This argument sets the G.Kernel.Parameters.Value property.

UseLinearFcn — Option to use linear function
true (default) | false

Option to use the linear function subcomponent, specified as true or false. This argument sets the
value of the G.LinearFcn.Use property.

 idGaussianProcess

1-605

UseOffset — Option to use offset term
true (default) | false

Option to use an offset term, specified as true or false. This argument sets the value of the
G.Offset.Use property.

Properties
Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

Kernel — Properties of GP kernel
GP kernel property values

Properties of the GP kernel, specified as follows:

• KernelFunction —Covariance kernel function K, specified as one of the values listed in the
kernelFunction argument description. For more information about these options, see Kernel
(Covariance) Function in fitrgp.

• Parameters — Parameters used in the kernel function, specified as the following properties:

• Value — Values of the kernel parameters, specified as a vector.
• Names — Names of the kernel parameters
• InputProjection — Projection matrix used to project inputs onto a lower dimensional

subspace.

The size of the value vector and the values depend on the choice of KernelFunction. For more
information, see Kernel Parameters in fitrgp.

• Free — Option to estimate parameters, specified as a logical scalar. If all the parameters have
finite values, such as when the idGaussianProcess object corresponds to a previously
estimated model, then setting Free to false causes the parameters of the kernel G(X) to remain
unchanged during estimation. The default value is true.

LinearFcn — Parameters of linear function
linear function property values

Parameters of the linear function, specified as follows:

• Use — Option to use the linear function in the idGaussianProduct model, specified as a scalar
logical. The default value is true.

• Value — Linear weights that compose L', specified as a 1-by-p vector.
• InputProjection — Input projection matrix P, specified as an m-by-p matrix, that transforms

the detrended input vector of length m into a vector of length p.

1 Functions

1-606

• Free — Option to update entries of Value during estimation, specified as a 1-by-p logical vector.
The software honors the Free specification only if the starting value of Value is finite. The default
value is true.

Offset — Parameters of offset term
offset property values

Parameters of the offset term, specified as follows:

• Use — Option to use the offset in the idGaussianProcess model, specified as a scalar logical.
The default value is true.

• Value — Offset value, specified as a scalar.
• Free — Option to update Value during estimation, specified as a scalar logical. The software

honors the Free specification of false only if the value of Value is finite. The default value is
true.

Estimation Options — Estimation options
estimation option property values

Estimation options for the nonlinear block of the idGaussianProcess model, specified as follows.
For more information on any of these options, see fitrgp.

• FitMethod — Method to use for estimating the parameters of the idGaussianProcess
nonlinear model, specified as one of the items in the following table.

Option Description
'auto' Software selects the method automatically (default)
'exact' Exact GP regression
'sd' Subset of data points approximation
'sr' Subset of regressors approximation
'fic' Fully independent conditional approximation

• ActiveSetMethod — Active set selection method, specified as one of the items in the following
table.

Option Description
'random' Random selection (default)
'sgma' Sparse greedy matrix approximation
'entropy' Differential entropy-based selection
'likelihood' Subset of regressors log likelihood-based selection

• SparseFitRegularization — Regularization standard deviation for the sparse methods subset
of regressors ('sr') and the fully independent conditional approximation ('fic'), specified as a
positive scalar value.

• Optimizer — Optimizer to use for parameter estimation, specified as one of the items in the
following table.

 idGaussianProcess

1-607

Option Description
'quasinewton' Dense, symmetric rank-1-based, quasi-Newton approximation to the

Hessian (default)
'lbfgs' LBFGS-based quasi-Newton approximation to the Hessian
'fminsearch' Unconstrained nonlinear optimization using the simplex search method of

Lagarias et al. [see fitrgp]
'fminunc' Unconstrained nonlinear optimization (requires an Optimization Toolbox

license)
'fmincon' Constrained nonlinear optimization (requires an Optimization Toolbox

license)
• OptimizerOptions — Options for the optimizer, specified as a structure or object. When

Optimizer is set or changed, the software automatically updates the value of
OptimizerOptions to match the defaults for the corresponding optimizer. Use the properties of
the OptimizerOptions option set to change the values from their defaults.

Examples

Estimate Nonlinear ARX Model with idGaussianProcess as Output Function

Load the input/output data from twotankdata and construct an iddata object z.

load twotankdata u y
z = iddata(y,u,0.8,'timeunit','hours');

Create an idGaussianProduct mapping object g that uses a Matern kernel with the parameter 3/2.

g = idGaussianProcess('Matern32');

Estimate a nonlinear ARX model that uses g as the output function.

sys = nlarx(z,[4 4 1],g)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Gaussian process function using a Matern32 kernel
Sample time: 0.8 hours

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 97.14% (prediction focus)
FPE: 2.82e-05, MSE: 2.795e-05
More information in model's "Report" property.

Display the postestimation properties of g.

disp(sys.OutputFcn.Input)

1 Functions

1-608

Function inputs

 Name: {1x8 cell}
 Mean: [-4.7062e-17 -5.3807e-17 -5.2324e-17 -8.3748e-18 1.0174e-15 ...]
 Range: [2x8 double]

disp(sys.outputFcn.Offset)

Output Offset: initialized to -8.15e-17
 Use: 1
 Value: -8.1532e-17
 Free: 1

disp(sys.outputFcn.NonlinearFcn)

GP kernel and its parameters

 KernelFunction: 'Matern32'
 Parameters: '<Kernel parameters>'
 Free: 1
 Inputs: {1x8 cell}
 Outputs: {'y1(t):Nonlinear'}

Compare the output of sys with the measured output z.

compare(z,sys)

The nonlinear model shows a good fit to the estimation data.

 idGaussianProcess

1-609

Create idGaussianProcess object with no Linear Block

Load the data z3.

load iddata3 z3

Create an idGaussianProcess object G that sets the UseLinearFcn argument to 0. Since this
argument is third in the syntax, you must also specify kernelFunction and kernelParameters.
Set kernelFunction to its default value of 'SquaredExponential'. Set the kernelParameters
argument to [], which specifies no initialization for the parameters.

kernelFunction = 'SquaredExponential';
kernelParameters = [];
UseLinearFcn = 0;
G = idGaussianProcess(kernelFunction,kernelParameters,UseLinearFcn)

G =
Gaussian Process Function

 Nonlinear Function: Gaussian process function using a SquaredExponential kernel
 Linear Function: not in use
 Output Offset: uninitialized

 Inputs: {1x0 cell}
 Outputs: {1x0 cell}
 Kernel: 'GP kernel and its parameters'
 LinearFcn: 'Linear function parameters'
 Offset: 'Offset parameters'
 EstimationOptions: 'Estimation option set'

The properties of G are consistent with your inputs.

Create idGaussianProcess Object with no Offset Block

Load the data z3.

load iddata3 z3

Create an idGaussianProcess object that has no offset block by first creating a default object, and
then, using dot notation to set the G.Offset.Use property directly.

G = idGaussianProcess;
G.Offset.Use = 0

G =
Gaussian Process Function

 Nonlinear Function: Gaussian process function using a SquaredExponential kernel
 Linear Function: uninitialized
 Output Offset: not in use

 Inputs: {1x0 cell}

1 Functions

1-610

 Outputs: {1x0 cell}
 Kernel: 'GP kernel and its parameters'
 LinearFcn: 'Linear function parameters'
 Offset: 'Offset parameters'
 EstimationOptions: 'Estimation option set'

The function description identifies the output offset as not in use.

Version History
Introduced in R2021b

Use of previous idGaussianProcess NonLinearFcn property is not recommended
Not recommended starting in R2022a

Starting in R2022a, the NonLinearFcn property of the idGaussianProcess object has been
renamed to Kernel. The previous property name still works. There are no plans to exclude the
previous name at this time.

This change has no impact on existing syntaxes for idGaussianProcess. If you have code that uses
dot notation to directly set or view this property, consider changing your code to use the new name.

Previous idnlarx data normalization information moved from mapping object properties to
idnlarx Normalization property
Behavior changed in R2022a

Information related to data normalization was moved from the idGaussianProcess mapping object
level to the model level. The Normalization property of the idnlarx model contains the data
centering and scaling information that the estimation process computes. In addition, the regressor-
selection process for the mapping objects has also moved to the model level. The model now passes
the actual regressor names rather than the selection indices to the mapping object, eliminating the
need for an index property at the mapping object level.

The following table summarizes the mapping object subproperties that were eliminated. For more
information, see the Normalization property of idnlarx.

Main
Properties /
Subproperties

Input Output LinearMdl Offset NonlinearMdl

Mean X X
Range X X
Minimum X X X
Maximum X X X
SelectedInpu
tIndex

 X X

See Also
nlarx | nlhw | RegressionGP | fitrgp | idnlarx | idnlhw | evaluate

 idGaussianProcess

1-611

Topics
“Piezoelectric Actuator Model Identification Using Machine Learning”
“Gaussian Process Regression Models” (Statistics and Machine Learning Toolbox)
“Available Mapping Functions for Nonlinear ARX Models”
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

1 Functions

1-612

idgrey
Linear ODE (grey-box model) with identifiable parameters

Description
An idgrey model represents a linear system as a continuous-time or discrete-time state-space model
with identifiable (estimable) coefficients. Use an idgrey model when you want to capture complex
relationships, constraints, and prior knowledge that structured state-space (idss) models cannot
encapsulate. To create an idgrey model, you must know explicitly the system of equations (ordinary
differential or difference equations) that govern the system dynamics.

An idgrey model allows you to incorporate conditions such as the following:

• Parameter constraints that the idss/ssest framework cannot handle, such as linear or equality
constraints on parameters, or prior knowledge about the variance of the states, inputs, outputs, or
any combination of the three, that you want to include as known information

• A linear model of an arbitrary form, such as a transfer function or polynomial model, with
parameter constraints such as a known DC gain, limits on pole locations, a shared denominator
across multiple inputs, or nonzero input/output delays in MIMO models

• Differential or difference equations with known and unknown coefficients

In these and similar cases, you can create an ODE (ordinary differential or difference equation)
function in MATLAB that implements a state-space realization of the linear model and that specifies
constraints and prior knowledge.

A simple example of creating an ODE for idgrey uses the following equations to describe motor
dynamics.

ẋ(t) =
0 1

0 −1
τ

x(t) +
0
G
τ

u(t)

y(t) =
1 0
0 1

x(t)

In these equations, τ is the single estimable parameter and G represents the known static gain.

These equations fit the state-space form:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

For this case, both the A and B matrices contain the estimable parameter τ, and B also includes the
known gain G. You can write a MATLAB function that accepts τ and G as input arguments and returns
the state-space matrices A, B, and C as its output arguments. For example, you can code a function
motorFcn as follows.

function [A,B,C] = motorFcn(tau,G)
% ODE function for computing state-space matrices as functions of parameters
A = [0 1; 0 -1/tau];

 idgrey

1-613

B = [0; G/tau];
C = eye(2);

After creating a function such as motorFcn, create an idgrey model by specifying that function as
the value of its odefun input argument, as the following command shows.

sys = idgrey(@motorFcn,tau0,'c',G)

Here, tau0 is the initial guess for the parameter τ and G specifies the fixed constant. Additionally,
'c' indicates to idgrey that odefun returns matrices corresponding to a continuous-time system.
For more information, see function_type.

For an executable example that creates an idgrey model from these motor dynamics equations, see
“Create Grey-Box Model with Estimable Parameters” on page 1-625.

More generally, the following equations describe state-space forms for continuous-time and discrete-
time systems.

A state-space model of a system with input vector u, output vector y, and disturbance e, takes the
following form in continuous time:

ẋ(t) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)
x(0) = x0

In discrete time, the state-space model takes the form:

x[k + 1] = Ax[k] + Bu[k] + Ke[k]
y[k] = Cx[k] + Du[k] + e[k]
x[1] = x0

Your MATLAB ODE function incorporates the user-defined parameters into the A, B, C, and D
matrices that the function returns. The associated idgrey model references this function, and the
estimation functions greyest and pem use these matrix definitions when estimating the parameters.

For more information on creating an ODE function for idgrey, see “Estimate Linear Grey-Box
Models”.

Creation
Create an idgrey model using the idgrey command. To do so, write a MATLAB function that
returns the A, B, C, and D matrices for given values of the estimable parameters and sample time.
You can pass additional input arguments, such as a time constant or gain, that are not parameters but
that the ODE uses in the expressions for the output arguments.

In addition to the A, B, C, and D matrices, your MATLAB function can return the K matrix if you want
the K values to be functions of your input parameters. Your function can also return the initial state
vector x0. However, the alternative and recommended approach for parameterizing x0 is to use the
InitialState estimation option of greyestOptions.

Note that you can write your ODE function to represent either the continuous time dynamics or the
discrete-time dynamics regardless of the nature of the idgrey model itself. For example, you can
specify a discrete-time idgrey model (sys.Ts>0) that uses a continuous-time parameterization of

1 Functions

1-614

the ODE function. Similarly, you can specify a discrete-time parameterization of the ODE function and
use it with a continuous-time idgrey model (sys.Ts=0). The idgrey input argument fcn_type
informs the idgrey model what type of parameterization the ODE function uses. For more
information, see “Estimate Linear Grey-Box Models”.

Use the estimating functions pem or greyest to obtain estimated values for the unknown parameters
of an idgrey model. Unlike other estimation functions such as ssest, which can create a new model
object, greyest can estimate parameters only for an idgrey model that already exists and is
specified as an input argument. You can access estimated parameters using
sys.Structures.Parameters, where sys is an idgrey model.

You can convert an idgrey model into other dynamic systems, such as idpoly, idss, tf, or ss. You
cannot convert a dynamic system into an idgrey model.

Syntax
sys = idgrey(odefun,parameters,fcn_type)
sys = idgrey(odefun,parameters,fcn_type,extra_args)
sys = idgrey(odefun,parameters,fcn_type,extra_args,Ts)
sys = idgrey(odefun,parameters,fcn_type,extra_args,Ts,Name,Value)

Description

sys = idgrey(odefun,parameters,fcn_type) creates a linear grey-box model sys with
identifiable parameters. odefun specifies the user-defined function that relates the model
parameters parameters to their state-space representation. fcn_type specifies whether the model
is parameterized in continuous-time, discrete-time, or both.

sys = idgrey(odefun,parameters,fcn_type,extra_args) specifies additional arguments
extra_args that odefun requires.

sys = idgrey(odefun,parameters,fcn_type,extra_args,Ts) specifies the sample time Ts.

sys = idgrey(odefun,parameters,fcn_type,extra_args,Ts,Name,Value) incorporates
additional options specified by one or more name-value arguments.

Input Arguments

odefun — MATLAB function
function handle | character array | string

MATLAB function (.m, .p, or .mex* file) that relates the model parameters parameters to their state-
space representation, specified as a function handle or as a character array or string that contains
the name of the function. As an option, odefun can also relate the model parameters to the
disturbance matrix and initial states. For information about creating the ODE function, see “Estimate
Linear Grey-Box Models”. The parameters that the ODE function defines are the same parameters
that you specify in the parameters input argument to idgrey.

If odefun is not on the MATLAB path, then specify the full file name, including the path.

If odefun does not return the disturbance matrix K and the initial state values x0, then these values
are not estimable parameters in the idgrey object. Instead, during estimation, the software
determines these values using the DisturbanceModel and InitialState estimation options,
respectively. You can fix the value of K to zero by setting the DisturbanceModel option to 'none'.

 idgrey

1-615

Doing so generally provides the best match between the simulation results and the measured data.
For more information about the K values, see K. For more information about the estimation options,
see greyestOptions.

The idgrey model stores the ODE function name or handle in the sys.Structures.Function
property.

For more information on creating an ODE function, see “Estimate Linear Grey-Box Models”.

parameters — Initial values of parameters
cell array | matrix

Initial values of the parameters required by odefun, specified as a cell array or a matrix:

• If your model requires multiple parameters, parameters must be a cell array.
• If your model requires only a single parameter, which itself might be a vector or a matrix,

parameters can be a matrix.

You can also specify parameter names using an N-by-2 cell array, where N is the number of
parameters. The first column specifies the names, and the second column specifies the values of the
parameters.

For instance, the following command specifies parameters named 'mass', 'stiffness', and
'damping'.

parameters = {'mass',par1;'stiffness',par2;'damping',par3}

For an example of configuring parameters, see “Configure Estimable Parameter of Grey-Box Model”
on page 1-626.

The idgrey model stores the estimated parameters in the sys.Structures.Parameters property.

fcn_type — Function type
'c' | 'd' | 'cd'

Function type that indicates whether the model is parameterized in continuous-time, discrete-time, or
both, specified as a character array or string that contains one of the following values:

• 'c' — odefun returns matrices corresponding to a continuous-time system, regardless of the
value of Ts.

• 'd' — odefun returns matrices corresponding to a discrete-time system, whose values might or
might not depend on the value of Ts.

• 'cd' — odefun returns matrices corresponding to a continuous-time system if Ts = 0 or a
discrete time system if Ts > 0.

If Ts > 0, select 'cd' rather than 'd' when you want the software to sample your model using
the values returned by odefun rather using the software’s internal sample time conversion
routines.

For an example of setting this argument, see “Create Grey-Box Model with Estimable Parameters” on
page 1-625.

The idgrey model stores the function type in the sys.Structures.FunctionType property.

1 Functions

1-616

extra_args — Extra arguments
{} (default) | cell array

Extra input arguments that are required by odefun, specified as a cell array. If odefun does not
require extra input arguments, specify extra_args as {}.

For an example of using this argument, see “Create Grey-Box Model with Estimable Parameters” on
page 1-625.

Properties
A,B,C,D — Values of state-space matrices
matrices

This property is read-only.

Values of the state-space matrices that the ODE function represented by odefun returns, specified as
the following:

• A — State matrix A, an Nx-by-Nx matrix, where Nx is the number of states.
• B — Input-to-state matrix B, an Nx-by-Nu matrix, where Nu is the number of inputs.
• C — State-to-output matrix C, an Ny-by-Nx matrix, where Ny is the number of outputs.
• D — Feedthrough matrix D, an Ny-by-Nu matrix.

For an example of this property, see “Create Grey-Box Model with Estimable Parameters” on page 1-
625.

K — Value of state disturbance matrix K
matrix

Values of the state disturbance matrix K, specified as an Nx-by-Ny matrix, where Nx is the number of
states and Ny is the number of outputs.

• If odefun parameterizes the K matrix, then K has the value returned by odefun. odefun
parameterizes the K matrix if it returns at least five outputs and the value of the fifth output does
not contain NaN values.

• If odefun does not parameterize the K matrix, then K is a zero matrix. The zero value is treated as
a fixed value of the K matrix during estimation. To make the value of K estimable, use the
DisturbanceModel estimation option.

• Regardless of whether the K matrix is parameterized by odefun or not, you can set the values of
the K property explicitly. The specified value is treated as a fixed value of the K matrix during
estimation. To make the value estimable, use the DisturbanceModel estimation option.

To create an estimation option set for idgrey models, use greyestOptions.

StateName — State names
{''} (default) | character vector | cell array of character vectors

State names, specified as one of these values:

• Character vector — For first-order models
• Cell array of character vectors — For models with two or more states

 idgrey

1-617

• '' — For unnamed states

You can specify StateName using a string, such as "velocity", but the state name is stored as a
character vector, 'velocity'.
Example: 'velocity'
Example: {'x1','x2'}

StateUnit — State units
{''} (default) | character vector | cell array of character vectors

State units, specified as one of these values:

• Character vector — For first-order models
• Cell array of character vectors — For models with two or more states
• '' — For states without specified units

Use StateUnit to keep track of the units each state is expressed in. StateUnit has no effect on
system behavior.

You can specify StateUnit using a string, such as "mph", but the state units are stored as a
character vector, 'mph'.
Example: 'mph'
Example: {'rpm','rad/s'}

Structure — Information about estimable parameters
LinearODE structure

Information about the estimable parameters of the idgrey model, specified as a LinearODE
structure.

• Structure.Function — Name or function handle of the MATLAB function used to create the
idgrey model.

• Structure.FunctionType — Indicates whether the model is parameterized in continuous-time,
discrete-time, or both.

• Structure.Parameters — Information about the estimated parameters.
Structure.Parameters contains the following fields:

• Value — Parameter values. For example, sys.Structure.Parameters(2).Value contains
the initial or estimated values of the second parameter.

NaN represents unknown parameter values.
• Minimum — Minimum value that the parameter can assume during estimation. For example,

sys.Structure.Parameters(1).Minimum = 0 constrains the first parameter to be greater
than or equal to zero.

• Maximum — Maximum value that the parameter can assume during estimation.
• Free — Boolean value specifying whether the parameter is estimable. If you want to fix the

value of a parameter during estimation, set Free = false for the corresponding entry.
• Scale — Scale of the parameter’s value. Scale is not used in estimation.
• Info — Structure array for storing parameter units and labels. The structure has Label and

Unit fields.

1 Functions

1-618

Specify parameter units and labels as character vectors. For example, 'Time'.
• Structure.ExtraArguments — Extra input arguments the ODE function requires.
• Structure.StateName — Names of the model states.
• Structure.StateUnit — Units of the model states.

Noise Variance — Noise variance of model innovations
scalar | matrix

Noise variance of the model innovations e, specified as a scalar or a covariance matrix. For SISO
models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is an Ny-by-Ny matrix,
where Ny is the number of outputs in the system.

An identified model includes a white, Gaussian noise component, e(t). NoiseVariance is the
variance of this noise component. Typically, the model estimation function (such as greyest or pem)
determines this variance.

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results when the grey-
box model is obtained using the greyest estimation command. Use Report to query a model for
how it was estimated, including its:

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit and other quality metrics

The contents of Report are irrelevant if the model was created by construction.

odefun = 'motorDynamics';
m = idgrey(odefun,1,'cd',0.25,0);
m.Report.OptionsUsed

ans =

 []

If you obtain the grey-box model using estimation commands, the fields of Report contain
information on the estimation data, options, and results.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
data = iddata(y,u,0.1,'Name','DC-motor');
odefun = 'motorDynamics';
init_sys = idgrey('motorDynamics',1,'cd',0.25,0);
m = greyest(data,init_sys);
m.Report.OptionsUsed

InitialState: 'auto'
 DisturbanceModel: 'auto'
 Focus: 'prediction'
 EstimateCovariance: 1

 idgrey

1-619

 Display: 'off'
 InputOffset: []
 OutputOffset: []
 Regularization: [1x1 struct]
 OutputWeight: []
 SearchMethod: 'auto'
 SearchOptions: [1x1 idoptions.search.identsolver]
 Advanced: [1x1 struct]

For more information on this property and how to use it, see the Output Arguments section of the
corresponding estimation command reference page and “Estimation Report”.

InputDelay — Delay at inputs
0 (default) | scalar | vector

Delay at each input, specified as a scalar or a vector. For a system with Nu inputs, set InputDelay to
an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for
the corresponding input channel. For continuous-time models, specify input delays in the time unit
stored in the TimeUnit property of the model object. For discrete-time models, specify input delays
in integer multiples of the sample time Ts. For example, InputDelay = 3 means a delay of three
sample times.

Set InputDelay to a scalar value to apply the same delay to all channels.

OutputDelay — Output delays
0 (default)

For identified systems like idgrey, OutputDelay is fixed to zero.

Ts — Sample time
0 | -1 | positive scalar

Sample time, specified as one of the following.

• Continuous-time model — 0
• Discrete-time model with a specified sampling time — Positive scalar representing the sampling

period expressed in the unit specified by the TimeUnit property of the model
• Discrete-time model with unspecified sample time — -1

For idgrey models, Ts has no unique default value. Ts depends on the value of fcn_type.

Changing this property does not discretize or resample the model. Use c2d and d2c to convert
between continuous- and discrete-time representations. Use d2d to change the sample time of a
discrete-time system.

TimeUnit — Model time units
'seconds' (default) | 'minutes' | 'milliseconds' | ...

Model time units, specified as one of these values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'

1 Functions

1-620

• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

You can specify TimeUnit using a string, such as "hours", but the time units are stored as a
character vector, 'hours'.

Model properties such as sample time Ts, InputDelay, OutputDelay, and other time delays are
expressed in the units specified by TimeUnit. Changing this property has no effect on other
properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between
time units without modifying system behavior.

InputName — Names of input channels
{''} (default) | character vector | cell array of character vectors

Names of input channels, specified as one of these values:

• Character vector — For single-input models
• Cell array of character vectors — For models with two or more inputs
• '' — For inputs without specified names

You can use automatic vector expansion to assign input names for multi-input models. For example, if
sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

You can specify InputName using a string, such as "voltage", but the input name is stored as a
character vector, 'voltage'.

When you estimate a model using an iddata object, data, the software automatically sets
InputName to data.InputName.

InputUnit — Units of input signals
{''} (default) | character vector | cell array of character vectors

Units of input signals, specified as one of these values:

 idgrey

1-621

• Character vector — For single-input models
• Cell array of character vectors — For models with two or more inputs
• '' — For inputs without specified units

Use InputUnit to keep track of the units each input signal is expressed in. InputUnit has no effect
on system behavior.

You can specify InputUnit using a string, such as "voltage", but the input units are stored as a
character vector, 'voltage'.
Example: 'voltage'
Example: {'voltage','rpm'}

InputGroup — Input channel groups
structure with no fields (default) | structure

Input channel groups, specified as a structure where the fields are the group names and the values
are the indices of the input channels belonging to the corresponding group. When you use
InputGroup to assign the input channels of MIMO systems to groups, you can refer to each group by
name when you need to access it. For example, suppose you have a five-input model sys, where the
first three inputs are control inputs and the remaining two inputs represent noise. Assign the control
and noise inputs of sys to separate groups.

sys.InputGroup.controls = [1:3];
sys.InputGroup.noise = [4 5];

Use the group name to extract the subsystem from the control inputs to all outputs.

sys(:,'controls')

Example: struct('controls',[1:3],'noise',[4 5])

OutputName — Names of output channels
{''} (default) | character vector | cell array of character vectors

Names of output channels, specified as one of these values:

• Character vector — For single-output models
• Cell array of character vectors — For models with two or more outputs
• '' — For outputs without specified names

You can use automatic vector expansion to assign output names for multi-output models. For example,
if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots

1 Functions

1-622

• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

You can specify OutputName using a string, such as "rpm", but the output name is stored as a
character vector, 'rpm'.

When you estimate a model using an iddata object, data, the software automatically sets
OutputName to data.OutputName.

OutputUnit — Units of output signals
{''} (default) | character vector | cell array of character vectors

Units of output signals, specified as one of these values:

• Character vector — For single-output models
• Cell array of character vectors — For models with two or more outputs
• '' — For outputs without specified units

Use OutputUnit to keep track of the units each output signal is expressed in. OutputUnit has no
effect on system behavior.

You can specify OutputUnit using a string, such as "voltage", but the output units are stored as a
character vector, 'voltage'.
Example: 'voltage'
Example: {'voltage','rpm'}

OutputGroup — Output channel groups
structure with no fields (default) | structure

Output channel groups, specified as a structure where the fields are the group names and the values
are the indices of the output channels belonging to the corresponding group. When you use
OutputGroup to assign the output channels of MIMO systems to groups, you can refer to each group
by name when you need to access it. For example, suppose you have a four-output model sys, where
the second output is a temperature, and the rest are state measurements. Assign these outputs to
separate groups.

sys.OutputGroup.temperature = [2];
sys.OutputGroup.measurements = [1 3 4];

Use the group name to extract the subsystem from all inputs to the measurement outputs.

sys('measurements',:)

Example: struct('temperature',[2],'measurement',[1 3 4])

Name — Model name
'' (default) | character vector

Model name, stored as a character vector. You can specify Name using a string, such as "DCmotor",
but the output units are stored as a character vector, 'DCmotor'.
Example: 'system_1'

Notes — Text notes about model
[0×1 string] (default) | string | cell array of character vector

 idgrey

1-623

Text notes about the model, stored as a string or a cell array of character vectors. The property stores
whichever of these two data types you provide. For instance, suppose that sys1 and sys2 are
dynamic system models, and set their Notes properties to a string and a character vector,
respectively.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 'sys2 has a character vector.'

UserData — Data associated with model
[] (default) | any data type

Data of any kind that you want to associate and store with the model, specified as any MATLAB data
type.

SamplingGrid — Sampling grid for model arrays
structure with no fields (default) | structure

Sampling grid for model arrays, specified as a structure. For arrays of identified linear (IDLTI) models
that are derived by sampling one or more independent variables, this property tracks the variable
values associated with each model. This information appears when you display or plot the model
array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values
to the sampled variable values associated with each model in the array. All sampling variables should
be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the
model array.

For example, if you collect data at various operating points of a system, you can identify a model for
each operating point separately and then stack the results together into a single system array. You
can tag the individual models in the array with information regarding the operating point:

nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)

where sys is an array containing three identified models obtained at rpms 1000, 5000 and 10000,
respectively.

For model arrays generated by linearizing a Simulink model at multiple parameter values or
operating points, the software populates SamplingGrid automatically with the variable values that
correspond to each entry in the array. For example, the Simulink Control Design™ commands
linearize and slLinearizer populate SamplingGrid in this way.

1 Functions

1-624

Object Functions
For information about functions that are applicable to an idgrey object, see “Linear Grey-Box
Models”.

Examples

Create Grey-Box Model with Estimable Parameters

Create and configure an idgrey model that incorporates an ODE function with one estimable
parameter.

This example uses the shipped file motorDynamics.m, which represents the linear dynamics of a DC
motor in the following form:

x. t =
0 1

0 −1
τ

x t +
0
G
τ

u t

y t =
1 0
0 1

x t

motorDynamics returns theA,B,C, and D matrices and explicitly sets the elements of the Kmatrix
and the initial conditions X0 to 0. motorDynamics defines the motor time constant τ as the single
estimable parameter. The model also includes an auxiliary argument G that represents the known
static gain. If you want to view the code for this model, enter edit motorDynamics at the command
line.

Initialize τ to 1 by setting the value of the parameters single-element matrix to 1. Set fcn_type to
'cd' to specify that odefun can return either continuous-time (Ts=0) or discrete-time
representation (Ts>0). Set extra_args, which represents G, to 0.25. Set the sample time Ts to 0.

odefun = 'motorDynamics';
parameters = 1;
fcn_type = 'cd';
extra_args = 0.25;
Ts = 0;

Create the idgrey model sys.

sys = idgrey(odefun,parameters,fcn_type,extra_args,Ts)

sys =
 Continuous-time linear grey box model defined by "motorDynamics" function:
 dx/dt = A x(t) + B u(t) + K e(t)
 y(t) = C x(t) + D u(t) + e(t)

 A =
 x1 x2
 x1 0 1
 x2 0 -1

 B =
 u1
 x1 0

 idgrey

1-625

 x2 0.25

 C =
 x1 x2
 y1 1 0
 y2 0 1

 D =
 u1
 y1 0
 y2 0

 K =
 y1 y2
 x1 0 0
 x2 0 0

 Model parameters:
 Par1 = 1

Parameterization:
 ODE Function: motorDynamics
 (parametrizes both continuous- and discrete-time equations)
 Disturbance component: parameterized by the ODE function
 Initial state: parameterized by the ODE function
 Number of free coefficients: 1
 Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

To refine the estimate for τ, use pem or greyest.

Configure Estimable Parameter of Grey-Box Model

Specify the known parameters of a grey-box model as fixed for estimation. Also specify a minimum
bound for an estimable parameter.

Create an ODE file that relates the pendulum model coefficients to its state-space representation.
Save this function as LinearPendulum.m such that it is in the MATLAB® search path.

function [A,B,C,D] = LinearPendulum(m,g,l,b,Ts)
A = [0 1; -g/l, -b/m/l^2];
B = zeros(2,0);
C = [1 0];
D = zeros(1,0);
end

In this function:

• m is the pendulum mass.

1 Functions

1-626

• g is the gravitational acceleration.
• l is the pendulum length.
• b is the viscous friction coefficient.
• Ts is the model sample time.

Create a linear grey-box model associated with the ODE function.

odefun = 'LinearPendulum';

m = 1;
g = 9.81;
l = 1;
b = 0.2;
parameters = {'mass',m;'gravity',g;'length',l;'friction',b};

fcn_type = 'c';

sys = idgrey(odefun,parameters,fcn_type);

sys has four parameters.

Specify the known parameters, m, g, and l, as fixed for estimation.

sys.Structure.Parameters(1).Free = false;
sys.Structure.Parameters(2).Free = false;
sys.Structure.Parameters(3).Free = false;

m, g, and l are the first three parameters of sys.

Specify a zero lower bound for b, the fourth parameter of sys.

sys.Structure.Parameters(4).Minimum = 0;

Similarly, to specify an upper bound for an estimable parameter, use the Maximum field of the
parameter.

Specify Additional Attributes of Grey-Box Model

Create a grey-box model with identifiable parameters and properties that you specify. Then, specify
an additional property.

Use name-value arguments to specify names for the input and output channels.

odefun = 'motorDynamics';
parameters = 1;
fcn_type = 'cd';
extra_args = 0.25;
Ts = 0;
sys = idgrey(odefun,parameters,fcn_type,extra_args,Ts,'InputName','Voltage',...
 'OutputName',{'Angular Position','Angular Velocity'});

Specify TimeUnit using dot notation.

sys.TimeUnit = 'seconds';

 idgrey

1-627

Create Array of Grey-Box Models

Use the stack command to create an array of linear grey-box models.

Specify odefun1 using the function handle @motordynamics. Set the static gain to 1, using
extra_args1.

odefun1 = @motorDynamics;
parameters1 = [1 2];
fcn_type = 'cd';
extra_args1 = 1;
sys1 = idgrey(odefun1,parameters1,fcn_type,extra_args1);
size(sys1)

Grey-box model with 2 outputs, 1 inputs, 2 states and 2 free parameters.

Specify odefun2 using the function name 'motorDynamics'. Set the static gain to 0.5, using
extra_args2.

odefun2 = 'motorDynamics';
parameters2 = {[1 2]};
extra_args2 = 0.5;
sys2 = idgrey(odefun2,parameters2,fcn_type,extra_args2);

Use stack to create the 2-by-1 array sysarr of idgrey models.

sysarr = stack(1,sys1,sys2);
size(sysarr)

2x1 array of grey-box models.
Each model has 2 outputs, 1 inputs, 2 states and 2 free parameters.

Version History
Introduced before R2006a

See Also
greyest | greyestOptions | pem | idnlgrey | idss | ssest | getpvec | setpvec | stack

Topics
“Estimate Linear Grey-Box Models”
“Estimate Coefficients of ODEs to Fit Given Solution”
“Estimate Model Using Zero/Pole/Gain Parameters”
“Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance”

1 Functions

1-628

idinput
Generate input signals to support system identification

Syntax
u = idinput(N)
u = idinput([N,Nu])
u = idinput([Period,Nu,NumPeriod])

u = idinput(___ ,Type)
u = idinput(___ ,Type,Band)
u = idinput(___ ,Type,Band,Range)
[u,freq] = idinput(___ ,'sine',Band,Range,SineData)

Description
The idinput command generates an input signal with specified characteristics for your system. You
can use the generated input, and simulate the response of your system to study system behavior. For
example, you can study the system response to periodic inputs. The system can be an actual physical
system or a model such as a Simulink model. You can also design optimal experiments. For example,
you can determine which input signals isolate faults or nonlinearities in your system. You can also use
idinput to design an input that has sufficient bandwidth to excite the dynamic range of your system.

u = idinput(N) returns a single-channel random binary input signal u of length N. The generated
signal values are either -1 or 1.

u = idinput([N,Nu]) returns an Nu-channel random binary input signal, where each channel
signal has length N. The signals in each channel differ from each other.

u = idinput([Period,Nu,NumPeriod]) returns an Nu-channel periodic random binary input
signal with specified period and number of periods. Each input channel signal is of length
NumPeriod*Period.

u = idinput(___ ,Type) specifies the type of input to be generated as one of the following:

• 'rbs' — Random binary signal
• 'rgs' — Random Gaussian signal
• 'prbs' — Pseudorandom binary signal
• 'sine' — Sum-of-sinusoids signal

Use with any of the previous input argument combinations.

u = idinput(___ ,Type,Band) specifies the frequency band of the signal. For pseudorandom
binary signals (PRBS), Band specifies the inverse of the clock period of the signal.

u = idinput(___ ,Type,Band,Range) specifies the amplitude-range of the signal.

[u,freq] = idinput(___ ,'sine',Band,Range,SineData) specifies the Type as a sum-of-
sinusoids signal and specifies the characteristics of the sine waves used to generate the signal in

 idinput

1-629

SineData. You can specify characteristics such as the number of sine waves and their frequency
separation. The frequencies of the sine waves are returned in freq.

Examples

Generate a Random Binary Input Signal

Generate a single-channel random binary input signal with 200 samples.

N = 200;
u = idinput(N);

u is a column vector of length 200. The values in u are either -1 or 1.

Create an iddata object from the generated signal. For this example, specify the sample time as 1
second.

u = iddata([],u,1);

To examine the signal, plot it.

plot(u)

The generated signal is a random binary input signal with values -1 or 1. You can use the generated
input signal to simulate the output of your system using the sim command.

1 Functions

1-630

Generate a Multichannel Random Binary Input Signal

Generate a two-channel random binary input signal with 200 samples.

N = 200;
u = idinput([N,2]);

u is a 200-by-2 matrix with values -1 or 1.

Create an iddata object from the generated signal. For this example, specify the sample time as 1
second.

u = iddata([],u,1);

Plot the signals for the two channels, and examine the signals.

plot(u)

The plot shows the two generated random binary signals with values -1 or 1.

 idinput

1-631

Generate a Periodic Random Binary Input Signal

Generate a single-channel periodic random binary input signal with a period of 10 samples and 5
periods in the signal.

NumChannel = 1;
Period = 10;
NumPeriod = 5;
u = idinput([Period,NumChannel,NumPeriod]);

u is a column vector of length 50 (= Period*NumPeriod). The values in u are either -1 or 1.

Create an iddata object from the generated signal. Specify the sample time as 1 second.

u = iddata([],u,1);

Plot the signal.

plot(u)

As specified, the generated single-channel periodic random binary input signal has a period of 10
seconds, and there are 5 whole periods in the signal.

1 Functions

1-632

Generate a Periodic Random Gaussian Input Signal in Specified Frequency Range

Generate a single-channel periodic random Gaussian input signal with a period of 50 samples and 5
periods in the signal. First generate the signal using the entire frequency range, then specify a
passband.

NumChannel = 1;
Period = 50;
NumPeriod = 5;
u = idinput([Period,NumChannel,NumPeriod],'rgs');

u is a column vector of length 250 (= Period*NumPeriod).

Create an iddata object from the generated signal, and plot the signal. For this example, specify the
sample time as 0.01 seconds.

u = iddata([],u,0.01);
plot(u)

The plot shows that u contains a random segment of 50 samples, repeated 5 times. The signal is a
Gaussian white noise signal with zero mean and variance one.

Since the sample time is 0.01 seconds, the generated signal has a period of 0.5 seconds. The
frequency content of the signal spans the entire available range (0-50 Hz).

Now specify a passband between 0 and 25 Hz (= 0.5 times the Nyquist frequency).

 idinput

1-633

Band = [0 0.5];
u2 = idinput([Period,NumChannel,NumPeriod],'rgs',Band);

Create an iddata object, and plot the signal.

u2 = iddata([],u2,0.01);
plot(u2)

The frequency content of the generated signal u2 is limited to 0-25 Hz.

Generate a Nonperiodic Pseudorandom Binary Input Signal

A pseudorandom binary input signal (PRBS) is a deterministic signal whose frequency properties
mimic white noise. A PRBS is inherently periodic with a maximum period length of 2n− 1, where
integer n is the order of the PRBS. For more information, see “Pseudorandom Binary Signals” on page
1-646.

Specify that the single-channel PRBS value switches between -2 and 2.

Range = [-2,2];

Specify the clock period of the signal as 1 sample. That is, the signal value can change at each time
step. For PRBS signals, the clock period is specified in Band = [0 B], where B is the inverse of the
required clock period.

1 Functions

1-634

Band = [0 1];

Generate a nonperiodic PRBS of length 100 samples.

u = idinput(100,'prbs',Band,Range);

Warning: The PRBS signal delivered is the 100 first values of a full sequence of length 127.

A PRBS is inherently periodic. To generate a nonperiodic signal, the software generates a maximum
length PRBS of length 127 that has a period greater than the required number of samples, 100. The
software returns the first 100 samples of the generated PRBS. This action ensures that the generated
signal is not periodic, as indicated in the generated warning.

Create an iddata object from the generated signal. For this example, specify the sample time as 1
second.

u = iddata([],u,1);

Plot, and examine the generated signal.

plot(u);
title('Non-Periodic Signal')

The generated signal is a nonperiodic PRBS of length 100 that switches between -2 and 2.

 idinput

1-635

Generate a Periodic Pseudorandom Binary Input Signal

Specify that the pseudorandom binary input signal (PRBS) switches between -2 and 2.

Range = [-2,2];

Specify the clock period of the signal as 1 sample. That is, the signal value can change at each time
step. For PRBS signals, the clock period is specified in Band = [0 B], where B is the inverse of the
required clock period.

Band = [0 1];

Generate a single-channel, periodic PRBS with a period of 100 samples and 3 periods in the signal.

u1 = idinput([100,1,3],'prbs',Band,Range);

Warning: The period of the PRBS signal was changed to 63. Accordingly, the length of the generated signal will be 189.

A PRBS is inherently periodic with a maximum period length of 2n− 1, where integer n is the order of
the PRBS. If the period you specify is not equal to a maximum length PRBS, the software adjusts the
period of the generated signal to obtain an integer number of maximum length PRBS, and issues a
warning. For more information about maximum length PRBS, see “Pseudorandom Binary Signals” on
page 1-646. In this example, the desired period, 100, is not equal to a maximum length PRBS, thus
the software instead generates a maximum length PRBS of order n = floor(log2(Period)) = 6.
Thus, the period of the PRBS signal is 63 (= 26− 1), and the length of the generated signal is 189 (=
NumPeriod*63). This result is indicated in the generated warning.

Create an iddata object from the generated signal, and plot the signal. Specify the period of the
signal as 63 samples.

u1 = iddata([],u1,1,'Period',63);
plot(u1)
title('Periodic Signal')

1 Functions

1-636

The generated signal is a periodic PRBS with three periods.

Generate Pseudorandom Binary Input Signal with Specified Clock Period

Generate periodic and nonperiodic pseudorandom binary input signals (PRBS) with specified clock
period.

Generate a single-channel PRBS that switches between -2 and 2. Specify the clock period of the
signal as 4 samples. That is, the signal has to stay constant for at least 4 consecutive samples before
it can change. For PRBS signals, the clock period is specified in Band = [0 B], where B is the inverse
of the required clock period.

Range = [-2,2];
Band = [0 1/4];

First generate a nonperiodic signal of length 100.

u1 = idinput(100,'prbs',Band,Range);

Warning: The PRBS signal delivered is the 100 first values of a full sequence of length 124.

To understand the generated warning, first note that the code is equivalent to generating a single-
channel PRBS with a 100-sample period and 1 period.

u1 = idinput([100,1,1],'prbs',Band,Range);

 idinput

1-637

The generated PRBS signal has to remain constant for at least 4 samples before the value can
change. To satisfy this requirement, the software first computes the order of the smallest possible
maximum length PRBS as n = floor(log2(Period*B)) = 4 and period 2n− 1 = 15. For
information about maximum length PRBS, see “Pseudorandom Binary Signals” on page 1-646. The
software then stretches this PRBS such that the period of the stretched signal is
P = (1/B)(2n− 1) = 60.

However, since this period is less than the specified length, 100, the software computes instead a
maximum length PRBS of order m = n+1 = 5. The software then stretches this PRBS such that the
period is now P2 = (1/B)(2m− 1) = 124. The software returns the first 100 samples of this signal as
u1. This result ensures that the generated signal is not periodic but is constant for every 4 samples.

Create an iddata object from the generated signal. For this example, specify the sample time as 1
second.

u1 = iddata([],u1,1);

Plot, and examine the signal.

plot(u1);
title('Nonperiodic Signal')

The generated signal is a nonperiodic PRBS of length 100. The signal remains constant for at least 4
samples before each change in value. Thus, the signal satisfies the clock period specified in Band.

Now generate a periodic signal with a 100-sample period and 3 periods.

1 Functions

1-638

u2 = idinput([100,1,3],'prbs',Band,Range);

Warning: The period of the PRBS signal was changed to 60. Accordingly, the length of the generated signal will be 180.

To generate a periodic signal with specified clock period, the software generates u2 as 3 repetitions
of the original stretched signal of period P = 60. Thus, the length of u2 is P*NumPeriod = 60*3 =
180. This change in period and length of the generated signal is indicated in the generated warning.

Create an iddata object from the generated signal, and plot the signal. Specify the period of the
signal as 60 seconds.

u2 = iddata([],u2,1,'Period',60);
plot(u2)
title('Periodic Signal')

The generated signal is a periodic PRBS with a 60-second period and 3 periods. The signal remains
constant for at least 4 samples before each change in value. Thus, the signal satisfies the specified
clock period.

Generate a Sum-of-Sinusoids Signal

You can generate a sum-of-sinusoids signal using default characteristics for the sine waves.
Alternatively, you configure the number of sine waves, and the frequencies and phases of the sine
waves. This example shows both approaches.

 idinput

1-639

Specify that the signal has 50 samples in each period and 3 periods. Also specify that the signal
amplitude range is between -1 and 1.

Period = 50;
NumPeriod = 3;
Range = [-1 1];

Specify the frequency range of the signal. For a sum-of-sinusoids signal, you specify the lower and
upper frequencies of the passband in fractions of the Nyquist frequency. In this example, use the
entire frequency range between 0 and Nyquist frequency.

Band = [0 1];

First generate the signal using default characteristics for the sine waves. By default, the software
uses 10 sine waves to generate the signal. The software assigns a random phase to each sinusoid, and
then changes these phases 10 times to get the smallest signal spread. The signal spread is the
difference between the minimum and the maximum value of the signal over all samples.

[u,freq] = idinput([Period 1 NumPeriod],'sine',Band,Range);

The software returns the sum-of-sinusoids signal in u and the frequencies of the sinusoids in freq.
The values in freq are scaled assuming that the sample time is 1 time unit. Suppose that the sample
time is 0.01 hours. To retrieve the actual frequencies in rad/hours, divide the values by the sample
time.

Ts = 0.01; % Sample time in hours
freq = freq/Ts;
freq(1)

ans = 12.5664

freq(1) is the frequency of the first sine wave. To see how the software chooses the frequencies, see
the SineData argument description on the idinput reference page.

To verify that 10 sine waves were used to generate the signal, you can view the frequency content of
the signal. Perform a Fourier transform of the signal, and plot the single-sided amplitude spectrum of
the signal.

ufft = fft(u);
Fs = 2*pi/Ts; % Sampling frequency in rad/hour
L = length(u);
w = (0:L-1)*Fs/L;
stem(w(1:L/2),abs(ufft(1:L/2))) % Plot until Nyquist frequency
title('Single-Sided Amplitude Spectrum of u(t)')
xlabel('Frequency (rad/hour)')
ylabel('Amplitude')

1 Functions

1-640

The generated plot shows the frequencies of the 10 sine waves used to generate the signal. For
example, the plot shows that the first sine wave has a frequency of 12.57 rad/hour, the same as
freq(1).

Convert the generated signal into an iddata object, and plot the signal. Specify the sample time as
0.01 hours.

u = iddata([],u,Ts,'TimeUnit','hours');
plot(u)

 idinput

1-641

The signal u is generated using 10 sinusoids and has a period of 0.5 hours and 3 periods.

Now modify the number, frequency, and phase of the sinusoids that are used to generate the sum-of-
sinusoids signal. Use 12 sinusoids and try 15 different sets of phases. To set the frequencies of the
sinusoids, specify GridSkip = 2. The software selects the frequencies of the sinusoids from the
intersection of the frequency grid 2*pi*[1:GridSkip:fix(Period/2)]/Period and the
passband pi*Band.

NumSinusoids = 12;
NumTrials = 15;
GridSkip = 2;
SineData = [NumSinusoids,NumTrials,GridSkip];
u2 = idinput([Period 1 NumPeriod],'sine',Band,Range,SineData);

Convert the generated signal into an iddata object, and plot the signal.

u2 = iddata([],u2,Ts,'TimeUnit','hours');
plot(u2)

1 Functions

1-642

The signal u2 is generated using 12 sinusoids and has a period of 0.5 hours and 3 periods.

Input Arguments
N — Number of generated input data samples
real positive integer

Number of generated input data samples, specified as a real positive integer. For a single-channel
input data, the generated input u has N rows. For an Nu-channel input data, u is returned as an N-by-
Nu matrix, where each channel signal has length N.

Nu — Number of input channels
1 (default) | real positive integer

Number of input channels in generated signal, specified as a real positive integer.

Period — Number of samples in each period
real positive integer

Number of samples in each period of generated signal, specified as a real positive integer. Use this
input to specify a periodic signal. Also specify the number of periods in NumPeriod. Each generated
input channel signal has NumPeriod*Period samples.

NumPeriod — Number of periods in generated signal
1 (default) | real positive integer

 idinput

1-643

Number of periods in generated signal, specified as a real positive integer. Use this input to specify a
periodic signal. Also specify the signal Period. Each generated input channel signal has
NumPeriod*Period samples.

Type — Type of generated signal
'rbs' (default) | 'rgs' | 'prbs' | 'sine'

Type of generated signal, specified as one of the following values:

• 'rbs' — Generates a random binary signal. A random binary signal is a random process that
assumes only two values. You can specify these values using Range. To generate a band-limited
signal, specify the passband in Band. To generate a periodic signal, specify Period and
NumPeriod.

• 'rgs' — Generates a random Gaussian signal. The generated Gaussian signal has mean μ and
standard deviation σ such that [μ-σ, μ+σ] equals Range. To generate a band-limited Gaussian
signal, specify the passband in Band. To generate a periodic Gaussian signal with an n samples
period that repeats itself m times, specify Period as n and NumPeriod as m.

• 'prbs'— Generates a pseudorandom binary signal (PRBS). A PRBS is a periodic, deterministic
signal with white-noise-like properties that shifts between two values. You can specify these two
values using Range. You can also specify the clock period, the minimum number of sampling
intervals for which the value of the signal does not change. You specify the inverse of the clock
period in Band.

The length of the generated signal is not always the same as what you specify. The length depends
on whether you require a periodic or nonperiodic signal and also on the clock period you specify.
For more information, see “Pseudorandom Binary Signals” on page 1-646.

• 'sine'— Generates a signal that is a sum-of-sinusoids. The software selects the frequencies of
the sinusoids to be equally spread over a chosen grid and assigns each sinusoid a random phase.
The software then tries several random phases for each sinusoid and selects the phases that give
the smallest signal spread. The signal spread is the difference between the minimum and the
maximum value of the signal over all samples. The amplitude of the generated sum-of-sinusoids
signal is scaled to satisfy the Range you specify.

You can specify the characteristics of the sine waves used to generate the signal, such as the
number of sine waves and their frequency separation, in the SineData argument.

Band — Frequency range of generated signal
[0 1] (default) | 1-by-2 row vector

Frequency range of generated signal, specified as a 1-by-2 row vector containing minimum and
maximum frequency values.

• If Type is 'rgs', 'rbs', or 'sine' — Specify Band as a passband [wlow whigh]. Where, wlow
and whigh are the lower and upper frequencies of the passband, expressed in fractions of the
Nyquist frequency. For example, to generate an input with white noise characteristics, use Band
= [0 1].

The software achieves the frequency contents for a random Gaussian signal ('rgs') using
idfilt with an eighth-order Butterworth, noncausal filter. For generating a random binary signal
('rbs'), the software uses the same filter and then makes the signal binary. Thus, the frequency
content in the generated random binary signal may not match the specified passband.

1 Functions

1-644

For 'sine' signals, the frequencies of the sinusoids are selected to be equally spread over a
chosen grid in the specified passband. For more information, see the SineData argument
description.

• If Type is 'prbs' — Specify Band as [0 B], where B is the inverse of the clock period of the
signal. The clock period is the minimum number of sampling intervals for which the value of the
signal does not change. Thus, the generated signal is constant over intervals of length 1/B
samples. If 1/B is not an integer, the software uses floor(1/B) as the clock period.

Range — Generated input signal range
[-1,1] (default) | two-element row vector

Generated input signal range, specified as a two-element row vector of the form [umin,umax].

• If Type is 'rbs' or 'prbs'— The generated signal u has values umin or umax.
• If Type is 'sine' — The generated signal u has values between umin and umax.
• If Type is 'rgs' — The generated Gaussian signal has mean μ and standard deviation σ such that

umin and umax are equal to μ-σ and μ+σ, respectively. For example, Range = [-1,1] returns a
Gaussian white noise signal with zero mean and variance one.

SineData — Characterization of sinusoids
[10,10,1] (default) | three-element row vector [NumSinusoids,NumTrials,GridSkip]

Characterization of sinusoids used to generate a sum-of-sinusoids signal, specified as a three-element
row vector [NumSinusoids,NumTrials,GridSkip]. Where,

• NumSinusoids is the number of sinusoids used to generate the signal. The default value is 10.
• NumTrials is the number of different random relative phases of the sinusoids that the software

tries to find the lowest signal spread. The signal spread is the difference between the minimum
and the maximum value of the signal over all samples.

The maximum amplitude of the sum-of-sinusoids signal depends on the relative phases of the
different sinusoids. To find the phases that give the smallest signal spread, the software tries
NumTrials different random choices of phases to find the best phase values. For example,
suppose that NumSinusoids is 20 and NumTrials is 5. The software tries 5 different sets of
relative phases for the 20 sinusoids, and selects the phases that give the smallest signal spread.
The default value for NumTrials is 10.

• GridSkip is used to characterize the frequency of the sinusoids. The software selects the
frequency of the sinusoids from the intersection of the frequency grid
2*pi*[1:GridSkip:fix(Period/2)]/Period and the pass band pi*[Band(1) Band(2)].
For multichannel input signals, the software uses different frequencies from this frequency grid to
generate the different input channels. You can use GridSkip for controlling odd and even
frequency multiples, for example, to detect nonlinearities of different kinds.

To extract the frequencies freq that are selected by the software to generate the signal, use the
following syntax.

[u,freq] = idinput(__)

Output Arguments
u — Generated input signal
column vector | matrix

 idinput

1-645

Generated input signal, returned as a column vector of length N for a single-channel input or an N-by-
Nu matrix for an Nu-channel signal. You use the generated signal to simulate the response of your
system using sim.

You can create an iddata object from u by specifying output data as [].

u = iddata([],u);

In the iddata object, you can also specify the properties of the signal such as sample time, input
names, and periodicity.

freq — Frequencies of sine waves
column vector | matrix

Frequencies of sine waves used for sum-of-sinusoids signal, returned as a column vector of length
equal to the number of sinusoids, NumSinusoids. You specify NumSinusoids in the SineData
argument. The frequency values are scaled assuming the sample time is 1 time unit. To retrieve the
actual frequencies, divide the values by the sample time. For an example, see “Generate a Sum-of-
Sinusoids Signal” on page 1-639.

For multichannel input signals, freq is an Nu-by-NumSinusoids matrix where the kth row contains
the frequencies corresponding to the kth channel. For information about how the software selects the
frequencies, see the SineData argument description.

More About
Pseudorandom Binary Signals

A pseudorandom binary signal (PRBS) is a periodic, deterministic signal with white-noise-like
properties that shifts between two values.

A PRBS is generated as:

u(t) = rem a1u(t − 1) + … + anu(t − n), 2

Here, u(t − 1), …u(t − n) is the vector of past inputs, n is the PRBS order, and rem denotes the
remainder when a1u(t − 1) + …anu(t − n) is divided by 2. Thus, a PRBS can only take the values 0
and 1. The software scales these values according to the Range you specify. In addition, the vector of
past inputs u(t − 1), …u(t − n) can only take 2n values. Out of these values, the state with all zeros is
ignored because it will result in future signals equal to zero. Thus, a PRBS is an inherently periodic
signal with a maximum period length of 2n-1. The following table lists the maximum length possible
for different orders n of the PRBS.

Order n Maximum length PRBS (2n-1)
2 3
3 7
4 15
5 31
6 63
7 127

1 Functions

1-646

Order n Maximum length PRBS (2n-1)
⋮ ⋮
32 4294967295

Note The software does not generate signals with period greater than 232-1.

Length of Generated PRBS

Since PRBS are inherently periodic, the length and period of the generated signal depends on the
clock period that you specify and whether you require a periodic or nonperiodic signal. The clock
period is the minimum number of sampling intervals for which the value of the signal does not
change. You specify the clock period in Band.

Clock period = 1 sample (Band = [0 B] = [0 1]):

• To generate a nonperiodic signal of length N, (NumPeriod = 1), the software first computes a
maximum length PRBS with a period greater than N. The software then returns the first N samples
of the PRBS as u. This action ensures that u is not periodic. For example, if N is 100, the software
creates a maximum length PRBS of period 127 (order 7), and returns the first 100 samples as u.

For an example, see “Generate a Nonperiodic Pseudorandom Binary Input Signal” on page 1-634.
• To generate a periodic signal (NumPeriod > 1), the software adjusts the period of the signal to

obtain an integer number of maximum length PRBS. To do so, the software computes a PRBS of
order n = floor(log2(Period)) and period P = 2n-1. The signal u is then generated as
NumPeriod repetitions of this PRBS signal of period P. Thus, the length of u is P*NumPeriod.

For an example, see “Generate a Periodic Pseudorandom Binary Input Signal” on page 1-635.

In the multiple-input channel case, the signals are maximally shifted. That is, the overlap between
the different inputs is minimized. This means Period/NumPeriod is an upper bound for the
model orders that you can estimate using such a signal.

Clock period > 1 sample (Band = [0 B], where B<1):

The generated signal has to remain constant for at least 1/B samples. To satisfy this requirement, the
software first computes the order of the smallest possible maximum length PRBS as n =
floor(log2(Period*B)) and period 2n-1. The software then stretches the PRBS such that period
of the stretched signal is P = B-1(2n-1).

• To generate a nonperiodic signal of length N , if the period P of the stretched signal is greater than
or equal to N, the software returns the first N samples of the stretched signal as u. This ensures
that u is nonperiodic but constant for every 1/B samples. Note that for a nonperiodic signal,
Period is equal to N.

If the period P is less than N, the software computes instead a maximum length PRBS of order n2
= n+1. The software then stretches this PRBS such that the period is now P2 = B-1(2n2-1). The
software then returns the first N samples of this signal as u.

• To generate a periodic signal, the software generates u as NumPeriod repetitions of the stretched
signal of period P. Thus, the length of u is P*NumPeriod.

For an example, see “Generate Pseudorandom Binary Input Signal with Specified Clock Period” on
page 1-637.

 idinput

1-647

Version History
Introduced before R2006a

References
[1] Söderström, T. and P. Stoica., Chapter C5.3 in System Identification, Prentice Hall, 1989.

[2] Ljung, L., Section 13.3 in System Identification: Theory for the User, Prentice Hall PTR, 1999.

See Also
iddata | sim

Topics
“Ways to Obtain Identification Data”
“Generate Data Using Simulation”
“Simulate and Predict Identified Model Output”

1 Functions

1-648

idLinear
Linear mapping object for nonlinear ARX models

Description
An idLinear object implements an affine function, and is a mapping function for estimating
nonlinear ARX models. The mapping function uses a combination of linear weights and an offset.
Unlike the other mapping objects for the nonlinear models, the idLinear object contains no
accommodation for a nonlinear component.

Mathematically, idLinear is a linear function y = F(x) that maps m inputs X(t) = [x(t1),x2(t),…,xm(t)]T

to a scalar output y(t). . F is a (affine) function of x:

y(t) = y0 + Χ(t)TPL

Here:

• X(t) is an m-by-1 vector of inputs, or regressors.
• y0 is the output offset, a scalar.
• P is an m-by-p projection matrix, where m is the number of regressors and is p is the number of

linear weights. m must be greater than or equal to p.
• L is a p-by-1 vector of weights.

Set idLinear as the value of the OutputFcn property of an idnlarx model. For example, specify
idLinear when you estimate an idnlarx model with the following command.

sys = nlarx(data,regressors,idLinear)

 idLinear

1-649

When nlarx estimates the model, it also estimates the parameters of the idLinear function.

Use the idLinear mapping object when you want to create nonlinear ARX models that operate
linearly on the regressors. The regressors themselves can be nonlinear functions of the inputs and
outputs. The polynomialRegressor and customRegressor commands allow you to create such
regressors. When the idnlarx model has no custom regressors and the output function is set to
idLinear, the model is similar to a linear ARX model. However, for the nonlinear ARX model, the
offset is an estimable parameter.

You can configure the idLinear object to disable components and fix parameters. Use evaluate to
compute the output of the function for a given vector of inputs.

Creation

Syntax
Lin = idLinear

Description

Lin = idLinear creates an idLinear object Lin with unknown parameters.

Properties
Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

LinearFcn — Parameters of linear function
linear function property values (default)

Parameters of the linear function, specified as follows:

• Value — Value of L', specified as a 1-by-m vector.
• Free — Option to update entries of Value during estimation. specified as a logical scalar. The

software honors the Free specification only if the starting value of Value is finite. The default
value is true.

Offset — Parameters of offset term
offset property values

Parameters of the offset term, specified as follows:

1 Functions

1-650

• Value — Offset value, specified as a scalar.
• Free — Option to update Value during estimation, specified as a scalar logical. The software

honors the Free specification of false only if the value of Value is finite. The default value is
true.

Examples

Estimate Nonlinear ARX Model with idLinear as Output Function

Load the data.

load iddata7 z7

Create an idLinear mapping object L.

L = idLinear;

Create model regressors that include nonlinear polynomial regressors.

Reg1 = linearRegressor({'y1','u1'},{1:4, 0:4});
Reg2 = polynomialRegressor({'y1','u1'},{1:2, 0:2},2,false,true,true);
Reg3 = polynomialRegressor({'y1','u1'},{2, 1:3},3,false,true);

Estimate the nonlinear ARX model.

sys = nlarx(z7,[Reg1;Reg2;Reg3],L)

sys =

Nonlinear ARX model with 1 output and 2 inputs
 Inputs: u1, u2
 Outputs: y1

Regressors:
 1. Linear regressors in variables y1, u1
 2. Order 2 regressors in variables y1, u1
 3. Order 3 regressors in variables y1, u1

Output function: Linear with offset
Sample time: 1 seconds

Status:
Termination condition: Near (local) minimum, (norm(g) < tol)..
Number of iterations: 0, Number of function evaluations: 1

Estimated using NLARX on time domain data "z7".
Fit to estimation data: 43.22% (prediction focus)
FPE: 5.66, MSE: 4.963
More information in model's "Report" property.

Version History
Introduced in R2007a

 idLinear

1-651

Previous idnlarx data normalization information moved from mapping object properties to
idnlarx Normalization property
Behavior changed in R2022a

Information related to data normalization was moved from the idLinear mapping object level to the
model level. The Normalization property of the idnlarx model contains the data centering and
scaling information that the estimation process computes. In addition, the regressor-selection process
for the mapping objects has also moved to the model level. The model now passes the actual
regressor names rather than the selection indices to the mapping object, eliminating the need for an
index property at the mapping object level.

The following table summarizes the mapping object subproperties that were eliminated. For more
information, see the Normalization property of idnlarx.

Main
Properties /
Subproperties

Input Output LinearMdl Offset NonlinearMdl

Mean X X
Range X X
Minimum X X X
Maximum X X X
SelectedInpu
tIndex

 X X

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

1 Functions

1-652

Use of previous nonlinearity estimator properties is not recommended
Not recommended starting in R2021a

Starting in R2021a, the properties of the mapping objects, previously known as nonlinearity
estimators, have been reorganized. These objects are wavenet (W), sigmoidnet (S),
treepartition (T), customnet (C), and linear (L). The property changes do not apply to
neuralnet. The use of the pre-R2021a properties in the following table is discouraged. However, the
software still accepts commands that set these properties. There are no plans to exclude such
commands at this time.

Pre-R2021a Property R2021a Property Applicable Mapping Objects
NumberOfUnits NonlinearFcn.NumberOfUni

ts
W,S,T,C

LinearTerm LinearFcn.Use, Offset.Use W,S,C
Parameters Split into three pieces:

• LinearFcn.Value
• Offset.Value
• NonlinearFcn.Parameter

s

W,S,T,C,L

linear (L) excludes
NonlinearFcn.Parameters.

Options NonlinearFcn.Structure W,T

See Also
nlarx | idnlarx | evaluate

Topics
“Available Mapping Functions for Nonlinear ARX Models”

 idLinear

1-653

idNeuralStateSpace
Neural state-space model with identifiable network weights

Description
Use idNeuralStateSpace to create a black-box continuous-time or discrete-time neural state-space
model with identifiable (estimable) network weights and bias. You can use the trained black-box
model for control, estimation, optimization, and reduced order modeling.

Continuous-time neural state space models have the following general form,

ẋ t = F t, x t , u t

y t =
y1(t)
y2(t)

=
x t + e1(t)

H t, x t , u t + e2(t)

where the state function F and the nontrivial output function H are approximated by neural networks.
Because you need to measure all the states to properly train the state function, the states
measurements are considered to be part of the output function. Here, e1 and e2 are measurement
noises in the data sets which are minimized by the network training algorithm.

For discrete-time state-space systems, the state and output functions have this form.

x t + 1 = F t, x t , u t

y t =
y1(t)
y2(t)

=
x t + e1(t)

H t, x t , u t + e2(t)

Note Defining and estimating a neural state space system requires that:

1 You know what the states of the systems are (to your best knowledge).
2 The states are measured, and thus, their measurements are part of experiment data set.

Creation

Syntax
nss = idNeuralStateSpace(nx)
nss = idNeuralStateSpace(___ ,Name=Value)

Description

nss = idNeuralStateSpace(nx) creates an autonomous (no-input) time-invariant continuous-
time neural state-space object with nx state variables and output identical to state.

nss = idNeuralStateSpace(___ ,Name=Value) specifies name-value pair arguments after any
of the input argument in the previous syntax. You can use name-value pair arguments to set the

1 Functions

1-654

number of inputs and outputs and other system configurations such as time domain, whether the
system is time invariant and whether the system output has feed-through.

For example, nss = idNeuralStateSpace(3,NumInputs=2,NumOutputs=4,Ts=0.1) creates a
time-invariant discrete-time neural state-space object with 3 states, 2 inputs, four outputs (the first
three are state measurements), and sample time 0.1. The system is also time invariant (both state
and output functions do not explicitly depend on time) and does not have direct feed-through (the
input does not have immediate impact on output).

Input Arguments

nx — Number of state variables
positive integer

Number of state variables, specified as a positive integer.
Example: 2

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Use name-value pair arguments to specify NumInputs, NumOutputs and the Ts, IsTimeInvariant,
and HasFeedthrough properties of nss.
Example: Ts=0.1

NumInputs — Number of input variables
0 (default) | nonnegative integer

Number of input variables, specified as a nonnegative integer.
Example: NumInputs=2

NumOutputs — Number of output variables
nx (default) | nonnegative integer

Number of output variables, specified as a positive integer greater than or equal to nx. The value
must be greater than nx because all the states are measured.

For example, if nx is 2, NumOutputs=4 means that the state space system has four outputs, with the
first two outputs being state measurements, and the last two are outputs from the output function H.
Example: NumOutputs=4

HasFeedthrough — Option to set direct feedthrough
false (default) | true

Option to set direct feedthrough, specified as one of the following:

• true — the nontrivial output measurement y2 is an explicit function of the input, that is y2(t) =
H(t,x,u).

• false — the nontrivial output measurement y2 is not an explicit function of the input, even if
NumInputs is greater than zero. This is the default case, and y2(t) = H(x,u).

 idNeuralStateSpace

1-655

This argument sets the value of the read-only property FeedthroughInOutputNetwork of nss.
Example: false

Properties
StateNetwork — State function network
dlnetwork object

State function network, specified as a dlnetwork object. This network approximates the state
function of the state-space system (F). For continuous state-space systems the state function returns
the system state derivative with respect to time, while for discrete-time state-space systems it returns
the next state. The inputs of the function are time (if IsTimeInvariant is false), the current state,
and the current input (if NumInputs is positive), in that order.

When an idNeuralStateSpace model is constructed, a default state network is created. It is a
multi-layer perceptron (MLP) network with the following features:

• Two hidden layers: each is a fully-connected layer with 128 nodes.
• Two activation layers: each featuring an hyperbolic tangent (tanh) function.
• One output layer: a fully-connected layer with nx nodes.

To change the default network configuration, use createMLPNetwork. For example:

 nss.StateNetwork = createMLPNetwork(nss, 'state', ...
 LayerSizes=[64 64 64], ...
 Activations="sigmoid")

To train both state and output networks, use nlssest. For example:

 options1 = nssTrainingOptions('adam');
 nss = nlssest(U, Y, nss, options1);

Note

• To train the network, use nlssest which updates the weights and biases of the network. After
training completes, the network weights and biases are said to be "trained".

• A new training starts with the previously trained network. To reset weights and bias, use
createMLPNetwork to create a new network.

• Multi-layer perceptron (MLP) networks with at least one hidden layer featuring squashing
functions (such as hyperbolic tangent or sigmoid) are universal approximators, that is, are
theoretically capable of approximating any function to any desired degree of accuracy provided
that sufficiently many hidden units are available.

• Deeper networks (networks with more hidden layers) can approximate compositional functions as
well as shallow networks but with exponentially lower number of training parameters and sample
complexity.

OutputNetwork — Output function networks
dlnetwork object

1 Functions

1-656

Output function networks, specified as a 2-by-1 array of dlnetwork objects. The first network
represents the identity relation between y1 and x, since all the states are measured. This network has
no learnable parameters, is fixed and cannot be changed or trained.

The second network approximates the output function H of the state-space system, which is a
function of time (if IsTimeInvariant is false), the current state, and the current input (if
NumInputs is positive), in that order.

When you create an idNeuralStateSpace model, the default network created to approximate H is a
multi-layer perceptron (MLP) network with the following features:

• Two hidden layers: each is a fully-connected layer with 128 nodes.
• Two activation layers: each featuring an hyperbolic tangent (tanh) function.
• One output layer: a fully-connected layer with NumOutputs - nx nodes.

To change the default network configuration, use createMLPNetwork. For example:

 nss.OutputNetwork = createMLPNetwork(nss, 'output', ...
 LayerSizes=[64 64 64], ...
 Activations="sigmoid")

To train both state and output networks, use nlssest. For example:

options1 = nssTrainingOptions('adam')
options2 = nssTrainingOptions('sgdm')
nss = nlssest(U, Y, nss, [options1; options2])

IsTimeInvariant — Flag indicating time invariance
true (default) | false

Flag indicating time invariance, returned as one of the following:

• true — (default), the system is time invariant, neither the state function F of the output function
H depend explicitly on time.

• false — the system is time varying, both the state of the output function depend explicitly on
time.

This property is read-only and cannot be set using dot notation. You can only specify this properly
when you create nss. To do so, use the corresponding name-value pair argument in
idNeuralStateSpace. For example:

nss = idNeuralStateSpace(3,NumInputs=2,IsTimeInvariant=false)

Example: true

FeedthroughInOutputNetwork — Flag indicating direct feedthrough
false (default) | true | array of logical

Flag indicating direct feedthrough in the output networks, returned as false or as an array logical
values.

If NumOutputs = nx, FeedthroughInOutputNetwork is false, because the only output is the
measured state, and there is no contribution from any input.

If NumOutputs > nx, FeedthroughInOutputNetwork is a 1-by-2 logical array in which the
elements are as follows.

 idNeuralStateSpace

1-657

• The first logical value corresponds to y1 and is always false.
• The second value corresponds to y2 and is the same value that you specify with the name-value

pair argument HasFeedThrough when you create the object. When this value is true, then y2 is
an explicit function of the input, otherwise, as default, there is no explicit contribution from the
input to y2.

Note This property is read-only and you can change it only when you create nss, using the
HasFeedThrough argument in idNeuralStateSpace.

Example: [false, false]

StateName — State names
{'x1','x2',...} (default) | character vector | cell array of character vectors

State names, specified as one of these values:

• Character vector — For first-order models
• Cell array of character vectors — For models with two or more states
• '' — For unnamed states

You can specify StateName using a string, such as "velocity", but the state name is stored as a
character vector, 'velocity'.
Example: {'velocity','distance'}

StateUnit — State units
{''} (default) | character vector | cell array of character vectors

State units, specified as one of these values:

• Character vector — For first-order models
• Cell array of character vectors — For models with two or more states
• '' — For states without specified units

Use StateUnit to keep track of the units each state is expressed in. StateUnit has no effect on
system behavior.

You can specify StateUnit using a string, such as "mph", but the state units are stored as a
character vector, 'mph'.
Example: 'mph'
Example: {'rpm','rad/s'}

TimeVariable — Independent variable name
"t" (default) | string | char vector

Independent variable name, specified as a string or character vector, for the state, input and output
functions.
Example: "t"

NoiseVariance — Innovation covariance matrix
matrix

1 Functions

1-658

Innovation covariance matrix, specified as an NumOutputs-by-NumOutputs positive semi-definite
matrix. Typically this property is automatically set by the estimation algorithm.
Example: 1e-3*eye(2)

InputName — Names of input channels
{'u1','u2'} (default) | character vector | cell array of character vectors

Names of input channels, specified as one of these values:

• Character vector — For single-input models
• Cell array of character vectors — For models with two or more inputs
• '' — For inputs without specified names

You can use automatic vector expansion to assign input names for multi-input models. For example, if
sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

You can specify InputName using a string, such as "voltage", but the input name is stored as a
character vector, 'voltage'.

When you estimate a model using an iddata object, data, the software automatically sets
InputName to data.InputName.
Example: {'ailerons','elevators','rudder'}

InputUnit — Units of input signals
{''} (default) | character vector | cell array of character vectors

Units of input signals, specified as one of these values:

• Character vector — For single-input models
• Cell array of character vectors — For models with two or more inputs
• '' — For inputs without specified units

Use InputUnit to keep track of the units each input signal is expressed in. InputUnit has no effect
on system behavior.

You can specify InputUnit using a string, such as "voltage", but the input units are stored as a
character vector, 'voltage'.
Example: 'voltage'
Example: {'voltage','rpm'}

 idNeuralStateSpace

1-659

InputGroup — Input channel groups
structure with no fields (default) | structure

Input channel groups, specified as a structure where the fields are the group names and the values
are the indices of the input channels belonging to the corresponding group. When you use
InputGroup to assign the input channels of MIMO systems to groups, you can refer to each group by
name when you need to access it. For example, suppose you have a five-input model sys, where the
first three inputs are control inputs and the remaining two inputs represent noise. Assign the control
and noise inputs of sys to separate groups.

sys.InputGroup.controls = [1:3];
sys.InputGroup.noise = [4 5];

Use the group name to extract the subsystem from the control inputs to all outputs.

sys(:,'controls')

Example: struct('controls',[1:3],'noise',[4 5])

OutputName — Names of output channels
{'y1','y2'} (default) | character vector | cell array of character vectors

Names of output channels, specified as one of these values:

• Character vector — For single-output models
• Cell array of character vectors — For models with two or more outputs
• '' — For outputs without specified names

You can use automatic vector expansion to assign output names for multi-output models. For example,
if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

You can specify OutputName using a string, such as "rpm", but the output name is stored as a
character vector, 'rpm'.

When you estimate a model using an iddata object, data, the software automatically sets
OutputName to data.OutputName.

OutputUnit — Units of output signals
{''} (default) | character vector | cell array of character vectors

Units of output signals, specified as one of these values:

1 Functions

1-660

• Character vector — For single-output models
• Cell array of character vectors — For models with two or more outputs
• '' — For outputs without specified units

Use OutputUnit to keep track of the units each output signal is expressed in. OutputUnit has no
effect on system behavior.

You can specify OutputUnit using a string, such as "voltage", but the output units are stored as a
character vector, 'voltage'.
Example: 'voltage'
Example: {'voltage','rpm'}

OutputGroup — Output channel groups
structure with no fields (default) | structure

Output channel groups, specified as a structure where the fields are the group names and the values
are the indices of the output channels belonging to the corresponding group. When you use
OutputGroup to assign the output channels of MIMO systems to groups, you can refer to each group
by name when you need to access it. For example, suppose you have a four-output model sys, where
the second output is a temperature, and the rest are state measurements. Assign these outputs to
separate groups.

sys.OutputGroup.temperature = [2];
sys.OutputGroup.measurements = [1 3 4];

Use the group name to extract the subsystem from all inputs to the measurement outputs.

sys('measurements',:)

Example: struct('temperature',[2],'measurement',[1 3 4])

Notes — Text notes about model
[0×1 string] (default) | string | cell array of character vector

Text notes about the model, stored as a string or a cell array of character vectors. The property stores
whichever of these two data types you provide. For instance, suppose that sys1 and sys2 are
dynamic system models, and set their Notes properties to a string and a character vector,
respectively.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 'sys2 has a character vector.'

UserData — Data associated with model
[] (default) | any data type

 idNeuralStateSpace

1-661

Data of any kind that you want to associate and store with the model, specified as any MATLAB data
type.

Ts — Sample time
nonnegative scalar

Sample time, specified as a nonnegative scalar, in units specified by the TimeUnit property. For a
continuous time model, Ts is equal to 0 (default). Changing the value of Ts has no impact on the
system data and does not discretize or resample the model.

Note If you change Ts to a different value after networks are trained, you need to train the networks
again because the original trained networks are no longer valid.

Example: 0.1

TimeUnit — Model time units
'seconds' (default) | 'minutes' | 'milliseconds' | ...

Model time units, specified as one of these values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

You can specify TimeUnit using a string, such as "hours", but the time units are stored as a
character vector, 'hours'.

Model properties such as sample time Ts, InputDelay, OutputDelay, and other time delays are
expressed in the units specified by TimeUnit. Changing this property has no effect on other
properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between
time units without modifying system behavior.

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results for a state-space
model obtained using estimation commands. Use Report to find estimation information for the
identified model, including the:

• Status (estimated or constructed)

1 Functions

1-662

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit and other quality metrics

For more information on this property and how to use it, see the Output Arguments section of the
corresponding estimation command reference page and “Estimation Report”.

Object Functions
createMLPNetwork Create and initialize a Multi-Layer Perceptron (MPL) network to be

used within a neural state-space system
generateMATLABFunction Generate MATLAB functions that evaluate the state and output

functions of a neural state-space object, and their Jacobians
sim Simulate response of identified model
idNeuralStateSpace/evaluate Evaluate a neural state-space system for a given set of state and input

values and return state derivative (or next state) and output values
idNeuralStateSpace/linearize Linearize a neural state-space model around an operating point

Examples

Create Continuous-Time Neural State-Space Object

Use idNeuralStateSpace to create a continuous-time neural state-space object with two states, no
inputs, and outputs identical to states.

nss = idNeuralStateSpace(2)

Use dot notation to access the object properties.

nss.StateNetwork

ans =
 dlnetwork with properties:

 Layers: [6×1 nnet.cnn.layer.Layer]
 Connections: [5×2 table]
 Learnables: [6×3 table]
 State: [0×3 table]
 InputNames: {'x'}
 OutputNames: {'dxdt'}
 Initialized: 1

 View summary with summary.

nss.Name = "myNssObject";
nss.UserData = ['Created on ' char(datetime)]

You can now re-configure the state network using createMLPNetwork, if needed, and then use time-
domain data to perform estimation and validation.

 idNeuralStateSpace

1-663

Create Discrete-Time Neural State-Space Object

Use idNeuralStateSpace to create a discrete-time neural state-space object with three states, two
inputs, four outputs, and sample time 0.1.

nss = idNeuralStateSpace(3,NumInputs=2,NumOutputs=4,Ts=0.1)

Use dot notation to access the object properties.

nss.OutputNetwork.Layers

ans =
 5×1 Layer array with layers:

 1 'x[k]' Feature Input 3 features
 2 'u[k]' Feature Input 2 features
 3 'yx' Function @(x)x(:)
 4 'yu' Function @(u)zeros(nx,nu)*u(:)
 5 'y[k]' Addition Element-wise addition of 2 inputs

ans =
 9×1 Layer array with layers:

 1 'x[k]' Feature Input 3 features
 2 'fc1' Fully Connected 64 fully connected layer
 3 'act1' Tanh Hyperbolic tangent
 4 'fc2' Fully Connected 64 fully connected layer
 5 'act2' Tanh Hyperbolic tangent
 6 'yx' Fully Connected 1 fully connected layer
 7 'u[k]' Feature Input 2 features
 8 'yu' Function @(u)zeros(ny,nu)*u(:)
 9 'y[k]' Addition Element-wise addition of 2 inputs

nss.UserData = ['Created on ' char(datetime)];
nss.UserData

ans =
'Created on 14-Jul-2022 10:33:14'

Note that by default the output does not explicitly depend on the input.

nss.FeedthroughInOutputNetwork

ans = 1×2 logical array

 0 0

You can now re-configure the state and output networks using createMLPNetwork, if needed, and
then use time-domain data to perform estimation and validation.

Version History
Introduced in R2022b

1 Functions

1-664

See Also
Objects
nssTrainingADAM | nssTrainingSGDM | idss | idnlgrey

Functions
createMLPNetwork | nssTrainingOptions | nlssest | generateMATLABFunction |
idNeuralStateSpace/evaluate | idNeuralStateSpace/linearize | sim

Blocks
Neural State-Space Model

Topics
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

 idNeuralStateSpace

1-665

idnlarx
Nonlinear ARX model

Description
An idnlarx model represents a nonlinear ARX model, which is an extension of the linear ARX
structure and contains linear and nonlinear functions.

A nonlinear ARX model consists of model regressors and an output function. The output function
contains one or more mapping objects, one for each model output. Each mapping object can include a
linear and a nonlinear function that act on the model regressors to give the model output and a fixed
offset for that output. This block diagram represents the structure of a single-output nonlinear ARX
model in a simulation scenario.

The software computes the nonlinear ARX model output y in two stages:

1 It computes regressor values from the current and past input values and the past output data.

In the simplest case, regressors are delayed inputs and outputs, such as u(t–1) and y(t–3). These
kind of regressors are called linear regressors. You specify linear regressors using the
linearRegressor object. You can also specify linear regressors by using linear ARX model
orders as an input argument. For more information, see “Nonlinear ARX Model Orders and
Delay”. However, this second approach constrains your regressor set to linear regressors with
consecutive delays. To create polynomial regressors, use the polynomialRegressor object. To
create periodic regressors that contain the sine and cosine functions of delayed input and output
variables , use the periodicRegressor object. You can also specify custom regressors, which
are nonlinear functions of delayed inputs and outputs. For example, u(t–1)y(t–3) is a custom
regressor that multiplies instances of input and output together. Specify custom regressors using
the customRegressor object.

You can assign any of the regressors as inputs to the linear function block of the output function,
the nonlinear function block, or both.

1 Functions

1-666

2 It maps the regressors to the model output using an output function block. The output function
block can include multiple mapping objectslinear, nonlinear, and offset blocks in parallel. For
example, consider the following equation:

F(x) = LT(x− r) + g Q(x− r) + d

Here, x is a vector of the regressors, and r is the mean of x. F(x) = LT(x− r) + y0 is the output of
the linear function block. g Q(x− r) + y0 represents the output of the nonlinear function block. Q
is a projection matrix that makes the calculations well-conditioned. d is a scalar offset that is
added to the combined outputs of the linear and nonlinear blocks. The exact form of F(x) depends
on your choice of output function. You can select from the available mapping objects, such as
tree-partition networks, wavelet networks, and multilayer neural networks. You can also exclude
either the linear or the nonlinear function block from the output function.

When estimating a nonlinear ARX model, the software computes the model parameter values,
such as L, r, d, Q, and other parameters specifying g.

The resulting nonlinear ARX models are idnlarx objects that store all model data, including model
regressors and parameters of the output function. For more information about these objects, see
“Nonlinear Model Structures”.

For more information on the idnlarx model structure, see “What are Nonlinear ARX Models?”.

For idnlarx object properties, see “Properties” on page 1-669.

Creation
You can obtain an idnlarx object in one of two ways.

• Use the nlarx command to both construct an idnlarx object and estimate the model
parameters.

sys = nlarx(data,reg)

• Use the idnlarx constructor to create the nonlinear ARX model and then estimate the model
parameters using nlarx or pem.

sys = idnlarx(output_name,input_name,reg)

Syntax
sys = idnlarx(output_name,input_name,orders)
sys = idnlarx(output_name,input_name,Regressors)
sys = idnlarx(___ ,OutputFcn)

sys = idnlarx(linmodel)
sys = idnlarx(linmodel,OutputFcn)

sys = idnlarx(___ ,Name,Value)

 idnlarx

1-667

Description
Specify Model Directly

sys = idnlarx(output_name,input_name,orders) specifies a set of linear regressors using
ARX model orders. Use this syntax when you extend an ARX linear model, or when you plan to use
only regressors that are linear with consecutive lags.

sys = idnlarx(output_name,input_name,Regressors) creates a nonlinear ARX model with
the output and input names of output_name and input_name, respectively, and a regressor set in
Regressors that contains any combination of linear, polynomial, periodic, and custom regressors.
The software constructs sys using the default wavelet network ('idWaveletNetwork') mapping
object for the output function.

sys = idnlarx(___ ,OutputFcn) specifies the output function OutputFcn that maps the
regressors to the model output. You can use this syntax with any of the previous input argument
combinations.

Initialize Model Values Using Linear Model

sys = idnlarx(linmodel) uses a linear model linmodel to extract certain properties such as
names, units, and sample time, and to initialize the values of the linear coefficients of the model. Use
this syntax when you want to create a nonlinear ARX model as an extension of, or an improvement
upon, an existing linear model.

sys = idnlarx(linmodel,OutputFcn) specifies the output function OutputFcn that maps the
regressors to the model output.

Specify Model Properties

sys = idnlarx(___ ,Name,Value) specifies additional properties on page 1-669 of the idnlarx
model structure using one or more name-value arguments.

Input Arguments

orders — ARX model orders
nlarx orders [na nb nk]

ARX model orders, specified as the matrix [na nb nk]. na denotes the number of delayed outputs,
nb denotes the number of delayed inputs, and nk denotes the minimum input delay. The minimum
output delay is fixed to 1. For more information on how to construct the orders matrix, see arx.

When you specify orders, the software converts the order information into a linear regressor form in
the idnlarx Regressors property. For an example, see “Create Nonlinear ARX Model Using ARX
Model Orders” on page 1-676.

linmodel — Discrete-time linear model
idpoly object | idss object | idtf object | idproc object

Discrete-time identified input/output linear model, specified as any linear model created using
estimators, that is, an idpoly object, an idss object, an idtf object, or an idproc object with Ts >
0. Create this model using the constructor function for the object or estimate the model using the
associated estimation command. For example, to create an ARX model, use arx, and specify the
resulting idpoly object as linmodel.

1 Functions

1-668

Properties
Regressors — Regressor specification
linearRegressor object | polynomialRegressor object | periodicRegressor object |
customRegressor object | column array of regressor specification objects

Regressor specification, specified as a column vector containing one or more regressor specification
objects, which are the linearRegressor objects, polynomialRegressor objects,
periodicRegressor objects, and customRegressor objects. Each object specifies a formula for
generating regressors from lagged variables. For example:

• L = linearRegressor({'y1','u1'},{1,[2 5]}) generates the regressors y1(t–1), u1(t–2),
and u2(t–5).

• P = polynomialRegressor('y2',4:7,2) generates the regressors y2(t–4)2, y2(t–5)2,y2(t–6)2,
and y2(t–7)2.

• SC = periodicRegressor({'y1','u1'},{1,2}) generates the regressors y1(t-1)),
cos(y1(t-1)), sin(u1(t-2)), and cos(u1(t-2)).

• C = customRegressor({'y1','u1','u2'},{1 2 2},@(x,y,z)sin(x.*y+z)) generates
the single regressor sin(y1(t–1)u1(t–2)+u2(t–2)

.

For an example that implements these regressors, see “Create and Combine Regressor Types” on
page 1-680.

To add regressors to an existing model, create a vector of specification objects and use dot notation to
set Regressors to this vector. For example, the following code first creates the idnlarx model sys
and then adds the regressor objects L, P, SC, and C to the regressors of sys.

sys = idnlarx({'y1','y2'},{'u1','u2'});
R = [L;P;SC;C];
sys.Regressors = R;

For an example of creating and using a linear regressor set, see “Create Nonlinear ARX Model Using
Linear Regressors” on page 1-677.

OutputFcn — Output function
'idWaveletNetwork' (default) | 'idLinear' | [] | '' | 'idSigmoidNetwork' |
'idTreePartition' | 'idGaussianProcess' | 'idTreeEnsemble' |
'idSupportVectorMachine' | mapping object | array of mapping objects

Output function that maps the regressors of the idnlarx model into the model output, specified as a
column array containing zero or more of the following strings or mapping objects:

'idWaveletNetwork' or idWaveletNetwork object Wavelet network
'idLinear' or '' or [] or idLinear object Linear function
'idSigmoidNetwork' or idSigmoidNetwork object Sigmoid network
'idTreePartition' or idTreePartition object Binary tree partition regression model
'idGaussianProcess' or idGaussianProcess object Gaussian process regression model (requires

Statistics and Machine Learning Toolbox)

 idnlarx

1-669

'idTreeEnsemble' or idTreeEnsemble Regression tree ensemble model (requires
Statistics and Machine Learning Toolbox)

'idSupportVectorMachine' or
idSupportVectorMachine

Kernel-based Support Vector Machine (SVM)
regression model with constraints (requires
Statistics and Machine Learning Toolbox)

idFeedforwardNetwork object Neural network — Multilayer feedforward
network of Deep Learning Toolbox

idCustomNetwork object Custom network — Similar to
idSigmoidNetwork, but with a user-defined
replacement for the sigmoid function

The idWaveletNetwork, idSigmoidNetwork, idTreePartition, and idCustomNetwork objects
contain both linear and nonlinear components. You can remove (not use) the linear components of
idWaveletNetwork, idSigmoidNetwork, and idCustomNetwork by setting the LinearFcn.Use
value to false.

The idFeedforwardNetwork object has only a nonlinear component that is the network object of
Deep Learning Toolbox. The idTreeEnsemble and idSupportVectorMachine objects also contain
only a nonlinear component. The idLinear function, as the name implies, has only a linear
component.

Specifying a character vector, for example 'idSigmoidNetwork', creates a mapping object with
default settings. Alternatively, you can specify mapping object properties in two other ways:

• Create the mapping object using arguments to modify default properties.

MO = idSigmoidNetwork(15)

• Create a default mapping object first and then use dot notation to modify properties.

MO = idSigmoidNetwork;
MO.NumberOfUnits = 15

For ny output channels, you can specify mapping objects individually for each channel by setting
OutputFcn to an array of ny mapping objects. For example, the following code specifies OutputFcn
using dot notation for a system with two input channels and two output channels.

sys = idnlarx({'y1','y2'},{'u1','u2'});
sys.OutputFcn = [idWaveletNetwork; idSigmoidNetwork]

To specify the same mapping for all outputs, specify OutputFcn as a character vector or a single
mapping object.

OutputFcn represents a static mapping function that transforms the regressors of the nonlinear ARX
model into the model output. OutputFcn is static because it does not depend on the time. For
example, if y(t) = y0 + a1y(t − 1) + a2y(t − 2) + … + b1u(t − 1) + b2u(t − 2) + …, then OutputFcn is a
linear function represented by the idLinear object.

For an example of specifying the output function, see “Specify Output Function for Nonlinear ARX
Model” on page 1-679.

RegressorUsage — Regressor assignments
table with logical entries

1 Functions

1-670

Regressor assignments to the linear and nonlinear components of the nonlinear ARX model, specified
as an nr-by-nc table with logical entries that specify which regressors to use for which component.
Here, nr is the number of regressors. nc is the total number of linear and nonlinear components in
OutputFcn. The rows of the table correspond to individual regressors. The row names are set to
regressor names. If the table value for row i and component index j is true, then the ith regressor is
an input to the linear or nonlinear component j.

For multi-output systems, OutputFcn contains one mapping object for each output. Each mapping
object can use both linear and nonlinear components or only one of the two components.

For an example of viewing and modifying the RegressorUsage property, see “Modify Regressor
Assignments to Output Function Components” on page 1-683.

Normalization — Regressor and output data centering and scaling
structure (default)

Regressor and output centering and scaling, specified as a structure. As the following table shows,
each field in the structure contains a row vector with a length that is equal to the number of either
regressors (nr) or model outputs (ny).

Field Description Default Element Value
RegressorCenter Row vector of length nr NaN
RegressorScale Row vector of length nr NaN
OutputCenter Row vector of length ny NaN
OutputScale Row vector of length ny NaN

For a matrix X, with centering vector C and scaling vector S, the software computes the normalized
form of X using Xnorm = (X-C)./S.

The following figure illustrates the normalization flow for a nonlinear ARX model.

In this figure:

1 The algorithm converts the inputs u(t) and y(t) into the regressor set R(t).
2 The algorithm uses the regressor centering and scaling parameters to normalize R(t) as RN(t).
3 RN(t) provides the input to the mapping function, which then produces the normalized output yN

4 The algorithm uses the output scaling and centering parameters to restore the original range,
producing y(t).

Typically, the software normalizes the data automatically during model estimation, in accordance with
the option settings in nlarxOptions for Normalize and NormalizationOptions. You can also
directly assign centering and scaling values by specifying the values in vectors, as described in the
previous table. The values that you assign must be real and finite. This approach can be useful, for
example, when you are simulating your model using inputs that represent a different operating point
from the operating point for the original estimation data. You can assign the values for any field
independently. The software will estimate the values of any fields that remain unassigned (NaN).

 idnlarx

1-671

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results for a nonlinear
ARX model obtained using the nlarx command. Use Report to find estimation information for the
identified model, including:

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit

The contents of Report are irrelevant if the model was constructed using idnlarx.

sys = idnlarx('y1','u1',reg);
sys.Report.OptionsUsed

ans =

 []

If you use nlarx to estimate the model, the fields of Report contain information on the estimation
data, options, and results.

load iddata1;
sys = nlarx(z1,reg);
m.Report.OptionsUsed

Option set for the nlarx command:

 IterativeWavenet: 'auto'
 Focus: 'prediction'
 Display: 'off'
 Regularization: [1x1 struct]
 SearchMethod: 'auto'
 SearchOptions: [1x1 idoptions.search.identsolver]
 OutputWeight: 'noise'
 Advanced: [1x1 struct]

For more information on this property and how to use it, see “Output Arguments” on page 1-1100 in
the nlarx reference page and “Estimation Report”.

TimeVariable — Independent variable
't' (default) | character vector

Independent variable for the inputs, outputs, and—when available—internal states, specified as a
character vector.

NoiseVariance — Noise variance
matrix

Noise variance (covariance matrix) of the model innovations e. The estimation algorithm typically sets
this property. However, you can also assign the covariance values by specifying an ny-by-ny matrix.

1 Functions

1-672

Ts — Sample time
1 (default) | positive scalar

Sample time, specified as a positive scalar representing the sampling period. This value is expressed
in the unit specified by the TimeUnit property of the model.

TimeUnit — Units for time variable
'seconds' (default) | 'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' |
'hours' | 'days' | 'weeks' | 'months' | 'years'

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of
the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Changing this property has no effect on other properties, and therefore changes the overall system
behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

InputName — Input channel names
'' for all input channels (default) | character vector | cell array of character vectors

Input channel names, specified as one of the following:

• Character vector — For single-input models, for example, 'controls'.
• Cell array of character vectors — For multi-input models.

Input names in Nonlinear ARX models must be valid MATLAB variable names after you remove any
spaces.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For
example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

When you estimate a model using an iddata object, data, the software automatically sets
InputName to data.InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

Input channel names have several uses, including:

 idnlarx

1-673

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

InputUnit — Input channel units
'' for all input channels (default) | character vector | cell array of character vectors

Input channel units, specified as one of the following:

• Character vector — For single-input models, for example, 'seconds'.
• Cell array of character vectors — For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.

InputGroup — Input channel groups
structure with no fields (default) | structure

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems
into groups and refer to each group by name. Specify input groups as a structure. In this structure,
field names are the group names, and field values are the input channels belonging to each group.
For example:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and 3, 5,
respectively. You can then extract the subsystem from the controls inputs to all outputs using:

sys(:,'controls')

OutputName — Output channel names
'' for all output channels (default) | character vector | cell array of character vectors

Output channel names, specified as one of the following:

• Character vector — For single-output models. For example, 'measurements'.
• Cell array of character vectors — For multi-output models.

Output names in Nonlinear ARX models must be valid MATLAB variable names after you remove any
spaces.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For
example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

When you estimate a model using an iddata object, data, the software automatically sets
OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

Output channel names have several uses, including:

1 Functions

1-674

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

OutputUnit — Output channel units
'' for all output channels (default) | character vector | cell array of character vectors

Output channel units, specified as one of the following:

• Character vector — For single-output models. For example, 'seconds'.
• Cell array of character vectors — For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

OutputGroup — Output channel groups
structure with no fields (default) | structure

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO
systems into groups and refer to each group by name. Specify output groups as a structure. In this
structure, field names are the group names, and field values are the output channels belonging to
each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output channels 1, and
3, 5, respectively. You can then extract the subsystem from all inputs to the measurement outputs
using:

sys('measurement',:)

Name — System Name
'' (default) | character vector

System name, specified as a character vector. For example, 'system 1'.

Notes — Notes on system
0-by-1 string (default) | string | character vector

Any text that you want to associate with the system, specified as a string or a cell array of character
vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are
dynamic system models, you can set their Notes properties as follows.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 idnlarx

1-675

 'sys2 has a character vector.'

UserData — Data to associate with system
[] (default) | any MATLAB data type

Any data you want to associate with the system, specified as any MATLAB data type.

Object Functions
For information about object functions for idnlarx, see “Nonlinear ARX Models”.

Examples

Create Nonlinear ARX Model Using ARX Model Orders

Create an idnlarx model by specifying an ARX model order vector.

Create an order vector of the form [na nb nk], where na and nb are the orders of the A and B ARX
model polynomials and nk is the number of input/output delays.

na = 2;
nb = 3;
nk = 5;
orders = [na nb nk];

Construct a nonlinear ARX model sys.

output_name = 'y1';
input_name = 'u1';

sys = idnlarx(output_name,input_name,[2 3 5]);

View the output function.

disp(sys.OutputFcn)

Wavelet Network

 Nonlinear Function: Wavelet network with number of units chosen automatically
 Linear Function: uninitialized
 Output Offset: uninitialized

 Inputs: {'y1(t-1)' 'y1(t-2)' 'u1(t-5)' 'u1(t-6)' 'u1(t-7)'}
 Outputs: {'y1(t)'}
 NonlinearFcn: '<Wavelet and scaling function units and their parameters>'
 LinearFcn: '<Linear function parameters>'
 Offset: '<Offset parameters>'
 EstimationOptions: '<Estimation options>'

By default, the model uses a wavelet network, represented by a idWaveletNetwork object, for the
output function. The idWaveletNetwork object includes linear and nonlinear components.

View the Regressors property.

disp(sys.Regressors)

1 Functions

1-676

Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1 2] [5 6 7]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

The idnlarx constructor transforms the model orders into the Regressors form.

• The Lags array for y1, [1 2], is equivalent to the na value of 2. Both forms specify two
consecutive output regressors, y1(t-1) and y1(t-2).

• The Lags array for u1, [5 6 7], incorporates the three delays specified by the nb value of 3, and
shifts them by the nk value of 5. The input regressors are therefore u1(t-5), u1(t-6), and
u1(t-7).

View the regressors.

getreg(sys)

ans = 5x1 cell
 {'y1(t-1)'}
 {'y1(t-2)'}
 {'u1(t-5)'}
 {'u1(t-6)'}
 {'u1(t-7)'}

You can use the orders syntax to specify simple linear regressors. However, to create more complex
regressors, use the regressor commands linearRegressor, polynomialRegressor, and
customRegressor to create a combined regressor for the Regressors syntax.

Create Nonlinear ARX Model Using Linear Regressors

Construct an idnlarx model by specifying linear regressors.

Create a linear regressor that contains two output lags and two input lags.

output_name = 'y1';
input_name = 'u1';
var_names = {output_name,input_name};

output_lag = [1 2];
input_lag = [1 2];
lags = {output_lag,input_lag};

reg = linearRegressor(var_names,lags)

reg =
Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1 2] [1 2]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

 Regressors described by this set

 idnlarx

1-677

The model contains the regressors y(t-1), y(t-2), u(t-1), and u(t-2).

Construct the idnlarx model and view the regressors.

sys = idnlarx(output_name,input_name,reg);
getreg(sys)

ans = 4x1 cell
 {'y1(t-1)'}
 {'y1(t-2)'}
 {'u1(t-1)'}
 {'u1(t-2)'}

View the output function.

disp(sys.OutputFcn)

Wavelet Network

 Nonlinear Function: Wavelet network with number of units chosen automatically
 Linear Function: uninitialized
 Output Offset: uninitialized

 Inputs: {'y1(t-1)' 'y1(t-2)' 'u1(t-1)' 'u1(t-2)'}
 Outputs: {'y1(t)'}
 NonlinearFcn: '<Wavelet and scaling function units and their parameters>'
 LinearFcn: '<Linear function parameters>'
 Offset: '<Offset parameters>'
 EstimationOptions: '<Estimation options>'

View the regressor usage table.

disp(sys.RegressorUsage)

 y1:LinearFcn y1:NonlinearFcn
 ____________ _______________

 y1(t-1) true true
 y1(t-2) true true
 u1(t-1) true true
 u1(t-2) true true

All the regressors are inputs to both the linear and nonlinear components of the idWaveletNetwork
object.

Create and Configure Nonlinear ARX Model

Create a nonlinear ARX model with a linear regressor set.

Create a linear regressor that contains three output lags and two input lags.

output_name = 'y1';
input_name = 'u1';
var_names = {output_name,input_name};

1 Functions

1-678

output_lag = [1 2 3];
input_lag = [1 2];
lags = {output_lag,input_lag};

reg = linearRegressor(var_names,lags)

reg =
Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1 2 3] [1 2]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

 Regressors described by this set

Construct the nonlinear ARX model.

sys = idnlarx(output_name,input_name,reg);

View the Regressors property.

disp(sys.Regressors)

Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1 2 3] [1 2]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

sys uses idWavenetNetwork as the default output function. Reconfigure the output function to
idSigmoidNetwork.

sys.OutputFcn = 'idSigmoidNetwork';
disp(sys.OutputFcn)

Sigmoid Network

 Nonlinear Function: Sigmoid network with 10 units
 Linear Function: uninitialized
 Output Offset: uninitialized

 Inputs: {'y1(t-1)' 'y1(t-2)' 'y1(t-3)' 'u1(t-1)' 'u1(t-2)'}
 Outputs: {'y1(t)'}
 NonlinearFcn: '<Sigmoid units and their parameters>'
 LinearFcn: '<Linear function parameters>'
 Offset: '<Offset parameters>'

Specify Output Function for Nonlinear ARX Model

Specify the sigmoid network output function when you construct a nonlinear ARX model.

Assign variable names and specify a regressor set.

output_name = 'y1';
input_name = 'u1';
r = linearRegressor({output_name,input_name},{1 1});

 idnlarx

1-679

Construct a nonlinear ARX model that specifies the idSigmoidNetwork output function. Set the
number of terms in the sigmoid expansion to 15.

sys = idnlarx(output_name,input_name,r,idSigmoidNetwork(15));

View the output function specification.

disp(sys.OutputFcn)

Sigmoid Network

 Nonlinear Function: Sigmoid network with 15 units
 Linear Function: uninitialized
 Output Offset: uninitialized

 Inputs: {'y1(t-1)' 'u1(t-1)'}
 Outputs: {'y1(t)'}
 NonlinearFcn: '<Sigmoid units and their parameters>'
 LinearFcn: '<Linear function parameters>'
 Offset: '<Offset parameters>'

Create Nonlinear ARX Model Without Nonlinear Mapping Function

Construct an idnlarx model that uses only linear mapping in the output function. An argument
value of [] is equivalent to an argument value of idLinear.

sys = idnlarx([2 2 1],[])

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Linear with offset
Sample time: 1 seconds

Status:
Created by direct construction or transformation. Not estimated.
More information in model's "Report" property.

Create and Combine Regressor Types

Create a regressor set that includes linear, polynomial, periodic, and custom regressors.

Specify L as the set of linear regressors y1 t − 1 , u1 t − 2 , and u1 t − 5 .

L = linearRegressor({'y1','u1'},{1, [2 5]});

Specify P as the set of polynomial regressors y2 t − 4 2, y2 t − 5 2,y2 t − 6 2, and y2 t − 7 2.

1 Functions

1-680

P = polynomialRegressor('y2',4:7,2);

Specify SC as the set of periodic regressors sin y1 t − 1 , cos y1 t − 1 , sin u1 t − 2 , and
cos u1 t − 2 .

SC = periodicRegressor({'y1','u1'},{1,2});

Specify C as the custom regressor sin y1 t − 1 u1 t − 2 + u2 t − 2 , using the @ symbol to create an
anonymous function handle.

C = customRegressor({'y1','u1','u2'},{1 2 2},@(x,y,z)sin(x.*y+z));

Combine the regressors into one regressor set R.

R = [L;P;SC;C]

R =
[4 1] array of linearRegressor, polynomialRegressor, periodicRegressor, customRegressor objects.

1. Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1] [2 5]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

2. Order 2 regressors in variables y2
 Order: 2
 Variables: {'y2'}
 Lags: {[4 5 6 7]}
 UseAbsolute: 0
 AllowVariableMix: 0
 AllowLagMix: 0
 TimeVariable: 't'

3. Periodic regressors in variables y1, u1 with 1 Fourier terms
 Variables: {'y1' 'u1'}
 Lags: {[1] [2]}
 W: 1
 NumTerms: 1
 UseSin: 1
 UseCos: 1
 TimeVariable: 't'
 UseAbsolute: [0 0]

4. Custom regressor: sin(y1(t-1).*u1(t-2)+u2(t-2))
 VariablesToRegressorFcn: @(x,y,z)sin(x.*y+z)
 Variables: {'y1' 'u1' 'u2'}
 Lags: {[1] [2] [2]}
 Vectorized: 1
 TimeVariable: 't'

Regressors described by this set

Create a nonlinear ARX model.

 idnlarx

1-681

sys = idnlarx({'y1','y2'},{'u1','u2'},R)

sys =

Nonlinear ARX model with 2 outputs and 2 inputs
 Inputs: u1, u2
 Outputs: y1, y2

Regressors:
 1. Linear regressors in variables y1, u1
 2. Order 2 regressors in variables y2
 3. Periodic regressors in variables y1, u1 with W = 1, and 1 Fourier terms
 4. Custom regressor: sin(y1(t-1).*u1(t-2)+u2(t-2))

Output functions:
 Output 1: Wavelet network with number of units chosen automatically
 Output 2: Wavelet network with number of units chosen automatically

Sample time: 1 seconds

Status:
Created by direct construction or transformation. Not estimated.
More information in model's "Report" property.

Create Nonlinear ARX Model Using Linear Model

Use a linear ARX model instead of a regressor set to construct a nonlinear ARX model.

Construct a linear ARX model using idpoly.

A = [1 -1.2 0.5];
B = [0.8 1];
LinearModel = idpoly(A, B, 'Ts', 0.1);

Specify input and output names for the model using dot notation.

LinearModel.OutputName = 'y1';
LinearModel.InputName = 'u1';

Construct a nonlinear ARX model using the linear ARX model.

m1 = idnlarx(LinearModel)

m1 =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Wavelet network with number of units chosen automatically
Sample time: 0.1 seconds

Status:

1 Functions

1-682

Created by direct construction or transformation. Not estimated.
More information in model's "Report" property.

You can create a linear ARX model from any identified discrete-time linear model.

Estimate a second-order state-space model from estimation data z1.

load iddata1 z1
ssModel = ssest(z1,2,'Ts',0.1);

Construct a nonlinear ARX model from ssModel. The software uses the input and output names that
ssModel extracts from z1.

m2 = idnlarx(ssModel)

m2 =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Wavelet network with number of units chosen automatically
Sample time: 0.1 seconds

Status:
Created by direct construction or transformation. Not estimated.
More information in model's "Report" property.

Modify Regressor Assignments to Output Function Components

Modify regressor assignments by modifying the RegressorUsage table.

Construct a nonlinear ARX model that has two inputs and two outputs.

Create the variable names and the regressors.

varnames = {'y1','y2','u1','u2'};
lags = {[1 2 3],[1 2],[1 2],[1 3]};
reg = linearRegressor(varnames,lags);

Create an output function specification fcn that uses idWaveletNetwork for mapping regressors to
output y1 and idSigmoidNetwork for mapping regressors to output y2. Both mapping objects
contain linear and nonlinear components.

fcn = [idWaveletNetwork;idSigmoidNetwork];

Construct the nonlinear ARX model.

output_name = {'y1' 'y2'};
input_name = {'u1' 'u2'};
sys = idnlarx(output_name,input_name,reg,fcn)

sys =

 idnlarx

1-683

Nonlinear ARX model with 2 outputs and 2 inputs
 Inputs: u1, u2
 Outputs: y1, y2

Regressors:
 Linear regressors in variables y1, y2, u1, u2

Output functions:
 Output 1: Wavelet network with number of units chosen automatically
 Output 2: Sigmoid network with 10 units

Sample time: 1 seconds

Status:
Created by direct construction or transformation. Not estimated.
More information in model's "Report" property.

Display the RegressorUsage table.

disp(sys.RegressorUsage)

 y1:LinearFcn y1:NonlinearFcn y2:LinearFcn y2:NonlinearFcn
 ____________ _______________ ____________ _______________

 y1(t-1) true true true true
 y1(t-2) true true true true
 y1(t-3) true true true true
 y2(t-1) true true true true
 y2(t-2) true true true true
 u1(t-1) true true true true
 u1(t-2) true true true true
 u2(t-1) true true true true
 u2(t-3) true true true true

The rows of the table represent the regressors. The first two columns of the table represent the linear
and nonlinear components of the mapping to output y1 (idWaveletNetwork). The last two columns
represent the two components of the mapping to output y2 (idSigmoidNetwork).

In this table, all the input and output regressors are inputs to all components.

Remove the y2(t-2) regressor from the y2 nonlinear component.

sys.RegressorUsage{4,4} = false;
disp(sys.RegressorUsage)

 y1:LinearFcn y1:NonlinearFcn y2:LinearFcn y2:NonlinearFcn
 ____________ _______________ ____________ _______________

 y1(t-1) true true true true
 y1(t-2) true true true true
 y1(t-3) true true true true
 y2(t-1) true true true false
 y2(t-2) true true true true
 u1(t-1) true true true true
 u1(t-2) true true true true
 u2(t-1) true true true true
 u2(t-3) true true true true

The table displays false for this regressor-component pair.

1 Functions

1-684

Store the regressor names in Names.

Names = sys.RegressorUsage.Properties.RowNames;

Determine the indices of the rows that contain y1 or y2 and set the corresponding values of
y1:NonlinearFcn to False.

idx = contains(Names,'y1')|contains(Names,'y2');
sys.RegressorUsage{idx,2} = false;
disp(sys.RegressorUsage)

 y1:LinearFcn y1:NonlinearFcn y2:LinearFcn y2:NonlinearFcn
 ____________ _______________ ____________ _______________

 y1(t-1) true false true true
 y1(t-2) true false true true
 y1(t-3) true false true true
 y2(t-1) true false true false
 y2(t-2) true false true true
 u1(t-1) true true true true
 u1(t-2) true true true true
 u2(t-1) true true true true
 u2(t-3) true true true true

The table values reflect the new assignments.

The RegressorUsage table provides complete flexibility for individually controlling regressor
assignments.

More About
Definition of idnlarx States

The states of an idnlarx object are an ordered list of delayed input and output variables that define
the structure of the model. The toolbox uses this definition of states for creating the initial state
vector that sim, predict, and compare use for simulation and prediction. linearize also uses this
definition for linearization of nonlinear ARX models.

This toolbox provides several options to facilitate how you specify the initial states. For example, you
can use findstates and data2state to search for state values in simulation and prediction
applications. For linearization, use findop. You can also specify the states manually.

The states of an idnlarx model depend on the maximum delay in each input and output variable
used by the regressors. If a variable p has a maximum delay of D samples, then it contributes D
elements to the state vector at time t: p(t–1), p(t–2), ..., p(t–D).

For example, if you have a single-input, single-output idnlarx model.

m = idnlarx([2 3 0],'idWaveletNetwork','CustomRegressors',{'y1(t-10)*u1(t-1)'});

This model has these regressors.

getreg(m)

ans = 6x1 cell
 {'y1(t-1)' }

 idnlarx

1-685

 {'y1(t-2)' }
 {'u1(t)' }
 {'u1(t-1)' }
 {'u1(t-2)' }
 {'y1(t-10)*u1(t-1)'}

The regressors show that the maximum delay in the output variable y1 is 10 samples and the
maximum delay in the input u1 is two samples. Thus, this model has a total of 12 states:

X(t) = [y1(t-1),y2(t-2),…,y1(t-10),u1(t-1),u1(t-2)] (1-1)

Note The state vector includes the output variables first, followed by input variables.

As another example, consider the 2-output and 3-input model.

m = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0],[idWaveletNetwork; idLinear]);

This model has these regressors.

getreg(m)

ans = 11x1 cell
 {'y1(t-1)'}
 {'y1(t-2)'}
 {'u1(t-1)'}
 {'u1(t-2)'}
 {'u2(t)' }
 {'u2(t-1)'}
 {'u2(t-2)'}
 {'u2(t-3)'}
 {'u2(t-4)'}
 {'u2(t-5)'}
 {'u3(t)' }

The maximum delay in output variable y1 is two samples. This delay occurs in the regressor set for
output 1. The maximum delays in the three input variables are 2, 5, and 0, respectively. Thus, the
state vector is:

X(t) = [y1(t-1), y1(t-2), u1(t-1), u1(t-2), u2(t-1),
 u2(t-2), u2(t-3), u2(t-4), u2(t-5)]

Variables y2 and u3 do not contribute to the state vector because the maximum delay in these
variables is zero.

A simpler way to determine states by inspecting regressors is to use getDelayInfo, which returns
the maximum delays in all I/O variables across all model outputs. For the multi-input multi-output
model m, getDelayInfo returns:

maxDel = getDelayInfo(m)

maxDel = 1×5

 2 0 2 5 0

1 Functions

1-686

maxDel contains the maximum delays for all input and output variables in the order (y1, y2, u1, u2,
u3). The total number of model states is sum(maxDel) = 9.

The set of states for an idnlarx model is not required to be minimal.

Version History
Introduced in R2007a

Normalization and regressor selection moved from mapping object properties to idnlarx
object
Behavior changed in R2022a

Information related to data normalization was moved from the mapping object properties to the
idnlarx Normalization property. In addition, the regressor-selection process for the mapping
objects was moved to idnlarx. The model now passes the actual regressor names rather than the
selection indices to the mapping object.

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

Use of previous idnlarx properties is not recommended.
Not recommended starting in R2021a

Starting in R2021a, several properties of idnlarx have been modified or replaced.

These changes affect the syntaxes in both idnlarx and nlarx. The use of the pre-R2021a properties
in the following table is discouraged. However, the software still accepts calling syntaxes that include

 idnlarx

1-687

these properties. There are no plans to exclude these syntaxes at this time. The command syntax that
uses ARX model orders continues be a recommended syntax.

Pre-R2021a Property R2021a Property Usage
ARX model orders na,nb,nk Regressors, which can include

linearRegressor,
polynomialRegressor, and
customRegressor objects.

na,nb,nk remains a valid
idnlarx and nlarx input
argument that the software
converts to a
linearRegressor object.

You can no longer change order
values in an existing idnlarx
model by dot assignment or by
using the set function. Create a
new model object instead.

customRegressors Regressors Use polynomialRegressor or
customRegressor to create
regressor objects and add the
objects to the Regressors
array.

NonlinearRegressors RegressorUsage RegressorUsage is a table that
contains regressor assignments
to linear and nonlinear output
components. Change
assignments by modifying the
corresponding
RegressorUsagetable entries.

Nonlinearity OutputFcn Change is in name only.
Property remains an object or
an array or objects that map
regressor inputs to an output.

See Also
nlarx | linearRegressor | polynomialRegressor | periodicRegressor | customRegressor
| idnlarx/findop | getreg | linearize | pem

Topics
“Identifying Nonlinear ARX Models”
“Nonlinear Model Structures”
“Use nlarx to Estimate Nonlinear ARX Models”
“Estimate Nonlinear ARX Models Initialized Using Linear ARX Models”
“Initialize Nonlinear ARX Estimation Using Linear Model”
“Available Mapping Functions for Nonlinear ARX Models”

1 Functions

1-688

idnlgrey
Nonlinear grey-box model

Syntax
sys = idnlgrey(FileName,Order,Parameters)
sys = idnlgrey(FileName,Order,Parameters,InitialStates)
sys = idnlgrey(FileName,Order,Parameters,InitialStates,Ts)
sys = idnlgrey(FileName,Order,Parameters,InitialStates,Ts,Name,Value)

Description
sys = idnlgrey(FileName,Order,Parameters) creates a nonlinear grey-box model using the
specified model structure in FileName, number of outputs, inputs, and states in Order, and the
model parameters.

sys = idnlgrey(FileName,Order,Parameters,InitialStates) specifies the initial states of
the model.

sys = idnlgrey(FileName,Order,Parameters,InitialStates,Ts) specifies the sample time
of a discrete-time model.

sys = idnlgrey(FileName,Order,Parameters,InitialStates,Ts,Name,Value) specifies
additional attributes of the idnlgrey model structure using one or more Name,Value pair
arguments.

Object Description
idnlgrey represents a nonlinear grey-box model. For information about the nonlinear grey-box
models, see “Estimate Nonlinear Grey-Box Models”.

Use the idnlgrey constructor to create the nonlinear grey-box model and then estimate the model
parameters using nlgreyest.

For idnlgrey object properties, see “Properties” on page 1-694.

Examples

Create a Nonlinear Grey-Box Model

Load data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor');

The data is from a linear DC motor with one input (voltage), and two outputs (angular position and
angular velocity). The structure of the model is specified by dcmotor_m.m file.

Create a nonlinear grey-box model.

 idnlgrey

1-689

file_name = 'dcmotor_m';
Order = [2 1 2];
Parameters = [1;0.28];
InitialStates = [0;0];

sys = idnlgrey(file_name,Order,Parameters,InitialStates,0, ...
 'Name','DC-motor');

Selectively Estimate Parameters of Nonlinear Grey-Box Model

Load data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','twotankdata'));
z = iddata(y,u,0.2,'Name','Two tanks');

The data contains 3000 input-output data samples of a two tank system. The input is the voltage
applied to a pump, and the output is the liquid level of the lower tank.

Specify file describing the model structure for a two-tank system. The file specifies the state
derivatives and model outputs as a function of time, states, inputs, and model parameters.

FileName = 'twotanks_c';

Specify model orders [ny nu nx].

Order = [1 1 2];

Specify initial parameters (Np = 6).

Parameters = {0.5;0.0035;0.019; ...
 9.81;0.25;0.016};

Specify initial initial states.

InitialStates = [0;0.1];

Specify as continuous system.

Ts = 0;

Create idnlgrey model object.

nlgr = idnlgrey(FileName,Order,Parameters,InitialStates,Ts, ...
 'Name','Two tanks');

Set some parameters as constant.

nlgr.Parameters(1).Fixed = true;
nlgr.Parameters(4).Fixed = true;
nlgr.Parameters(5).Fixed = true;

Estimate the model parameters.

nlgr = nlgreyest(z,nlgr);

1 Functions

1-690

Input Arguments
FileName — Name of the function or MEX-file that stores the model structure
character vector | function handle

Name of the function or MEX-file storing the model structure, specified as a character vector (without
the file extension) or a function handle for computing the states and the outputs. If FileName is a
character vector, for example 'twotanks_c', then it must point to a MATLAB file, P-code file, or
MEX-file. For more information about the file variables, see “Specifying the Nonlinear Grey-Box
Model Structure”.

Order — Number of outputs, inputs, and states of the model
vector | structure

Number of outputs, inputs, and states of the model, specified as one of the following:

• Vector [Ny Nu Nx], specifying the number of model outputs Ny, inputs Nu, and states Nx.
• Structure with fields'Ny', 'Nu', and 'Nx'.

For time series, Nu is set to 0, and for static model structures, Nx is set to 0.

Parameters — Parameters of the model
structure | vector | cell array

Parameters of the model, specified as one of the following:

• Np-by-1 structure array, where Np is the number of parameters. The structure contains the
following fields:

Field Description Default
Name Name of the parameter,

specified as a character
vector. For example,
'pressure'.

'pi', where i is an integer in
[1,Np]

Unit Unit of the parameter,
specified as a character
vector.

''

Value Initial value of the parameter,
specified as:

• Finite real scalar
• Finite real column vector
• Two-dimensional real

matrix

 idnlgrey

1-691

Field Description Default
Minimum Minimum value of the

parameter, specified as a real
scalar, column vector, or
matrix of the same size as
Value.

Minimum >= Value for all
components.

-Inf(size(Value))

Maximum Maximum value of the
parameter, specified as a real
scalar, column vector, or
matrix of the same size as
Value.

Value <= Maximum for all
components.

Inf(size(Value))

Fixed Specifies whether parameter
is fixed to their initial values,
specified as a boolean scalar,
column vector, or matrix of
the same size as Value.

false(size(Value))

Implies, estimate all
parameters

Use dot notation to access the subfields of the ith parameter. For example, for idnlgrey model
M, the ith parameter is accessed through M.Parameters(i) and its subfield Fixed by
M.Parameters(i).Fixed.

• Np-by-1 vector of real finite initial values, InParameters.

The data is converted into a structure with default values for the fields Name, Unit, Minimum,
Maximum, and Fixed.

Value is assigned the value InParameters(i), where i is an integer in [1,Np]
• Np-by-1 cell array containing finite real scalars, finite real vectors, or finite real two-dimensional

matrices of initial values.

Default values are used for the fields Name, Unit, Minimum, Maximum, and Fixed.

InitialStates — Initial states of the model
structure | [] | cell array | {}

Initial states of the model parameters specified as one of the following:

• Nx-by-1 structure array, where Nx is the number of states. The structure contains the following
fields:

Field Description Default
Name Name of the states, specified

as a character vector.
'xi', where i is an integer in
[1,Nx]

Unit Unit of the states, specified as
a character vector.

''

1 Functions

1-692

Field Description Default
Value Initial value of the initial

states, specified as:

• A finite real scalar
• A finite real 1-by-Ne vector,

where Ne is the number of
experiments in the data set
to be used for estimation

Minimum Minimum value of the initial
states, specified as a real
scalar or 1-by-Ne vector of the
same size as Value.

Minimum >= Value for all
components.

-Inf(size(Value))

Maximum Maximum value of the
parameters, specified as a
real scalar or 1-by-Ne vector
of the same size as Value.

Value <= Maximum for all
components.

Inf(size(Value))

Fixed Specifies whether initial
states are fixed to their initial
values, specified as boolean
scalar or 1-by-Ne vector of the
same size as Value

true(size(Value))

Implies, do not estimate the
initial states.

Use dot notation to access the subfields of the ith initial state. For example, for idnlgrey model
M, the ith initial state is accessed through M.InitialStates(i) and its subfield Fixed by
M.InitialStates(i).Fixed.

• [].

A structure is created with default values for the fields Name, Unit, Minimum, Maximum, and
Fixed.

Value is assigned the value 0.
• A real finite Nx-by-Ne matrix (InitStates).

Value of the ith structure array element is InitStates(i,Ne), a row vector with Ne elements.
Minimum, Maximum, and Fixed will be -Inf, Inf and true row vectors of the same size as
InitStates(i,Ne).

• Cell array with finite real vectors of size 1-by-Ne or {} (same as []).

Ts — Sample time
0 (default) | scalar

Sample time, specified as a positive scalar representing the sampling period. The value is expressed
in the unit specified by the TimeUnit property of the model. For a continuous time model Ts is equal
to 0 (default).

 idnlgrey

1-693

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify additional properties on page 1-694 of idnlgrey models
during model creation.

Properties
idnlgrey object properties include:

FileName

Name of the function or MEX-file storing the model structure, specified as a character vector (without
extension) or a function handle for computing the states and the outputs. If FileName is a character
vector, for example 'twotanks_c', then it must point to a MATLAB file, P-code file, or MEX-file. For
more information about the file variables, see “Specifying the Nonlinear Grey-Box Model Structure”.

Order

Number of outputs, inputs, and states of the model, specified as one of the following:

• Vector [Ny Nu Nx], specifying the number of model outputs Ny, inputs Nu, and states Nx.
• Structure with fields'Ny', 'Nu', and 'Nx'.

For time series, Nu is set to 0, and for static model structures, Nx is set to 0.

Parameters

Parameters of the model, specified as one of the following:

• Np-by-1 structure array, where Np is the number of parameters. The structure contains the
following fields:

Field Description Default
Name Name of the parameter,

specified as a character
vector. For example,
'pressure'.

'pi', where i is an integer in
[1,Np]

Unit Unit of the parameter,
specified as a character
vector.

''

1 Functions

1-694

Field Description Default
Value Initial value of the parameter,

specified as:

• Finite real scalar
• Finite real column vector
• Two-dimensional real

matrix

Minimum Minimum value of the
parameter, specified as a real
scalar, column vector, or
matrix of the same size as
Value.

Minimum >= Value for all
components.

-Inf(size(Value))

Maximum Maximum value of the
parameter, specified as a real
scalar, column vector, or
matrix of the same size as
Value.

Value <= Maximum for all
components.

Inf(size(Value))

Fixed Specifies whether parameter
is fixed to their initial values,
specified as a boolean scalar,
column vector, or matrix of
the same size as Value.

false(size(Value))

Implies, estimate all
parameters

• Np-by-1 vector of real finite initial values, InParameters.

The data is converted into a structure with default values for the fields Name, Unit, Minimum,
Maximum, and Fixed.

Value is assigned the value InParameters(i), where i is an integer in [1,Np]
• Np-by-1 cell array containing finite real scalars, finite real vectors, or finite real two-dimensional

matrices of initial values.

A structure is created with default values for the fields Name, Unit, Minimum, Maximum, and
Fixed.

Use dot notation to access the subfields of the ith parameter. For example, for idnlgrey model M,
the ith parameter is accessed through M.Parameters(i) and its subfield Fixed by
M.Parameters(i).Fixed.

InitialStates

Initial states of the model parameters specified as one of the following:

• Nx-by-1 structure array, where Nx is the number of states. The structure contains the following
fields:

 idnlgrey

1-695

Field Description Default
Name Name of the states, specified

as a character vector.
'xi', where i is an integer in
[1,Nx]

Unit Unit of the states, specified as
a character vector.

''

Value Initial value of the initial
states, specified as:

• A finite real scalar
• A finite real 1-by-Ne vector,

where Ne is the number of
experiments in the data set
to be used for estimation

Minimum Minimum value of the initial
states, specified as a real
scalar or 1-by-Ne vector of the
same size as Value.

Minimum >= Value for all
components.

-Inf(size(Value))

Maximum Maximum value of the
parameters, specified as a
real scalar or 1-by-Ne vector
of the same size as Value.

Value <= Maximum for all
components.

Inf(size(Value))

Fixed Specifies whether initial
states are fixed to their initial
values, specified as boolean
scalar or 1-by-Ne vector of the
same size as Value

true(size(Value))

Implies, do not estimate the
initial states.

• [].

A structure is created with default values for the fields Name, Unit, Minimum, Maximum, and
Fixed.

Value is assigned the value 0.
• A real finite Nx-by-Ne matrix (InitStates).

Value of the ith structure array element is InitStates(i,Ne), a row vector with Ne elements.
Minimum, Maximum, and Fixed will be -Inf, Inf and true row vectors of the same size as
InitStates(i,Ne).

• Cell array with finite real vectors of size 1-by-Ne or {} (same as []).

A structure is created with default values for the fields Name, Unit, Minimum, Maximum, and
Fixed.

1 Functions

1-696

Use dot notation to access the subfields of the ith initial state. For example, for idnlgrey model M,
the ith initial state is accessed through M.InitialStates(i) and its subfield Fixed by
M.InitialStates(i).Fixed.

FileArgument

Contains auxiliary variables passed to the ODE file (function or MEX-file) specified in FileName,
specified as a cell array. These variables are used as extra inputs for specifying the state and/or
output equations.
Default: {}.

SimulationOptions

A structure that specifies the simulation method and related options, containing the following fields:

Field Description Default
AbsTol Absolute error tolerance. This scalar applies to all

components of the state vector.

Applicable to: Variable step solvers.

Assignable value: A positive real value.

1e-6

FixedStep Step size used by the solver.

Applicable to: Fixed-step time-continuous solvers.

Assignable values:

• 'Auto' — Automatically chooses the initial step.
• A real value such that 0<FixedStep<=1.

'Auto'

Automatically chooses the initial
step.

InitialStep Specifies the initial step at which the ODE solver
starts.

Applicable to: Variable-step, time-continuous solvers.

Assignable values:

• 'Auto' — Automatically chooses the initial step.
• A positive real value such that

MinStep<=InitialStep<=MaxStep.

'Auto'

Automatically chooses the initial
step.

MaxOrder Specifies the order of the Numerical Differentiation
Formulas (NDF).

Applicable to: ode15s.

Assignable values: 1, 2, 3, 4 or 5.

5

 idnlgrey

1-697

Field Description Default
MaxStep Specifies the largest time step of the ODE solver.

Applicable to: Variable-step, time-continuous solvers.

Assignable values:

• 'Auto' — Automatically chooses the time step.
• A positive real value > MinStep.

'Auto'

Automatically chooses the time
step.

MinStep Specifies the smallest time step of the ODE solver.

Applicable to: Variable-step, time-continuous solvers.

Assignable values:

• 'Auto' — Automatically chooses the time step.
• A positive real value < MaxStep.

'Auto'

Automatically chooses the time
step.

RelTol Relative error tolerance that applies to all
components of the state vector. The estimated error
in each integration step satisfies |e(i)| <=
max(RelTol*abs(x(i)), AbsTol(i)).

Applicable to: Variable-step, time-continuous solvers.

Assignable value: A positive real value.

1e-3

(0.1% accuracy).

1 Functions

1-698

Field Description Default
Solver ODE (Ordinary Differential/Difference Equation)

solver for solving state space equations.

• Variable-step solvers for time-continuous
idnlgrey models:

• 'ode45' — Runge-Kutta (4,5) solver for
nonstiff problems.

• 'ode23' — Runge-Kutta (2,3) solver for
nonstiff problems.

• 'ode113' — Adams-Bashforth-Moulton solver
for nonstiff problems.

• 'ode15s' — Numerical Differential Formula
solver for stiff problems.

• 'ode23s' — Modified Rosenbrock solver for
stiff problems.

• 'ode23t' — Trapezoidal solver for moderately
stiff problems.

• 'ode23tb' — Implicit Runge-Kutta solver for
stiff problems.

• Fixed-step solvers for time-continuous idnlgrey
models:

• 'ode5' — Dormand-Prince solver.
• 'ode4' — Fourth-order Runge-Kutta solver.
• 'ode3' — Bogacki-Shampine solver.
• 'ode2' — Heun or improved Euler solver.
• 'ode1' — Euler solver.

• Fixed-step solvers for time-discrete idnlgrey
models: 'FixedStepDiscrete'

• General: 'Auto' — Automatically chooses one of
the previous solvers.

'Auto'

Automatically chooses one of the
solvers.

Report

Summary report that contains information about the estimation options and results when the model is
estimated using the nlgreyest command. Use Report to query a model for how it was estimated,
including:

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit

The contents of Report are irrelevant if the model was created by construction.

 idnlgrey

1-699

nlgr = idnlgrey('dcmotor_m',[2,1,2],[1;0.28],[0;0],0,'Name','DC-motor');
nlgr.Report.OptionsUsed

ans =

 []

If you use nlgreyest to estimate the model, the fields of Report contain information on the
estimation data, options, and results.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor');
nlgr = idnlgrey('dcmotor_m',[2,1,2],[1;0.28],[0;0],0,'Name','DC-motor');
nlgr = nlgreyest(z,nlgr);
nlgr.Report.OptionsUsed

Option set for the nlgreyest command:

 GradientOptions: [1x1 struct]
 EstimateCovariance: 1
 Display: 'off'
 Regularization: [1x1 struct]
 SearchMethod: 'auto'
 SearchOptions: [1x1 idoptions.search.lsqnonlin]
 OutputWeight: []
 Advanced: [1x1 struct]

Report is a read-only property.

For more information on this property and how to use it, see “Output Arguments” on page 1-1122 in
the nlgreyest reference page and “Estimation Report”.

TimeVariable

Independent variable for the inputs, outputs, and—when available—internal states, specified as a
character vector.

Default: 't'

NoiseVariance

Noise variance (covariance matrix) of the model innovations e.
Assignable value is an ny-by-ny matrix.
Typically set automatically by the estimation algorithm.

Ts

Sample time. Ts is a positive scalar representing the sampling period. This value is expressed in the
unit specified by the TimeUnit property of the model. For a continuous time model, Ts is equal to 0
(default).

Changing this property does not discretize or resample the model.

Default: 0

1 Functions

1-700

TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of
the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Changing this property has no effect on other properties, and therefore changes the overall system
behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names, specified as one of the following:

• Character vector — For single-input models, for example, 'controls'.
• Cell array of character vectors — For multi-input models.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For
example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

When you estimate a model using an iddata object, data, the software automatically sets
InputName to data.InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: '' for all input channels

InputUnit

Input channel units, specified as one of the following:

 idnlgrey

1-701

• Character vector — For single-input models, for example, 'seconds'.
• Cell array of character vectors — For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.

Default: '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems
into groups and refer to each group by name. Specify input groups as a structure. In this structure,
field names are the group names, and field values are the input channels belonging to each group.
For example:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and 3, 5,
respectively. You can then extract the subsystem from the controls inputs to all outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names, specified as one of the following:

• Character vector — For single-output models. For example, 'measurements'.
• Cell array of character vectors — For multi-output models.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For
example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

When you estimate a model using an iddata object, data, the software automatically sets
OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

Default: '' for all output channels

OutputUnit

Output channel units, specified as one of the following:

1 Functions

1-702

• Character vector — For single-output models. For example, 'seconds'.
• Cell array of character vectors — For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

Default: '' for all output channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO
systems into groups and refer to each group by name. Specify output groups as a structure. In this
structure, field names are the group names, and field values are the output channels belonging to
each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output channels 1, and
3, 5, respectively. You can then extract the subsystem from all inputs to the measurement outputs
using:

sys('measurement',:)

Default: Struct with no fields

Name

System name, specified as a character vector. For example, 'system_1'.

Default: ''

Notes

Any text that you want to associate with the system, stored as a string or a cell array of character
vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are
dynamic system models, you can set their Notes properties as follows:

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 'sys2 has a character vector.'

Default: [0×1 string]

 idnlgrey

1-703

UserData

Any type of data you want to associate with system, specified as any MATLAB data type.

Default: []

Output Arguments
sys — Nonlinear grey-box model
idnlgrey object

Nonlinear grey-box model, returned as an idnlgrey object.

More About
Definition of idnlgrey States

The states of an idnlgrey model are defined explicitly in the function or MEX-file storing the model
structure. States are required for simulation and prediction of nonlinear grey-box models. Use
findstates to search for state values for simulation and prediction with sim, predict, and
compare.

Note The initial values of the states are configured by the InitialStates property of the
idnlgrey model.

Version History
Introduced in R2007a

See Also
nlgreyest | pem | get | set | getinit | setinit | getpar | setpar

Topics
“Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation”
“Creating IDNLGREY Model Files”
“Estimate Nonlinear Grey-Box Models”

1 Functions

1-704

idnlhw
Hammerstein-Wiener Model

Description
An idnlhw model represents a Hammerstein-Wiener model, which is a nonlinear model that is
composed of a linear dynamic element and nonlinear functions of the inputs and outputs of the linear
system. These nonlinear functions are known as nonlinearity estimators, or more generally as
mapping objects.

The following figure illustrates the structure of the Hammerstein-Wiener model.

The software computes the Hammerstein-Wiener model output y in three stages:

1 It uses the input nonlinearity f to transform the input vector u(t) into the intermediate variable
w(t)

The input nonlinearity is a static (memoryless) function, where the value of the output a given
time t depends only on the input value at time t.

You can configure the input nonlinearity as a sigmoid network, wavelet network, saturation, dead
zone, piecewise linear function, one-dimensional polynomial, or custom network. You can also
remove the input nonlinearity by applying a unit gain.

2 It uses w(t) as the input to the dynamic linear block, which you configure as the transfer function
B/F. The output of the linear block is x(t).

3 It transforms x(t) using the output nonlinearity h. The output of the block is y(t).

Similar to the input nonlinearity, the output nonlinearity is a static function. You can configure
the output nonlinearity in the same way as the input nonlinearity. In addition to the input
nonlinearity options, you also configure the output nonlinearity as a Gaussian process.

The resulting Hammerstein-Wiener models are idnlhw objects that store all model data, including
the parameters of the input and output nonlinearities and the coefficients of the transfer function. For
more information about these objects, see “Nonlinear Model Structures”.

For more detail on Hammerstein-Wiener models, including the computation stages, see “What are
Hammerstein-Wiener Models?”.

For idnlhw object properties, see “Properties” on page 1-707.

Creation
You can obtain an idnlhw object in one of two ways.

• Use the nlhw command to both construct an idnlhw object and estimate the model parameters.

sys = nlhw(Data,Orders,InputNL,OutputNL)

 idnlhw

1-705

• Use the idnlhw constructor to create the Hammerstein-Wiener model and then estimate the
model parameters using nlhw or pem. This syntax is useful when you need to customize the model
structure, such as when you want to fix certain coefficients to their initial values, before
performing an estimation.

sys = idnlhw(Orders,InputNL,OutputNL))

Syntax
sys = idnlhw(Orders)
sys = idnlhw(Orders,InputNonlinearity,OutputNonlinearity)

sys = idnlhw(LinModel)
sys = idnlhw(LinModel,InputNonlinearity,OutputNonlinearity)

sys = idnlhw(___ ,Name,Value)

Description
Specify Model Directly

sys = idnlhw(Orders) creates a Hammerstein-Wiener model with the specified orders, and using
piecewise linear functions as input and output nonlinearities.

sys = idnlhw(Orders,InputNonlinearity,OutputNonlinearity) uses
InputNonlinearity and OutputNonlinearity as the input and output nonlinearity estimators,
respectively.

Initialize Model Values Using Linear Model

sys = idnlhw(LinModel) uses a linear model LinModel to specify the model orders and default
piecewise linear functions for the input and output nonlinearity estimators.

sys = idnlhw(LinModel,InputNonlinearity,OutputNonlinearity) specifies input and
output nonlinearity estimators for the model.

Specify Model Properties

sys = idnlhw(___ ,Name,Value) specifies additional attributes of the idnlhw model structure
using one or more Name,Value arguments. You can use this syntax with any of the previous input
argument combinations.

Input Arguments

Orders — Order and delays of the linear subsystem transfer function
[nb nf nk] vector of positive integers | [nb nf nk] vector of matrices

Order and delays of the linear subsystem transfer function, specified as a [nb nf nk] vector.

Dimensions of Orders:

• For a SISO transfer function, Orders is a vector with 3 positive integers.

nb is the number of zeros plus 1, nf is the number of poles, and nk is the input delay.
• For a MIMO transfer function with nu inputs and ny outputs, Orders is a vector of matrices.

1 Functions

1-706

nb, nf, and nk are ny-by-nu matrices whose i-jth entry specifies the orders and delay of the
transfer function from the jth input to the ith output.

LinModel — Discrete time linear model
idpoly model | idss model | idtf model

Discrete-time linear model used to specify the linear subsystem, specified as one of the following:

• Input-output polynomial model of Output-Error (OE) structure (idpoly)
• State-space model (idss)
• Transfer function model (idtf)

Typically, you estimate the model using oe, n4sid, or tfest.

Properties
nb, nf, nk — Model orders and delays
[nb nf nk] vector of positive integers | [nb nf nk] vector of matrices

Model orders and delays of the linear subsystem transfer function, where nb is the number of zeros
plus 1, nf is the number of poles, and nk is the input delay.

For a MIMO transfer function with nu inputs and ny outputs, nb, nf, and nk are ny-by-nu matrices
whose i-jth entry specifies the orders and delay of the transfer function from the jth input to the ith
output.

B — Linear block numerator
cell array

Linear block numerator polynomial B, specified as a cell array of ny-by-nu elements, where ny is the
number of outputs and nu is the number of inputs. An element B{i,j} is a row vector representing
the numerator polynomial for the jth input to ith output transfer function. The element contains nk
leading zeros, where nk is the number of input delays.

F — Linear block denominator
cell array

Linear block denominator polynomial F, specified as a cell array of ny-by-nu elements, where ny is the
number of outputs and nu is the number of inputs. An element F{i,j} is a row vector representing
the denominator polynomial for the jth input to ith output transfer function.

Bfree — Option to fix or free parameters of B
logical matrix

Option to fix or free the parameters of the B polynomial, specified as a logical matrix of ny-by-nu
elements, where ny is the number of outputs and nu is the number of inputs. An element Bfree(i,j)
is a row vector representing the numerator polynomial for the jth input to ith output transfer
function. Bfree(i,j) = false causes the numerator of the linear transfer function between the
input j and output i to be fixed to B(i,j)}. The software honors the Bfree specification only if the
B polynomial contains finite values.

Ffree — Option to fix or free the parameters of F
logical matrix

 idnlhw

1-707

Option to fix or free the parameters of the F polynomial, specified as a logical matrix of ny-by-nu
elements, where ny is the number of outputs and nu is the number of inputs. An element Ffree(i,j)
is a row vector representing the numerator polynomial for the jth input to ith output transfer
function. Ffree(i,j) = false causes the numerator of the linear transfer function between the
input j and output i to be fixed to F(i,j). The software honors the Ffree specification only if the F
polynomial contains finite values.

InputNonlinearity — Input nonlinearity estimator
idPiecewiseLinear (default) | 'idSigmoidNetwork' | 'idWaveletNetwork' |
'idSaturation' | idDeadZone | 'idPolynomial1D' | 'idUnitGain' | nonlinearity estimator |
array of nonlinearity estimators

Input nonlinearity estimator, specified as a column array containing one or more of the following
strings or mapping objects. Note that idGaussianProcess, which can be used as an output
nonlinearity estimator, cannot be used as an input nonlinearity estimator.

'idPiecewiseLinear' or idPiecewiseLinear object Piecewise linear function
'idSigmoidNetwork' or idSigmoidNetwork object Sigmoid network
'idWaveletNetwork' or idWaveletNetwork object Wavelet network
'idSaturation' or idSaturation object Saturation
'idDeadZone' or idDeadZone object Dead zone
'idPolynomial1D' or idPolynomial1D object One-dimensional polynomial
idCustomNetwork object Custom network — Similar to

idSigmoidNetwork, but with a user-
defined replacement for the sigmoid
function.

'idUnitGain' or [] or idUnitGain object Unit gain. Effectively eliminates
nonlinearity block.

Specifying a character vector, for example 'idSigmoidNetwork', creates a mapping object with
default settings. Alternatively, you can specify nonlinearity estimator properties in two other ways:

• Create the nonlinearity function using arguments to modify default properties.

InputNL = idSigmoidNetwork(15)

• Create a default nonlinearity function first and then use dot notation to modify properties.

InputNL = idSigmoidNetwork;
InputNL.NumberOfUnits = 15

For nu input channels, you can specify nonlinear estimators individually for each input channel by
setting InputNL to an nu-by-1 array of nonlinearity estimators. To specify the same nonlinearity for
all inputs, specify a single input nonlinearity estimator.

OutputNonlinearity — Output nonlinearity estimator
idPiecewiseLinear (default) | 'idSigmoidNetwork' | 'idWaveletNetwork' |
'idSaturation' | idDeadZone | 'idPolynomial1D' | 'idGaussianProcess' | 'idUnitGain'
| nonlinearity estimator | array of nonlinearity estimators

Output nonlinearity estimator, specified as a column array containing one or more of the following
strings or mapping objects.

1 Functions

1-708

'idPiecewiseLinear' or idPiecewiseLinear object Piecewise linear function
'idSigmoidNetwork' or idSigmoidNetwork object Sigmoid network
'idWaveletNetwork' or idWaveletNetwork object Wavelet network
'idSaturation' or idSaturation object Saturation
'idDeadZone' or idDeadZone object Dead zone
'idPolynomial1D' or idPolynomial1D object One-dimensional polynomial
'idGaussianProcess' or idGaussianProcess object Gaussian process regression model

(requires Statistics and Machine
Learning Toolbox)

idCustomNetwork object Custom network — Similar to
idSigmoidNetwork, but with a user-
defined replacement for the sigmoid
function.

'idUnitGain' or [] or idUnitGain object Unit gain. Effectively eliminates
nonlinearity block.

Specifying a character vector, for example 'idSigmoidNetwork', creates a mapping object with
default settings. Alternatively, you can specify nonlinearity estimator properties in two other ways:

• Create the nonlinearity function using arguments to modify default properties.

NL = idSigmoidNetwork(15)

• Create a default nonlinearity function first and then use dot notation to modify properties.

outputNL = idSigmoidNetwork;
OutputNL.NumberOfUnits = 15

For ny output channels, you can specify nonlinear estimators individually for each output channel by
setting OutputNL to an ny-by-1 array of nonlinearity estimators. To specify the same nonlinearity for
all outputs, specify a single output nonlinearity estimator.

LinearModel — Linear model
idpoly object

This property is read-only.

The linear model in the linear block of the model structure, specified as an idpoly object.

Normalization — Input and output data centering and scaling
structure (default)

Input and output centering and scaling, specified as a structure. As the following table shows, each
field in the structure contains a row vector with a length that is equal to the number of either model
inputs (nu) or model outputs (ny).

Field Description Default Element Value
InputCenter Row vector of length nu NaN
InputScale Row vector of length nu NaN
OutputCenter Row vector of length ny NaN

 idnlhw

1-709

Field Description Default Element Value
OutputScale Row vector of length ny NaN

For a matrix X, with centering vector C and scaling vector S, the software computes the normalized
form of X using Xnorm = (X-C)./S.

The following figure illustrates the normalization flow for a Hammerstein-Wiener model.

In this figure:

1 The algorithm uses the centering and scaling parameters to normalize u(t) as uN(t).
2 uN(t) provides the input to the sequence of input nonlinearity, linear function, and output

nonlinearity. The output of the sequence is yN(t).
3 The algorithm restores the original range of the output, producing y(t).

Typically, the software normalizes the data automatically during model estimation, in accordance with
the option settings in nlhwOptions for Normalize and NormalizationOptions. You can also
directly assign centering and scaling values by specifying the values in vectors, as described in the
previous table. The values that you assign must be real and finite. This approach can be useful, for
example, when you are simulating your model using inputs that represent a different operating point
from the operating point for the original estimation data. You can assign the values for any field
independently. The software will estimate the values of any fields that remain unassigned (NaN).

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results when the model is
estimated using the nlhw command. Use Report to query a model for how it was estimated,
including:

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit

The contents of Report are irrelevant if the model was created by construction.

m = idnlhw([2 2 1]);
m.Report.OptionsUsed

ans =

 []

If you use nlhw to estimate the model, the fields of Report contain information on the estimation
data, options, and results.

1 Functions

1-710

load iddata1;
m = nlhw(z1,[2 2 1],[],'pwlinear');
m.Report.OptionsUsed

Option set for the nlhw command:

 InitialCondition: 'zero'
 Display: 'off'
 Regularization: [1x1 struct]
 SearchMethod: 'auto'
 SearchOption: [1x1 idoptions.search.identsolver]
 OutputWeight: 'noise'
 Advanced: [1x1 struct]

For more information on this property and how to use it, see “Output Arguments” on page 1-1143 in
the nlhw reference page and “Estimation Report”.

TimeVariable — Independent time variable
't' (default) | character vector

Independent time variable for the inputs, outputs, and—when available—internal states, specified as
a character vector.

NoiseVariance — Noise variance
matrix

Noise variance (covariance matrix) of the model innovations e. Assignable value is an ny-by-ny
matrix. This value is typically set automatically by the estimation algorithm.

Ts — Sample time
1 (default) | positive scalar

Sample time, specified as a positive scalar representing the sampling period. This value is expressed
in the unit specified by the TimeUnit property of the model.

Changing this property does not discretize or resample the model.

TimeUnit — Units for time variable
'seconds' (default) | 'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' |
'hours' | 'days' | 'weeks' | 'months' | 'years'

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of
the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'

 idnlhw

1-711

• 'months'
• 'years'

Changing this property has no effect on other properties, and therefore changes the overall system
behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

InputName — Input channel names
'' for all input channels (default) | character vector | cell array of character vectors

Input channel names, specified as one of the following:

• Character vector — For single-input models, for example, 'controls'.
• Cell array of character vectors — For multi-input models.

Input names in Hammerstein-Wiener models must be valid MATLAB variable names after you remove
any spaces.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For
example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

When you estimate a model using an iddata object, data, the software automatically sets
InputName to data.InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

InputUnit — Input channel units
'' for all input channels (default) | character vector | cell array of character vectors

Input channel units, specified as one of the following:

• Character vector — For single-input models, for example, 'seconds'.
• Cell array of character vectors — For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.

InputGroup — Input channel groups
structure with no fields (default) | structure

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems
into groups and refer to each group by name. Specify input groups as a structure. In this structure,
field names are the group names, and field values are the input channels belonging to each group.
For example:

1 Functions

1-712

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and 3, 5,
respectively. You can then extract the subsystem from the controls inputs to all outputs using:

sys(:,'controls')

OutputName — Output channel names
'' for all output channels (default) | character vector | cell array of character vectors

Output channel names, specified as one of the following:

• Character vector — For single-output models. For example, 'measurements'.
• Cell array of character vectors — For multi-output models.

Output names in Hammerstein-Wiener models must be valid MATLAB variable names after you
remove any spaces.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For
example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

When you estimate a model using an iddata object, data, the software automatically sets
OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

OutputUnit — Output channel units
'' for all output channels (default) | character vector | cell array of character vectors

Output channel units, specified as one of the following:

• Character vector — For single-output models. For example, 'seconds'.
• Cell array of character vectors — For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

OutputGroup — Output channel groups
structure with no fields (default) | structure

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO
systems into groups and refer to each group by name. Specify output groups as a structure. In this
structure, field names are the group names, and field values are the output channels belonging to
each group. For example:

 idnlhw

1-713

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output channels 1, and
3, 5, respectively. You can then extract the subsystem from all inputs to the measurement outputs
using:

sys('measurement',:)

Name — System Name
'' (default) | character vector

System name, specified as a character vector. For example, 'system 1'.

Notes — Notes on system
0-by-1 string (default) | string | character vector

Any text that you want to associate with the system, specified as a string or a cell array of character
vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are
dynamic system models, you can set their Notes properties as follows.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 'sys2 has a character vector.'

UserData — Data to associate with system
[] (default) | any MATLAB data type

Any data you want to associate with the system, specified as any MATLAB data type.

Object Functions
For information about object functions for idnlhw, see “Hammerstein-Wiener Models”.

Examples

Create a Hammerstein-Wiener Model Structure with Default Nonlinearities

Create a Hammerstein-Wiener model with nb and nf = 2 and nk = 1.

 m = idnlhw([2 2 1]);

m has piecewise linear input and output nonlinearity.

1 Functions

1-714

Create Hammerstein-Wiener Model with Specific Input-Output Nonlinearities
m = idnlhw([2 2 1],'idSigmoidNetwork','idDeadZone');

The above is equivalent to:

m = idnlhw([2 2 1],'idsig','iddead');

The specified nonlinearities have a default configuration.

Create Hammerstein-Wiener Model and Configure the Nonlinearities
m = idnlhw([2 2 1],idSigmoidNetwork(5),idDeadZone([-1,2]),'InputName','Volts','OutputName','Time');

Create a Wiener Model and Estimate Model Parameters

Create a Wiener model (no input nonlinearity).

m = idnlhw([2 2 1],[],'idSaturation');

Estimate the model.

load iddata1;
m = nlhw(z1,m);

Create Hammerstein-Wiener Model Using Input-Output Polynomial Model of Output-Error
Structure

Construct an input-output polynomial model of OE structure.

B = [0.8 1];
F = [1 -1.2 0.5];
LinearModel = idpoly(1,B,1,1,F,'Ts',0.1);

Construct Hammerstein-Wiener model using OE model as its linear component.

m1 = idnlhw(LinearModel,'idSaturation',[],'InputName','Control');

More About
Definition of idnlhw States

The states of a Hammerstein-Wiener model correspond to the states of the linear block in the model
structure. The linear block contains all the dynamic elements of the model. If the linear block is not a
state-space structure, the states are defined as those of model Mss, where Mss =
idss(Model.LinearModel) and Model is the idnlhw object.

 idnlhw

1-715

States are required for simulation, prediction, and linearization of Hammerstein-Wiener models. To
specify the initial states:

• Use findstates to search for state values for simulation and prediction with sim, predict, and
compare.

• Use findop when linearizing the model with linearize.
• Alternatively, specify the states manually.

Version History
Introduced in R2007a

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
nlhw | linearize | findop | pem

Topics
“What are Hammerstein-Wiener Models?”
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”
“Identifying Hammerstein-Wiener Models”
“Initialize Hammerstein-Wiener Estimation Using Linear Model”
“Estimate Multiple Hammerstein-Wiener Models”
“Estimate Hammerstein-Wiener Models Initialized Using Linear OE Models”

1 Functions

1-716

idpar
Create parameter for initial states and input level estimation

Syntax
p = idpar(paramvalue)
p = idpar(paramname,paramvalue)

Description
p = idpar(paramvalue) creates an estimable parameter with initial value paramvalue. The
parameter, p, is either scalar or array-valued, with the same dimensions as paramvalue. You can
configure attributes of the parameter, such as which elements are fixed and which are estimated, and
lower and upper bounds.

p = idpar(paramname,paramvalue) sets the Name property of p to paramname.

Input Arguments
paramvalue

Initial parameter value.

paramvalue is a numeric scalar or array that determines both the dimensions and initial values of
the estimable parameter p. For example, p = idpar(eye(3)) creates a 3-by-3 parameter whose
initial value is the identity matrix.

paramvalue should be:

• A column vector of length Nx, the number of states to estimate, if you are using p for initial state
estimation.

• An Nx-by-Ne array, if you are using p for initial state estimation with multi-experiment data. Ne is
the number of experiments.

• A column vector of length Nu, the number of inputs to estimate, if you are using p for input level
estimation.

• An Nu-by-Ne array, if you are using p for input level estimation with multi-experiment data.

If the initial value of a parameter is unknown, use NaN.

paramname

Name property of p, specified as a character vector. For example, you can assign 'x0' as the name of
a parameter created for initial state estimation.

The Name property is not used in state estimation or input level estimation. You can optionally assign
a name for convenience.

Default: 'par'

 idpar

1-717

Output Arguments
p

Estimable parameter, specified as a param.Continuous object.

p can be either scalar- or array-valued. p takes its dimensions and initial value from paramvalue.

p contains the following fields:

• Value — Scalar or array value of the parameter.

The dimension and initial value of p.Value are taken from paramvalue when p is created.
• Minimum — Lower bound for the parameter value. When you use p in state estimation or input

value estimation, the estimated value of the parameter does not drop below p.Minimum.

The dimensions of p.Minimum must match the dimensions of p.Value.

For array-valued parameters, you can:

• Specify lower bounds on individual array elements. For example, p.Minimum([1 4]) = -5 .
• Use scalar expansion to set the lower bound for all array elements. For example,

p.Minimum = -5

Default: -Inf
• Maximum — Upper bound for the parameter value. When you use p in state estimation or input

value estimation, the estimated value of the parameter does not exceed p.Maximum.

The dimensions of p.Maximum must match the dimensions of p.Value.

For array-valued parameters, you can:

• Specify upper bounds on individual array elements. For example, p.Maximum([1 4]) = 5 .
• Use scalar expansion to set the upper bound for all array elements. For example,

p.Maximum = 5

Default: Inf
• Free — Boolean specifying whether the parameter is a free estimation variable.

The dimensions of p.Free must match the dimensions of p.Value. By default, all values are free
(p.Free = true).

If you want to estimate p.Value(k) , set p.Free(k) = true. To fix p.Value(k), set
p.Free(k) = false. Doing so allows you to control which states or input values are estimated
and which are not.

For array-valued parameters, you can:

• Fix individual array elements. For example, p.Free([1 4]) = false;
p.Free = [1 0; 0 1].

• Use scalar expansion to fix all array elements. For example, p.Free = false.

Default: true (1)

1 Functions

1-718

• Scale — Scaling factor for normalizing the parameter value.

p.Scale is not used in initial state estimation or input value estimation.

Default: 1
• Info — Structure array for storing parameter units and labels. The structure has Label and

Unit fields.

Use these fields for your convenience, to store parameter units and labels. For example,
p.Info(1,1).Unit = 'rad/m'; p.Info(1,1).Label = 'engine speed'.

The dimensions of p.Info must match the dimensions of p.Value.

Default: '' for both Label and Unit fields
• Name — Parameter name.

This property is read-only. It is set to the paramname input argument when you create the
parameter.

Default: ''

Examples

Create and Configure Parameter for State Estimation

Create and configure a parameter for estimating the initial state values of a 4-state system. Fix the
first state value to 1. Limit the second and third states to values between 0 and 1.

paramvalue = [1; nan(3,1)];
p = idpar('x0',paramvalue);
p.Free(1) = 0;
p.Minimum([2 3]) = 0;
p.Maximum([2 3]) = 1;

The column vector paramvalue specifies an initial value of 1 for the first state. paramvalue further
specifies unknown values for the remaining 3 states.

Setting p.Free(1) to false fixes p.Value(1) to 1. Estimation using p does not alter that value.

Setting p.Minimum and p.Maximum for the second and third entries in p limits the range that those
values can take when p is used in estimation.

You can now use p in initial state estimation, such as with the findstates command. For example,
use opt = findstatesOptions('InitialState',p) to create a findstates options set that
uses p. Then, call findstates with that options set.

Tips
Use idpar to create estimable parameters for:

• Initial state estimation for state-space model estimation (ssest), prediction (predict), and
forecasting (forecast)

 idpar

1-719

• Explicit initial state estimation with findstates
• Input level estimation for process model estimation with pem

Specifying estimable state values or input levels gives you explicit control over the behavior of
individual state values during estimation.

Version History
Introduced in R2012a

See Also
predict | findstates | findstatesOptions | forecast | ssest | pem

1 Functions

1-720

idPiecewiseLinear
Create a piecewise-linear nonlinearity estimator object

Syntax
NL = idPiecewiseLinear
NL = idPiecewiseLinear(Name,Value)

Description
NL = idPiecewiseLinear creates a default piecewise-linear nonlinearity estimator object with 10
break points for estimating Hammerstein-Wiener models. The value of the nonlinearity at the break
points are set to []. The initial value of the nonlinearity is determined from the estimation data range
during estimation using nlhw. Use dot notation to customize the object properties, if needed.

NL = idPiecewiseLinear(Name,Value) creates a piecewise-linear nonlinearity estimator object
with properties specified by one or more Name,Value pair arguments. The properties that you do not
specify retain their default value.

Object Description
idPiecewiseLinear is an object that stores the piecewise-linear nonlinearity estimator for
estimating Hammerstein-Wiener models.

Use idPiecewiseLinear to define a nonlinear function y = F(x, θ), where y and x are scalars, and θ
represents the parameters specifying the number of break points and the value of nonlinearity at the
break points.

The nonlinearity function, F, is a piecewise-linear (affine) function of x. There are n breakpoints
(xk,yk), k = 1,...,n, such that yk = F(xk). F is linearly interpolated between the breakpoints.

F is also linear to the left and right of the extreme breakpoints. The slope of these extensions is a
function of xi and yi breakpoints. The breakpoints are ordered by ascending x-values, which is
important when you set a specific breakpoint to a different value.

There are minor difference between the breakpoint values you set and the values stored in the object
because the toolbox has a different internal representation of breakpoints.

For example, in the following plot, the breakpoints are xk = [-2,1,4] and the corresponding
nonlinearity values are yk = [4,3,5].

 idPiecewiseLinear

1-721

The value F(x) is computed by evaluate(NL,x), where NL is the idPiecewiseLinear object.
When using evaluate, the break points have to be initialized manually.

For idPiecewiseLinear object properties, see “Properties” on page 1-723.

Examples

Create a Default Piecewise-Linear Nonlinearity Estimator

NL = idPiecewiseLinear;

Specify the number of break points.

NL.NumberOfUnits = 5;

Estimate a Hammerstein Model with Piecewise-Linear Nonlinearity

Load estimation data.

load twotankdata;
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);

1 Functions

1-722

Create an idPiecewiseLinear object, and specify the breakpoints.

InputNL = idPiecewiseLinear('BreakPoints',[-2,1,4]);

Since BreakPoints is specified as a vector, the specified vector is interpreted as the x-values of the
break points. The y-values of the break points are set to 0, and are determined during model
estimation.

Estimate model with no output nonlinearity.

sys = nlhw(z1,[2 3 0],InputNL,[]);

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify additional properties of the idPiecewiseLinear
nonlinearity. For example, NL= idPiecewiseLinear('NumberofUnits',5) creates a piecewise-
linear nonlinearity estimator object with 5 breakpoints.

Properties
idPiecewiseLinear object properties include:

NumberofUnits

Number of breakpoints, specified as an integer.

Default: 10

BreakPoints

Break points, xk, and the corresponding nonlinearity values at the breakpoints, yk, specified as one of
the following:

• 2-by-n matrix — The x and y values for each of the n break points are specified as [x1,x2,, xn;y1,
y2, ..., yn].

• 1-by-n vector — The specified vector is interpreted as the x values of the break points: x1,x2,, xn.
All the y values of the break points are set to 0.

When the nonlinearity object is created, the breakpoints are ordered by ascending x-values. This is
important to consider if you set a specific breakpoint to a different value after creating the object.

Default: []

 idPiecewiseLinear

1-723

Free

Option to fix or free the values in the mapping object, specified as a logical scalar. When you set an
element of Free to false, the object does not update during estimation.

Default: true

Output Arguments
NL — Piecewise-linear nonlinearity estimator object
idPiecewiseLinear object

Piecewise-linear nonlinearity estimator object, returned as an idPiecewiseLinear object.

Version History
Introduced in R2007a

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
nlhw | idnlhw

Topics
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

1 Functions

1-724

idpoly
Polynomial model with identifiable parameters

Description
An idpoly model represents a system as a continuous-time or discrete-time polynomial model with
identifiable (estimable) coefficients. Use idpoly to create a polynomial model or to convert “Dynamic
System Models” to polynomial form.

A polynomial model of a system with input vector u, output vector y, and disturbance e takes the
following form in discrete time:

A(q)y(t) = B(q)
F(q)u(t) + C(q)

D(q)e(t)

The variables A, B, C, D, and F are polynomials expressed with the time-shift operator q-1. For
instance, the A polynomial takes this form:

A(q) = 1 + a1q−1 + a2q−2 +⋯+ anaq−na

Here, na is the order of the A polynomial. q-1y(t) is equivalent to y(t-1).

For example, if A(q) = 1 + a1q-1 + a2q-2, then A(y(t)) = 1 + a1(t-1) + a2(t-2).

The C, D, and F polynomials take the same form as the A polynomial, starting with 1. The B
polynomial does not start with 1.

In continuous time, a polynomial model takes the following form:

A(s)Y(s) = B(s)
F(s)U(s) + C(s)

D(s)E(s)

U(s) contains the Laplace transformed inputs to sys. Y(s) contains the Laplace transformed outputs.
E(s) contains the Laplace transform of the disturbances for each output.

For idpoly models, the coefficients of the polynomials A, B, C, D, and F can be estimable
parameters. The idpoly model stores the values of these matrix elements in the A, B, C, D, and F
properties of the model.

Time-series models are special cases of polynomial models for systems without measured inputs. For
AR models, B and F are empty, and C and D are 1 for all outputs. For ARMA models, B and F are
empty, while D is 1.

Although idpoly supports continuous-time models, idtf and idproc enable more choices for
estimation of continuous-time models. Therefore, for most continuous-time applications, these other
model types are preferable.

For more information about polynomial models, see “What Are Polynomial Models?”

 idpoly

1-725

Creation
You can obtain an idpoly model in one of three ways.

• Estimate the idpoly model based on output or input-output measurements of a system by using
commands such as polyest, arx, armax, oe, bj, iv4, or ivar. These commands estimate the
values of the free polynomial coefficients. The estimated values are stored in the A, B, C, D, and F
properties of the resulting idpoly model. The Report property of the resulting model stores
information about the estimation, such as information on the handling of initial conditions and
options used in estimation.

When you obtain an idpoly model by estimation, you can extract estimated coefficients and their
uncertainties from the model using commands such as polydata, getpar, or getcov.

• Create an idpoly model using the idpoly command. You can create an idpoly model to
configure an initial parameterization for estimation of a polynomial model to fit measured
response data. When you do so, you can specify constraints on the polynomial coefficients. For
example, you can fix the values of some coefficients, or specify minimum or maximum values for
the free coefficients. You can then use the configured model as an input argument to polyest to
estimate parameter values with those constraints.

• Convert an existing dynamic system model to an idpoly model using the idpoly command.

Syntax
sys = idpoly(A,B,C,D,F,NoiseVariance,Ts)
sys = idpoly(A,B,C,D,F,NoiseVariance,Ts,Name,Value)

sys = idpoly(A)
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts)
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts,Name,Value)

sys = idpoly(sys0)
sys = idpoly(sys0,'split')

Description
Create Input-Output Polynomial Model

sys = idpoly(A,B,C,D,F,NoiseVariance,Ts) creates a polynomial model with identifiable
coefficients. A, B, C, D, and F specify the initial values of the coefficients. NoiseVariance specifies
the initial value of the variance of the white noise source. Ts is the model sample time.

sys = idpoly(A,B,C,D,F,NoiseVariance,Ts,Name,Value) creates a polynomial model using
additional options specified by one or more name-value pair arguments.
Create Time-Series Model

sys = idpoly(A) creates a time-series model with only an autoregressive term. In this case, sys
represents the AR model given by A(q) y(t) = e(t). The noise e(t) has variance 1. A specifies the initial
values of the estimable coefficients.

sys = idpoly(A,[],C,D,[],NoiseVariance,Ts) creates a time-series model with an
autoregressive and a moving average term. The inputs A, C, and D, specify the initial values of the
estimable coefficients. NoiseVariance specifies the initial value of the noise e(t). Ts is the model
sample time. (Omit NoiseVariance and Ts to use their default values.)

1 Functions

1-726

If D is set to [], then sys represents the ARMA model given by

A(q)y(t) = C(q)e(t)

sys = idpoly(A,[],C,D,[],NoiseVariance,Ts,Name,Value) creates a time-series model
using additional options specified by one or more name-value pair arguments.

Convert Dynamic System Model to Polynomial Model

sys = idpoly(sys0) converts the dynamic system model sys0 to idpoly model form. sys0 can
be any dynamic system model.

sys = idpoly(sys0,'split') converts sys0 to idpoly model form, and treats the last Ny input
channels of sys0 as noise channels in the returned model. sys0 must be a numeric tf, zpk, or ss
model object. Also, sys0 must have at least as many inputs as outputs.

Input Arguments

sys0 — Dynamic system
dynamic system model

Dynamic system, specified as a dynamic system model to convert to an idpoly model.

When sys0 is an identified model, its estimated parameter covariance is lost during conversion. If
you want to translate the estimated parameter covariance during the conversion, use
translatecov.

For the syntax sys = idpoly(sys0,'split'), sys0 must meet the following requirements.

• sys0 is a numeric tf, zpk, or ss model object.
• sys0 has at least as many inputs as outputs.
• The subsystem sys0(:,Ny+1:Nu) must be biproper.

Properties
A,B,C,D,F — Values of polynomial coefficients
[] | 1 | row vectors | array of row vectors

Values of the polynomial coefficients, specified as row vectors for SISO models or, for MIMO models,
cell arrays of row vectors that correspond to each of the A, B, C, D, and F polynomials. For each
polynomial, the coefficients are stored in the following order:

• Ascending powers of z–1 or q–1 (for discrete-time polynomial models).
• Descending powers of s or p (for continuous-time polynomial models).

The leading coefficients of A, C, D, and F are always 1.

For MIMO models with Ny outputs and Nu inputs, A, B, C, D, and F are cell arrays of row vectors. Each
entry in the cell array contains the coefficients of a particular polynomial that relates input, output,
and noise values.

 idpoly

1-727

Polynomial Dimension and Constraints Relation Described
A Ny-by-Ny cell array of row vectors

Leading coefficients:

• Diagonal entries — Fixed to 1
• Off-diagonal entries — Fixed to 0

A{i,j} contains coefficients that relate
the output yi to the output yj.

For example, for a two-output system, A is
a 2-by-2 cell array, such as:

A{1,1} = [1 .1]
A{1,2} = [0.4 -0.6]
A{2,1} = 0
A{2,2} = [1 0.2 0.3]

B,F Ny-by-Nu array of row vectors

Leading coefficients:

• B — Not constrained
• F — Fixed to 1

B{i,j} and F{i,j} contain coefficients
that relate the output yi to the input uj.

For example, for a two-output system, B
and F are 2-by-1 cell arrays, such as:

B{1,1} = [0.1 0.2]
B{2,1} = [0.5 0.3]
F{1,1} = [1 0.8]
F{2,1} = [1 0.4]

C,D Ny-by-1 array of row vectors

Leading coefficients:

• C — Fixed to 1
• D — Fixed to 1

C{i} and D{i} contain coefficients that
relate the output yi to the noise ei.

For example, for a two-output system, C
and D are 2-by-1 cell arrays, such as:

C{1,1} = [1 0.3]
C{2,1} = [1 0.5 0.3]
D{1,1} = [1 0.7]
D{2,1} = [1 0.1 0.2]

For a time series model (a model with no measured inputs), B = [] and F = [].

If you obtain an idpoly model sys by identification using a function such as polyest or arx, then
sys.A, sys.B, sys.C, sys.D, and sys.F contain the estimated values of the polynomial coefficients.

If you create an idpoly model sys using the idpoly command, sys.A, sys.B, sys.C, sys.D, and
sys.F contain the initial coefficient values that you specify with the A,B,C,D,F input arguments.
Use NaN for any coefficient whose initial value is not known. Use [] for any polynomial that is not
present in the model structure that you want to create. For example, to create an ARX model, use []
for C, D, and F. For an ARMA time series model, use [] for B and F. Default initial values when you
create an idpoly model are:

• B — []
• C — 1 for all outputs
• D — 1 for all outputs
• F — []

For an idpoly model sys, each property sys.A, sys.B, sys.C, sys.D, and sys.F is an alias of the
corresponding Value entry in the Structure property of sys. For example, sys.A is an alias of the
value of the property sys.Structure.A.Value.

1 Functions

1-728

Variable — Polynomial model display variable
's' (default) | 'p' | 'z^-1' | 'q^-1'

Polynomial model display variable, specified as one of the following values:

• 'z^-1' — Default for discrete-time models
• 'q^-1' — Equivalent to 'z^-1'
• 's' — Default for continuous-time models
• 'p' — Equivalent to 's'

The value of Variable is reflected in the display, and also affects the interpretation of the A, B, C, D,
and F coefficient vectors for discrete-time models. When Variable is set to 'z^-1' or 'q^-1', the
coefficient vectors are ordered as ascending powers of the variable.

IODelay — Transport delays
0 (default) | scalar | numeric array

Transport delays, specified as a numeric array containing a separate transport delay for each input-
output pair or as a scalar that applies the same delay to each input-output pair.

For continuous-time systems, transport delays are expressed in the time unit stored in the TimeUnit
property. For discrete-time systems, transport delays are expressed as integers denoting a delay of a
multiple of the sample time Ts.

For a MIMO system with Ny outputs and Nu inputs, IODelay is an Ny-by-Nu array. Each entry of this
array is a numerical value representing the transport delay for the corresponding input-output pair.
You can set IODelay to a scalar value to apply the same delay to all input-output pairs.

If you create an idpoly model sys using the idpoly command, sys.IODelay contains the initial
values of the transport delay that you specify with a name-value pair argument.

If you obtain an idpoly model sys by identification using a function such as polyest or arx, then
sys.IODelay contains the estimated values of the transport delay.

For an idpoly model sys, the property sys.IODelay is an alias for the value of the property
sys.Structure.IODelay.Value.

IntegrateNoise — Presence of integration on noise channels
logical vector of zeros (default) | logical vector

Logical vector denoting the presence or absence of integration on noise channels, specified as a
logical vector with length equal to the number of outputs.

IntegrateNoise(i) = true indicates that the noise channel for the ith output contains an
integrator. In this case, the corresponding D polynomial contains an additional term that is not
represented in the property sys.D. This integrator term is equal to 1/s for continuous-time systems
and 1/(1-z-1) for discrete-time systems.

Structure — Information about the estimable parameters
structure property values

Property-specific information about the estimable parameters of the idpoly model, specified as a
structure.

 idpoly

1-729

For a system with Ny outputs and Nu inputs, the dimensions of the Structure elements are as
follows:

• sys.Structure.A — Ny-by-Ny

• sys.Structure.B — Ny-by-Nu

• sys.Structure.C — Ny-by-1
• sys.Structure.D — Ny-by-1
• sys.Structure.F — Ny-by-Nu

sys.Structure.A, sys.Structure.B, sys.Structure.C, sys.Structure.D, and
sys.Structure.F contain information about the polynomial coefficients.
sys.Structure.IODelay contains information about the transport delay.
sys.Structure.IntegrateNoise contains information about the integration terms on the noise.
Each parameter in Structure contains the following fields.

Field Description Examples
Value Parameter values. Each

property is an alias of the
corresponding Value entry in
the Structure property of sys.
NaN represents unknown
parameter values.

sys.Structure.A.Value
contains the initial or estimated
values of the SISO A polynomial.
sys.A is an alias of the value of
this property. sys.A{i,j} is
the alias of the MIMO property
sys.Structure.A(i,j).Val
ue.

Minimum Minimum value that the
parameter can assume during
estimation

sys.Structure.IODelay.Mi
nimum = 0.1 constrains the
transport delay to values
greater than or equal to 0.1.
sys.Structure.IODelay.Mi
nimum must be greater than or
equal to zero.

Maximum Maximum value that the
parameter can assume during
estimation

Free Boolean specifying whether the
parameter is a free estimation
variable. If you want to fix the
value of a parameter during
estimation, set the
corresponding Free to false.
For fixed values, such as the
leading coefficients of the
values of A polynomial, which
are always equal to 1, the
corresponding value of Free is
always false.

If B is a 3-by-3
matrix,sys.Structure.B.Fre
e = eye(3) fixes all of the off-
diagonal entries in B to the
values specified in
sys.Structure.B.Value. In
this case, only the diagonal
entries in B are estimable.

Scale Scale of the value of the
parameter. The estimation
algorithm does not use Scale.

1 Functions

1-730

Field Description Examples
Info Structure array that contains

the fields Label and Unit for
storing parameter labels and
units. Specify parameter labels
and units as character vectors.

Example: 'Time'

An inactive polynomial, such as the B polynomial in a time series model, is not available as a
parameter in the Structure property. For example, sys = idpoly([1 -0.2 0.5]) creates an AR
model. sys.Structure contains the fields sys.Structure.A and
sys.Structure.IntegrateNoise. However, there is no field in Structure corresponding to B, C,
D, F, or IODelay.

NoiseVariance — Variance of model innovations
positive scalar | matrix

Variance (covariance matrix) of the model innovations e, specified as a scalar or a positive
semidefinite matrix.

• SISO model — Scalar
• MIMO model with Ny outputs — Ny-by-Ny positive semidefinite matrix

An identified model includes a white Gaussian noise component e(t). NoiseVariance is the variance
of this noise component. Typically, the model estimation function (such as polyest) determines this
variance.

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results for a state-space
model obtained using estimation commands, such as polyest, armax, oe, and bj. Use Report to
find estimation information for the identified model, including:

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit and other quality metrics

If you create the model by construction, the contents of Report are irrelevant.

m = idpoly({[1 0.5]},{[1 5]},{[1 0.01]});
m.Report.OptionsUsed

ans =

 []

If you obtain the model using estimation commands, the fields of Report contain information on the
estimation data, options, and results.

 idpoly

1-731

load iddata2 z2;
m = polyest(z2,[2 2 3 3 2 1]);
m.Report.OptionsUsed

Option set for the polyest command:

 InitialCondition: 'auto'
 Focus: 'prediction'
 EstimateCovariance: 1
 Display: 'off'
 InputOffset: []
 OutputOffset: []
 Regularization: [1x1 struct]
 SearchMethod: 'auto'
 SearchOptions: [1x1 idoptions.search.identsolver]
 Advanced: [1x1 struct]

For more information on this property and how to use it, see the Output Arguments section of the
corresponding estimation command reference page and “Estimation Report”.

InputDelay — Input delay for each input channel
0 (default) | scalar | vector

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time
systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sample time Ts. For example, setting
InputDelay to 3 specifies a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

In estimation, InputDelay is a fixed constant of the model. The software uses the IODelay property
for estimating time delays. To specify initial values and constraints for estimation of time delays, use
sys.Structure.IODelay.

OutputDelay — Output delay for each output channel
0 (default)

This property is read-only.

Output delay for each output channel, specified as 0. This value is fixed for identified systems such as
idpoly.

Ts — Sample Time
-1 (default) | 0 | positive scalar

Sample time, specified as one of the following.

• Discrete-time model with an unspecified sample time — -1
• Continuous-time model — 0
• Discrete-time model with a specified sampling time — Positive scalar representing the sampling

period expressed in the unit specified by the TimeUnit property of the model

1 Functions

1-732

Changing this property does not discretize or resample the model. Use c2d and d2c to convert
between continuous- and discrete-time representations. Use d2d to change the sample time of a
discrete-time system.

TimeUnit — Units for time variable
'seconds' (default) | 'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' |
'hours' | 'days' | 'weeks' | 'months' | 'years'

Units for the time variable, the sample time Ts, and any time delays in the model, specified as a
scalar.

Changing this property does not resample or convert the data. Modifying the property changes only
the interpretation of the existing data. Use chgTimeUnit to convert data to different time units

InputName — Input channel names
'' (default) | character vector | cell array

Input channel names, specified as a character vector or cell array.

• Single-input model — Character vector, for example, 'controls'
• Multi-input model — Cell array of character vectors

Alternatively, use automatic vector expansion to assign input names for multi-input models. For
example, if sys is a two-input model, enter the following:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

When you estimate a model using an iddata object data, the software automatically sets
InputName to data.InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

You can use input channel names in several ways, including:

• To identify channels on model display and plots.
• To extract subsystems of MIMO systems.
• To specify connection points when interconnecting models.

InputUnit — Input channel units
'' (default) | character vector | cell array

Input channel units, specified as a character vector or cell array:

• Single-input model — Character vector
• Multi-input Model — Cell array of character vectors

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.

InputGroup — Input channel groups
structure with no fields (default) | structure

 idpoly

1-733

Input channel groups, specified as a structure. The InputGroup property lets you divide the input
channels of MIMO systems into groups so that you can refer to each group by name. In the
InputGroup structure, set field names to the group names, and field values to the input channels
belonging to each group.

For example, create input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively.

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

You can then extract the subsystem from the controls inputs to all outputs using the following
syntax:

sys(:,'controls')

OutputName — Output channel names
'' (default) | character vector | cell array

Output channel names, specified as a character vector or cell array.

• Single-input model — Character vector, for example, 'measurements'
• Multi-input model — Cell array of character vectors

Alternatively, use automatic vector expansion to assign output names for multi-output models. For
example, if sys is a two-output model, enter the following:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

When you estimate a model using an iddata object data, the software automatically sets
OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

You can use output channel names in several ways, including:

• To identify channels on model display and plots.
• To extract subsystems of MIMO systems.
• To specify connection points when interconnecting models.

OutputUnit — Output channel units
'' (default) | character vector | cell array

Output channel units, specified as a character vector or cell array.

• Single-input model — Character vector, for example, 'seconds'
• Multi-input Model — Cell array of character vectors

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

OutputGroup — Output channel groups
struct with no fields (default) | struct

1 Functions

1-734

Output channel groups, specified as a structure. The OutputGroup property lets you divide the
output channels of MIMO systems into groups and refer to each group by name. In the OutputGroup
structure, set field names to the group names, and field values to the output channels belonging to
each group.

For example, create output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively.

sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];

You can then extract the subsystem from all inputs to the measurement outputs using the following
syntax:

sys('measurement',:)

Name — System name
'' (default) | character vector

System name, specified as a character vector, for example, 'system_1'.

Notes — Text to associate with system
0-by-1 string (default) | string | string array | character vector

Any text that you want to associate with the system, specified as a string.

• For a single note, specify Notes as a string or a character vector
• For multiple notes, specify Notes as a string array.

The property preserves the string or character data type that you specify. When you specify a
character vector, the software packages the character vector in a 1-by-1 cell array.

For example, if sys1, sys2, and sys3 are dynamic system models, you can set their Notes
properties as follows.

sys1.Notes = "sys1 has a string.";
sys2.Notes = ["sys2 has a first string";"sys3 has a second string"];
sys3.Notes = 'sys3 has a character vector.';
sys1.Notes
sys2.Notes
sys3.Notes

ans =

 "sys1 has a string."

ans =

 2×1 string array

 "sys2 has a first string"
 "sys2 has a second string"

ans =

 1×1 cell array

 idpoly

1-735

 {'sys3 has a character vector'}

UserData — Data to associate with system
[] (default) | any MATLAB data type

Data to associate with the system, specified as any MATLAB data type.

SamplingGrid — Sampling grid
[] (default) | structure

Sampling grid for model arrays, specified as a structure.

For arrays of identified linear (IDLTI) models that you derive by sampling one or more independent
variables, this property tracks the variable values associated with each model. This information
appears when you display or plot the model array. Use this information to trace results back to the
independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values
to the sampled variable values associated with each model in the array. All sampling variables must
be numeric and scalar valued, and all arrays of sampled values must match the dimensions of the
model array.

For example, suppose that you collect data at various operating points of a system. You can identify a
model for each operating point separately and then stack the results together into a single system
array. You can tag the individual models in the array with information regarding the operating point.

nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)

Here, sys is an array containing three identified models obtained at 1000, 5000, and 10000 rpm,
respectively.

For model arrays that you generate by linearizing a Simulink model at multiple parameter values or
operating points, the software populates SamplingGrid automatically with the variable values that
correspond to each entry in the array.

Object Functions
In general, any function applicable to “Dynamic System Models” is applicable to an idpoly model
object. These functions are of four general types.

• Functions that operate and return idpoly model objects enable you to transform and manipulate
idpoly models. For instance:

• Use merge to merge estimated idpoly models.
• Use c2d to convert an idpoly model from continuous to discrete time. Use d2c to convert an

idpoly model from discrete to continuous time.
• Functions that perform analytical and simulation functions on idpoly models, such as bode and

sim
• Functions that retrieve or interpret model information, such as advice and getpar
• Functions that convert idpoly models into a different model type, such as idtf for time domain

or idfrd for frequency domain

1 Functions

1-736

The following lists contain a representative subset of the functions that you can use with idpoly
models.

Transformation and Manipulation
translatecov Translate parameter covariance across model transformation operations
setpar Set attributes such as values and bounds of linear model parameters
chgTimeUnit Change time units of dynamic system
d2d Resample discrete-time model
d2c Convert model from discrete to continuous time
c2d Convert model from continuous to discrete time
merge Merge estimated models

Analysis and Simulation
sim Simulate response of identified model
predict Predict state and state estimation error covariance at next time step using extended or

unscented Kalman filter, or particle filter
compare Compare identified model output with measured output
impulse Impulse response plot of dynamic system; impulse response data
step Step response plot of dynamic system; step response data
bode Bode plot of frequency response, or magnitude and phase data

Information Extraction and Interpretation
tfdata Access transfer function data
get Access model property values
getpar Obtain attributes such as values and bounds of linear model parameters
getcov Parameter covariance of identified model
advice Analysis and recommendations for data or estimated linear models

Conversion to Other Model Structures
idtf Transfer function model with identifiable parameters
idss State-space model with identifiable parameters
idfrd Frequency response data or model

Examples

Create Polynomial Model

Create an idpoly model representing the single-input, single-output ARMAX model described by the
following equation:

y t + 0 . 5y = u t + 5u t − 1 + 2u t − 2 + e t + 0 . 01e t − 1

y is the output, u is the input, and e is the white-noise disturbance on y.

To create the idpoly model, define the A, B, and C polynomials that describe the relationships
between the output, input, and noise values, respectively. Because there are no denominator terms in
the system equation, D and F are 1.

 idpoly

1-737

A = [1 0.5];
B = [1 5 2];
C = [1 0.01];

Create an idpoly model with the specified coefficients.

sys = idpoly(A,B,C)

sys =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
 A(z) = 1 + 0.5 z^-1

 B(z) = 1 + 5 z^-1 + 2 z^-2

 C(z) = 1 + 0.01 z^-1

Sample time: unspecified

Parameterization:
 Polynomial orders: na=1 nb=3 nc=1 nk=0
 Number of free coefficients: 5
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The display shows all the polynomials and allows you to verify them. The display also states that there
are five free coefficients.

Create an idpoly model with specified noise variance nv and sample time Ts. To do so, you must
also include values of 1 for D and F.

Ts = 0.1;
nv = 0.01;
sys = idpoly(A,B,C,1,1,nv,Ts)

sys =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
 A(z) = 1 + 0.5 z^-1

 B(z) = 1 + 5 z^-1 + 2 z^-2

 C(z) = 1 + 0.01 z^-1

Sample time: 0.1 seconds

Parameterization:
 Polynomial orders: na=1 nb=3 nc=1 nk=0
 Number of free coefficients: 5
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The display shows a sample time of 0.1 seconds.

Specify an input-output delay iod of one sample when you create an idpoly model.

1 Functions

1-738

iod = 1;
sys = idpoly(A,B,C,1,1,nv,Ts,'IODelay',1)

sys =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
 A(z) = 1 + 0.5 z^-1

 B(z) = 1 + 5 z^-1 + 2 z^-2

 C(z) = 1 + 0.01 z^-1

Input delays (listed by channel): 1
Sample time: 0.1 seconds

Parameterization:
 Polynomial orders: na=1 nb=3 nc=1 nk=0
 Number of free coefficients: 5
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The display shows an input delay of one sample.

You can use sys to specify an initial parameterization for estimation with commands such as
polyest or armax.

Create Polynomial Time-Series Model

Create an idpoly model representing the single-output ARMA model described by the following
equation:

y t + 0 . 5y = e t + 0 . 01e t − 1

Because a time series has no measured inputs, this model contains only A and C polynomials.

A = [1 0.5];
C = [1 0.01];

Create a discrete-time time-series model without specifying a sample time.

sys = idpoly(A,[],C)

sys =
Discrete-time ARMA model: A(z)y(t) = C(z)e(t)
 A(z) = 1 + 0.5 z^-1

 C(z) = 1 + 0.01 z^-1

Sample time: unspecified

Parameterization:
 Polynomial orders: na=1 nc=1
 Number of free coefficients: 2

 idpoly

1-739

 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The display reflects your specifications.

Create a continuous-time time-series by specifying a sample time of 0 for the name-value pair
argument 'Ts'.

sys = idpoly(A,[],C,'Ts',0)

sys =
Continuous-time ARMA model: A(s)y(t) = C(s)e(t)
 A(s) = s + 0.5

 C(s) = s + 0.01

Parameterization:
 Polynomial orders: na=1 nc=1
 Number of free coefficients: 2
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

You can also set the sample time using the Ts input argument rather than the name-value pair
argument, but the syntax is more complex. You must specify the D value as 1 or empty, and set both
the F position and the noise variance position (if you are not specifying noise variance) to empty.

Ts = 0;
sys = idpoly(A,[],C,1,[],[],Ts)

sys =
Continuous-time ARMA model: A(s)y(t) = C(s)e(t)
 A(s) = s + 0.5

 C(s) = s + 0.01

Parameterization:
 Polynomial orders: na=1 nc=1
 Number of free coefficients: 2
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

Multi-Output ARMAX Model

Create an idpoly model representing the one-input, two-output ARMAX model described by the
following equations:

1 Functions

1-740

y1 t + 0 . 5y1 t − 1 + 0 . 9y2 t − 1 + 0 . 1y2 t − 2 =
u t + 5u t − 1 + 2u t − 2 + e1 t + 0 . 01e1 t − 1

y2 t + 0 . 05y2 t − 1 + 0 . 3y2 t − 2 =
10u t − 2 + e2 t + 0 . 1e2 t − 1 + 0 . 02e2 t − 2 .

y1 and y2 are the two outputs, and u is the input. e1 and e2 are the white noise disturbances on the
outputs y1 and y2, respectively.

To create the idpoly model, define the A, B, and C polynomials that describe the relationships
between the outputs, inputs, and noise values. (Because there are no denominator terms in the
system equations, D and F are 1.)

Define the cell array containing the coefficients of the A polynomials.

A = cell(2,2);
A{1,1} = [1 0.5];
A{1,2} = [0 0.9 0.1];
A{2,1} = [0];
A{2,2} = [1 0.05 0.3];

You can read the values of each entry in the A cell array from the left side of the equations describing
the system. For example, A{1,1} describes the polynomial that gives the dependence of y1 on itself.
This polynomial is A11 = 1 + 0 . 5q−1, because each factor of q−1 corresponds to a unit time
decrement. Therefore, A{1,1} = [1 0.5], giving the coefficients of A11 in increasing exponents of
q−1.

Similarly, A{1,2} describes the polynomial that gives the dependence of y1 on y2. From the
equations, A12 = 0 + 0 . 9q−1 + 0 . 1q−2. Thus, A{1,2} = [0 0.9 0.1].

The remaining entries in A are similarly constructed.

Define the cell array containing the coefficients of the B polynomials.

B = cell(2,1);
B{1,1} = [1 5 2];
B{2,1} = [0 0 10];

B describes the polynomials that give the dependence of the outputs y1 and y2 on the input u. From
the equations, B11 = 1 + 5q−1 + 2q−2. Therefore, B{1,1} = [1 5 2].

Similarly, from the equations, B21 = 0 + 0q−1 + 10q−2. Therefore, B{2,1} = [0 0 10].

Define the cell array containing the coefficients of the C polynomials.

C = cell(2,1);
C{1,1} = [1 0.01];
C{2,1} = [1 0.1 0.02];

C describes the polynomials that give the dependence of the outputs y1 and y2 on the noise terms e1
and e2. The entries of C can be read from the equations similarly to those of A and B.

Create an idpoly model with the specified coefficients.

 idpoly

1-741

sys = idpoly(A,B,C)

sys =
Discrete-time ARMAX model:
 Model for output number 1: A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + C(z)e_1(t)
 A(z) = 1 + 0.5 z^-1

 A_2(z) = 0.9 z^-1 + 0.1 z^-2

 B(z) = 1 + 5 z^-1 + 2 z^-2

 C(z) = 1 + 0.01 z^-1

 Model for output number 2: A(z)y_2(t) = B(z)u(t) + C(z)e_2(t)
 A(z) = 1 + 0.05 z^-1 + 0.3 z^-2

 B(z) = 10 z^-2

 C(z) = 1 + 0.1 z^-1 + 0.02 z^-2

Sample time: unspecified

Parameterization:
 Polynomial orders: na=[1 2;0 2] nb=[3;1] nc=[1;2]
 nk=[0;2]
 Number of free coefficients: 12
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The display shows all the polynomials and allows you to verify them. The display also states that there
are 12 free coefficients. Leading terms of diagonal entries in A are always fixed to 1. Leading terms of
all other entries in A are always fixed to 0.

You can use sys to specify an initial parameterization for estimation with commands such as
polyest or armax.

Convert Transfer Function Model into Polynomial Model

Model a dynamic system using a transfer function. Then use idpoly to convert the transfer-function
model into polynomial form.

Using idtf, construct the continuous-time, single-input, single-output (SISO) transfer function model
described by the following equation:

G s = s + 4
s2 + 20s + 5

num = [1 4];
den = [1 20 5];
G = idtf(num,den)

G =
 s + 4

1 Functions

1-742

 s^2 + 20 s + 5

Continuous-time identified transfer function.

Parameterization:
 Number of poles: 2 Number of zeros: 1
 Number of free coefficients: 4
 Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

Convert the transfer function into polynomial form.

sys = idpoly(G)

sys =
Continuous-time OE model: y(t) = [B(s)/F(s)]u(t) + e(t)
 B(s) = s + 4

 F(s) = s^2 + 20 s + 5

Parameterization:
 Polynomial orders: nb=2 nf=2 nk=0
 Number of free coefficients: 4
 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The display shows the polynomial form and the polynomial coefficients.

Version History
Introduced before R2006a

See Also
polydata | arx | armax | bj | oe | ar | polyest | setPolyFormat | idss | idproc | idtf | iv4 |
ivar | translatecov

Topics
“Dynamic System Models”
“What Are Polynomial Models?”
“Estimate Polynomial Models in the App”
“Estimate Polynomial Models at the Command Line”
“Polynomial Sizes and Orders of Multi-Output Polynomial Models”

 idpoly

1-743

idPolynomial1D
Class representing single-variable polynomial nonlinear estimator for Hammerstein-Wiener models

Syntax
t=idPolynomial1D('Degree',n)
t=idPolynomial1D('Coefficients',C)
t=idPolynomial1D(n)

Description
idPolynomial1D is an object that stores the single-variable polynomial nonlinear estimator for
Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

t=idPolynomial1D('Degree',n) creates a polynomial nonlinearity estimator object of nth
degree.

t=idPolynomial1D('Coefficients',C) creates a polynomial nonlinearity estimator object with
coefficients C.

t=idPolynomial1D(n) a polynomial nonlinearity estimator object of nth degree.

Use evaluate(p,x) to compute the value of the function defined by the idPolynomial1D object p
at x.

idPolynomial1D Properties
After creating the object, you can use get or dot notation to access the object property values. For
example:

% List all property values
get(p)
% Get value of Coefficients property
p.Coefficients

Property Name Description
Degree Positive integer specifies the degree of the polynomial

Default=1.

For example:

idPolynomial1D('Degree',3)

Coefficients 1-by-(n+1) matrix containing the polynomial coefficients.
Free Option to fix or free the values in the mapping object. When you set Free to

false, the object does not update during estimation.

1 Functions

1-744

Examples
Use idPolynomial1D to specify the single-variable polynomial nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,idPolynomial1D('deg',3),[]);

where 'deg' is an abbreviation for the property 'Degree'.

Tips
Use idPolynomial1D to define a nonlinear function y = F(x), where F is a single-variable polynomial
function of x:

F(x) = c(1)xn + c(2)x(n− 1) + … + c(n)x + c(n + 1)

Version History
Introduced in R2007b

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
nlhw | idnlhw

 idPolynomial1D

1-745

Topics
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

1 Functions

1-746

idproc
Continuous-time process model with identifiable parameters

Description
An idproc model represents a system as a continuous-time process model with estimable
coefficients. Use idproc to create a process model.

A simple SISO process model has a gain, a time constant, and a delay:

sys =
Kp

1 + Tp1se−Tds .

Kp is a proportional gain, Tp1 is the time constant of the real pole, and Td is the transport delay (dead
time).

More generally, idproc can represent process models with up to three poles and one zero:

sys = Kp
1 + Tzs

1 + Tp1s 1 + Tp2s 1 + Tp3s e−Tds .

Two of the poles can be a complex conjugate (underdamped) pair. In that case, the general form of
the process model is:

sys = Kp
1 + Tzs

1 + 2ζTωs + Tωs 2 1 + Tp3s
e−Tds .

Tω is the time constant of the complex pair of poles and ζ is the associated damping constant.

In addition, any idproc model can have an integrator. For example, the following is a process model
that you can represent with idproc:

sys = Kp
1

s 1 + 2ζTωs + Tωs 2 e−Tds .

This model has no zero (Tz = 0) and a complex pair of poles. The model also has an integrator,
represented by the 1/s term.

For idproc models, all the time constants, the delay, the proportional gain, and the damping
coefficient can be estimable parameters. The idproc model stores the values of these parameters in
properties of the model such as Kp, Tp1, and Zeta. (See “Properties” on page 1-749 for more
information.)

A MIMO process model contains a SISO process model corresponding to each input/output pair in the
system. For idproc models, the form of each input/output pair can be independently specified. For
example, a two-input, one-output process can have one channel with two poles and no zero, and
another channel with a zero, a pole, and an integrator. All the coefficients are independently
estimable parameters.

 idproc

1-747

Creation
There are two ways to obtain an idproc model:

• Estimate the idproc model based on input/output measurements of a system using the procest
command. procest estimates the values of the free parameters, such as gain, time constants, and
time delay. The estimated values are stored as properties of the resulting idproc model. For
example, the properties sys.Tz and sys.Kp of an idproc model sys store the zero time
constant and the proportional gain, respectively. The Report property of the resulting model
stores information about the estimation, such as handling of initial conditions and options used in
estimation. For example, you can use the following commands to estimate and get information
about a first-order process model.

sys = procest(data,"P1");
kp = sys.Kp
sys.Report

For more information about idproc properties, see “Properties” on page 1-749.

When you obtain an idproc model by estimation, you can extract estimated coefficients and their
uncertainties from the model using commands such as getpar and getcov.

• Create an idproc model using the idproc command.

You can create an idproc model to configure an initial parameterization for estimation of a
process model. When you do so, you can specify constraints on the parameters. For example, you
can fix the values of some coefficients or specify minimum or maximum values for the free
coefficients. You can then use the configured model as an input argument to procest to estimate
parameter values with those constraints. For example, fix the value of Tp1 to 1 and constrain the
value of Kp1 to a range of [0.3 0.6].

init_sys.Structure.Tp1 = 1;
init_sys.Structure.Tp1.Free = False;
init_sys.Structure.Kp1.Min = 0.3;
init_sys.Structure.Kp1.Max = 0.6;
sys = procest(data,init_sys)

For more information about configuring and using an initial parameterization, see procest.

For information on functions you can use to extract information from or transform idproc model
objects, see “Object Functions” on page 1-758.

Syntax
sys = idproc(Type)
sys = idproc(Type,Name,Value)

Description

sys = idproc(Type) creates a continuous-time process model with estimable parameters and sets
the Type property. Type specifies aspects of the model structures, such as the number of poles in the
model, whether the model includes an integrator, and whether the model includes a time delay.

sys = idproc(Type,Name,Value) creates a process model with properties specified by one or
more name-value arguments.

1 Functions

1-748

Properties
Type — Model structure
character vector (default) | string | cell array of character vectors | cell array of strings

Model structure, specified as a character vector, string, or cell array of character vectors or strings.

For a SISO model sys, the property sys.Type contains a character vector or string specifying the
structure of the system. For example, 'P1D' specifies a process model with one pole and a time delay.

For a MIMO model with Ny outputs and Nu inputs, sys.Type is an Ny-by-Nu cell array of character
vectors or strings specifying the structure of each input/output pair in the model. For example,
Type{i,j} specifies the structure of the subsystem sys(i,j) from the jth input to the ith output.

The Type specifications are made up of one or more of the following characters that specify aspects
of the model structure:

Characters Meaning
Pk A process model with k poles (not including an integrator). k is 0, 1, 2, or 3.
Z The process model includes a zero (Tz ≠ 0). A type with P0 cannot include Z

(a process model with no poles cannot include a zero).
D The process model includes a time delay (dead time).
I The process model includes an integrator (1/s).
U The process model is underdamped. In this case, the process model includes

a complex pair of poles

Every Type specification must begin with one of P0, P1, P2, or P3. All other characters are optional.
For example:

• 'P1D' specifies a process model with one pole and a dead-time term:

sys =
Kp

1 + Tp1se−Tds .

Kp, Tp1, and Td are the estimable parameters of this model.
• 'P2U' creates a process model with a pair of complex poles:

sys =
Kp

1 + 2ζTωs + Tωs 2 .

Kp, Tw, and Zeta are the estimable parameters of this model.
• 'P3ZDI' creates a process model with three poles. All poles are real, because U is not included.

The model also includes a zero, a time delay, and an integrator:

sys = Kp
1 + Tzs

s 1 + Tp1s 1 + Tp2s 1 + Tp3s e−Tds .

The estimable parameters of this model are Kp, Tz, Tp1, Tp2, Tp3, and Td.

The values of all parameters in a particular model structure are initialized to NaN. You can change
them to finite values by setting the values of the corresponding idproc model properties after you

 idproc

1-749

create the model. For example, sys.Td = 5 sets the initial value of the time delay of sys to 5 time
units.

For a MIMO process model with Ny outputs and Nu inputs, type is an Ny-by-Nu cell array of
character vectors or strings specifying the structure of each input/output pair in the model. For
example, type{i,j} specifies the type of the subsystem sys(i,j) from the jth input to the yth
output.

If you create an idproc model sys using the idproc command, sys.Type contains the model
structure that you specify with the Type input argument.

If you obtain an idproc model by identification using procest, then sys.Type contains the model
structures that you specified for that identification.

In general, you cannot change the type of an existing model. However, you can change whether the
model contains an integrator by using the property sys.Integration.

For examples of specifying Type for different model structures, see:

• “Create SISO Process Model with Complex Poles and Time Delay” on page 1-759
• “Create a MIMO Process Model” on page 1-760
• “Create Array of Process Models” on page 1-761

Example: type = idproc("P2DU")
Example: type = {"P2ZDI";"P2Z";"P2ZI"}; sys = idproc(type)

Kp,Tp1,Tp2,Tp3,Tz,Tw,Zeta,Td — Values of process model parameters
NaNs (default) | numeric scalars | cell arrays | 0s

Values of process model parameters, specified as NaNs, numeric scalars, cell arrays, or 0s. If you use
the idproc command to create an idproc model with a model structure that you specify with Type,
the values of all parameters present in the model structure initialize by default to NaN. The values of
parameters not present in the model structure are fixed to 0. For example, if you create a model sys
of type 'P1D', then Kp, Tp1, and Td are initialized to NaN and are identifiable (free) parameters. All
remaining parameters, such as Tp2 and Tz, are inactive in the model. The values of inactive
parameters are fixed to zero and cannot be changed.

For a MIMO model with Ny outputs and Nu inputs, each parameter value is an Ny-by-Nu cell array of
character vectors or strings specifying the corresponding parameter value for each input/output pair
in the model. For example, sys.Kp(i,j) specifies the Kp value of the subsystem sys(i,j) from the
jth input to the ith output.

For an idproc model sys, each parameter value property such as sys.Kp, sys.Tp1, sys.Tz, and
the others is an alias to the corresponding Value entry in the Structure property of sys. For
example, sys.Tp3 is an alias to the value of the property sys.Structure.Tp3.Value.

Integration — Integrator presence
logical value | logical matrix

Integrator presence indicator, specified as a logical value or matrix that denotes the presence or
absence of an integrator in the transfer function of the process model.

For a SISO model sys, sys.Integration = true if the model contains an integrator.

1 Functions

1-750

For a MIMO model, sys.Integration(i,j) = true if the transfer function from the jth input to
the ith output contains an integrator.

When you create a process model using theidproc command, the value of sys.Integration is
determined by whether the corresponding type contains I.

NoiseTF — Coefficients of noise transfer function
structure

Coefficients of the noise transfer function, specified as a structure of the form struct('num',
{num2cell(ones(Ny,1))},'den',{num2cell(ones(Ny,1))}). sys.NoiseTF stores the
coefficients of the numerator and the denominator polynomials for the noise transfer function H(s) =
N(s)/D(s).

sys.NoiseTF is a structure with fields num and den. Each field is a cell array of Ny row vectors,
where Ny is the number of outputs of sys. These row vectors specify the coefficients of the noise
transfer function numerator and denominator in order of decreasing powers of s.

Typically, the noise transfer function is automatically computed by the estimation function procest.
You can specify a noise transfer function that procest uses as an initial value. For example:

NoiseNum = {[1 2.2]; [1 0.54]};
NoiseDen = {[1 1.3]; [1 2]};
NoiseTF = struct("num", {NoiseNum}, "den", {NoiseDen});
sys = idproc({"p2"; "p1di"}); % 2-output, 1-input process model
sys.NoiseTF = NoiseTF;

Each vector in sys.NoiseTF.num and sys.NoiseTF.den must be of length 3 or less (second-order
in s or less). Each vector must start with 1. The length of a numerator vector must be equal to that of
the corresponding denominator vector, so that H(s) is always biproper.

Structure — Information about estimable parameters
structure

Property-specific information about the estimable parameters of the idproc model, specified as a
structure.

sys.Structure includes one entry for each parameter in the model structure of sys. For example,
if sys is of type 'P1D', then sys includes estimable parameters Kp, Tp1, and Td. Correspondingly,
sys.Structure.Kp, sys.Structure.Tp1, and sys.Structure.Td contain information about
each of these parameters, respectively.

Each of these parameter entries in sys.Structure contains the following fields.

 idproc

1-751

Field Description Examples
Value Parameter values sys.Structure.Kp.Value

contains the initial or estimated
values of the Kp parameter. In
the SISO case, sys.Kp is an
alias of the value of this
property. In the MIMO case,
sys.Kp{i,j} is the alias of the
property
sys.Structure(i,j).Kp.Va
lue.

Minimum Minimum value that the
parameter can assume during
estimation.

sys.Structure.Kp.Minimum
= 1 constrains the proportional
gain to values greater than or
equal to 1.

Maximum Maximum value that the
parameter can assume during
estimation.

sys.Structure.Kp.Maximum
= 2 constrains the proportional
gain to values less than or equal
to 2.

Free Boolean specifying whether the
parameter is a free estimation
variable. If you want to fix the
value of a parameter during
estimation, set the
corresponding Free value to
false.

The following commands fix the
dead time Td to 5.

sys.Td = 5;
sys.Structure.Td.Free = false;

Scale Scale of the value of the
parameter. The estimation
algorithm does not use Scale.

Info Structure array that contains
the fields Label and Unit for
storing parameter labels and
units. Specify parameter labels
and units as character vectors.

sys.Structure.Td.Info =
struct("Label","Delay","
Unit","seconds") stores the
label and units for the delay Td
in seconds.

Structure also includes a field Integration that stores a logical array indicating whether each
corresponding process model has an integrator. sys.Structure.Integration is an alias to
sys.Integration.

For a MIMO model with Ny outputs and Nu input, Structure is an Ny-by-Nu array. The element
Structure(i,j) contains information corresponding to the process model for the (i,j) input/
output pair.

NoiseVariance — Variance of model innovations
positive scalar | matrix

Variance (covariance matrix) of the model innovations e, specified as a scalar or a positive
semidefinite matrix.

• SISO model — Scalar

1 Functions

1-752

• MIMO model with Ny outputs — Ny-by-Ny positive semidefinite matrix

An identified model includes a white Gaussian noise component e(t). NoiseVariance is the variance
of this noise component. Typically, the model estimation function (such as procest) determines this
variance.

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results when the process
model is obtained using the procest estimation command. Use Report to query a model for how it
was estimated, including its:

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit and other quality metrics

If you create the model by construction, the contents of Report are irrelevant.

m = idproc("P2DU");
m.Report.OptionsUsed

ans =

 []

If you obtain the process model using estimation commands, the fields of Report contain information
on the estimation data, options, and results.

load iddata2 z2;
m = procest(z2,"P2DU");
m.Report.OptionsUsed

DisturbanceModel: 'estimate'
 InitialCondition: 'auto'
 Focus: 'prediction'
 EstimateCovariance: 1
 Display: 'off'
 InputOffset: [1x1 param.Continuous]
 OutputOffset: []
 Regularization: [1x1 struct]
 SearchMethod: 'auto'
 SearchOptions: [1x1 idoptions.search.identsolver]
 OutputWeight: []
 Advanced: [1x1 struct]

For more information on this property and how to use it, see the Output Arguments section of the
corresponding estimation command reference page and “Estimation Report”.

InputDelay — Input delay for each input channel
0 (default) | scalar | vector

 idproc

1-753

Input delay for each input channel, specified as a scalar value or numeric vector. Specify input delays
in the time unit stored in the TimeUnit property.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels. Note that
InputDelay is separate from the Td dynamic property, which represents estimable IO delays.
InputDelay is not an estimable parameter. The total delay corresponds to a sum of these property
values.

OutputDelay — Output delay for each output channel
0 (default)

For identified systems such as idproc, OutputDelay is fixed to zero.

Ts — Sample time
0

Sample time. For idproc, Ts is fixed to zero because all idproc models are continuous time.

TimeUnit — Model time units
'seconds' (default) | 'minutes' | 'milliseconds' | ...

Model time units, specified as one of these values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

You can specify TimeUnit using a string, such as "hours", but the time units are stored as a
character vector, 'hours'.

Model properties such as sample time Ts, InputDelay, OutputDelay, and other time delays are
expressed in the units specified by TimeUnit. Changing this property has no effect on other
properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between
time units without modifying system behavior.

InputName — Names of input channels
{''} (default) | character vector | cell array of character vectors

Names of input channels, specified as one of these values:

• Character vector — For single-input models

1 Functions

1-754

• Cell array of character vectors — For models with two or more inputs
• '' — For inputs without specified names

You can use automatic vector expansion to assign input names for multi-input models. For example, if
sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

You can specify InputName using a string, such as "voltage", but the input name is stored as a
character vector, 'voltage'.

When you estimate a model using an iddata object, data, the software automatically sets
InputName to data.InputName.

InputUnit — Units of input signals
{''} (default) | character vector | cell array of character vectors

Units of input signals, specified as one of these values:

• Character vector — For single-input models
• Cell array of character vectors — For models with two or more inputs
• '' — For inputs without specified units

Use InputUnit to keep track of the units each input signal is expressed in. InputUnit has no effect
on system behavior.

You can specify InputUnit using a string, such as "voltage", but the input units are stored as a
character vector, 'voltage'.
Example: 'voltage'
Example: {'voltage','rpm'}

InputGroup — Input channel groups
structure with no fields (default) | structure

Input channel groups, specified as a structure where the fields are the group names and the values
are the indices of the input channels belonging to the corresponding group. When you use
InputGroup to assign the input channels of MIMO systems to groups, you can refer to each group by
name when you need to access it. For example, suppose you have a five-input model sys, where the
first three inputs are control inputs and the remaining two inputs represent noise. Assign the control
and noise inputs of sys to separate groups.

 idproc

1-755

sys.InputGroup.controls = [1:3];
sys.InputGroup.noise = [4 5];

Use the group name to extract the subsystem from the control inputs to all outputs.

sys(:,'controls')

Example: struct('controls',[1:3],'noise',[4 5])

OutputName — Names of output channels
{''} (default) | character vector | cell array of character vectors

Names of output channels, specified as one of these values:

• Character vector — For single-output models
• Cell array of character vectors — For models with two or more outputs
• '' — For outputs without specified names

You can use automatic vector expansion to assign output names for multi-output models. For example,
if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

You can specify OutputName using a string, such as "rpm", but the output name is stored as a
character vector, 'rpm'.

When you estimate a model using an iddata object, data, the software automatically sets
OutputName to data.OutputName.

OutputUnit — Units of output signals
{''} (default) | character vector | cell array of character vectors

Units of output signals, specified as one of these values:

• Character vector — For single-output models
• Cell array of character vectors — For models with two or more outputs
• '' — For outputs without specified units

Use OutputUnit to keep track of the units each output signal is expressed in. OutputUnit has no
effect on system behavior.

You can specify OutputUnit using a string, such as "voltage", but the output units are stored as a
character vector, 'voltage'.

1 Functions

1-756

Example: 'voltage'
Example: {'voltage','rpm'}

OutputGroup — Output channel groups
structure with no fields (default) | structure

Output channel groups, specified as a structure where the fields are the group names and the values
are the indices of the output channels belonging to the corresponding group. When you use
OutputGroup to assign the output channels of MIMO systems to groups, you can refer to each group
by name when you need to access it. For example, suppose you have a four-output model sys, where
the second output is a temperature, and the rest are state measurements. Assign these outputs to
separate groups.

sys.OutputGroup.temperature = [2];
sys.OutputGroup.measurements = [1 3 4];

Use the group name to extract the subsystem from all inputs to the measurement outputs.

sys('measurements',:)

Example: struct('temperature',[2],'measurement',[1 3 4])

Name — Model name
'' (default) | character vector

Model name, stored as a character vector. You can specify Name using a string, such as "DCmotor",
but the output units are stored as a character vector, 'DCmotor'.
Example: 'system_1'

Notes — Text notes about model
[0×1 string] (default) | string | cell array of character vector

Text notes about the model, stored as a string or a cell array of character vectors. The property stores
whichever of these two data types you provide. For instance, suppose that sys1 and sys2 are
dynamic system models, and set their Notes properties to a string and a character vector,
respectively.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 'sys2 has a character vector.'

UserData — Data associated with model
[] (default) | any data type

Data of any kind that you want to associate and store with the model, specified as any MATLAB data
type.

 idproc

1-757

SamplingGrid — Sampling grid for model arrays
structure with no fields (default) | structure

Sampling grid for model arrays, specified as a structure. For arrays of identified linear (IDLTI) models
that are derived by sampling one or more independent variables, this property tracks the variable
values associated with each model. This information appears when you display or plot the model
array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values
to the sampled variable values associated with each model in the array. All sampling variables should
be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the
model array.

For example, if you collect data at various operating points of a system, you can identify a model for
each operating point separately and then stack the results together into a single system array. You
can tag the individual models in the array with information regarding the operating point:

nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)

where sys is an array containing three identified models obtained at rpms 1000, 5000 and 10000,
respectively.

For model arrays generated by linearizing a Simulink model at multiple parameter values or
operating points, the software populates SamplingGrid automatically with the variable values that
correspond to each entry in the array. For example, the Simulink Control Design commands
linearize and slLinearizer populate SamplingGrid in this way.

Object Functions
In general, any function applicable to “Dynamic System Models” is applicable to an idproc model
object. These functions are of four general types.

• Functions that operate and return idproc model objects enable you to transform and manipulate
idproc models. For instance, use merge to merge estimated idproc models.

• Functions that perform analytical and simulation functions on idproc objects, such as bode and
sim

• Functions that retrieve or interpret model information, such as advice and getpar
• Functions that convert idproc objects into a different model type, such as idpoly for time

domain or idfrd for frequency domain

The following lists contain a representative subset of the functions that you can use with idproc
models.

Transformation and Manipulation
translatecov Translate parameter covariance across model transformation operations
setpar Set attributes such as values and bounds of linear model parameters
chgTimeUnit Change time units of dynamic system
merge Merge estimated models

1 Functions

1-758

Analysis and Simulation
sim Simulate response of identified model
predict Predict state and state estimation error covariance at next time step using extended or

unscented Kalman filter, or particle filter
compare Compare identified model output with measured output
impulse Impulse response plot of dynamic system; impulse response data
step Step response plot of dynamic system; step response data
bode Bode plot of frequency response, or magnitude and phase data

Information Extraction and Interpretation
tfdata Access transfer function data
get Access model property values
getpar Obtain attributes such as values and bounds of linear model parameters
getcov Parameter covariance of identified model
advice Analysis and recommendations for data or estimated linear models

Conversion to Other Model Structures
idtf Transfer function model with identifiable parameters
idpoly Polynomial model with identifiable parameters
idss State-space model with identifiable parameters
idfrd Frequency response data or model

Examples

Create SISO Process Model with Complex Poles and Time Delay

Create a process model with a pair of complex poles and a time delay. Set the initial value of the
model to the following:

sys = 0 . 01
1 + 2 0 . 1 10 s + 10s 2e−5s.

Create a process model with the specified structure.

sys = idproc("P2DU")

sys =

Process model with transfer function:
 Kp
 G(s) = --------------------- * exp(-Td*s)
 1+2*Zeta*Tw*s+(Tw*s)^2

 Kp = NaN
 Tw = NaN
 Zeta = NaN
 Td = NaN

Parameterization:
 {'P2DU'}
 Number of free coefficients: 4
 Use "getpvec", "getcov" for parameters and their uncertainties.

 idproc

1-759

Status:
Created by direct construction or transformation. Not estimated.

The input "P2DU" specifies an underdamped pair of poles and a time delay. The display shows that
sys has the desired structure. The display also shows that the four free parameters, Kp, Tw, Zeta,
and Td are all initialized to NaN.

Set the initial values of all parameters to the desired values.

sys.Kp = 0.01;
sys.Tw = 10;
sys.Zeta = 0.1;
sys.Td = 5;

You can use sys to specify this parameterization and these initial guesses for process model
estimation with procest.

Create a MIMO Process Model

Create a one-input, three-output process model, where each channel has two real poles and a zero,
but only the first channel has a time delay, and only the first and third channels have an integrator.

type = ["P2ZDI";"P2Z";"P2ZI"];
sys = idproc(type)

sys =

Process model with 3 outputs: y_k = Gk(s)u
 From input 1 to output 1:
 1+Tz*s
 G1(s) = Kp * ------------------- * exp(-Td*s)
 s(1+Tp1*s)(1+Tp2*s)

 Kp = NaN
 Tp1 = NaN
 Tp2 = NaN
 Td = NaN
 Tz = NaN

 From input 1 to output 2:
 1+Tz*s
 G1(s) = Kp * ------------------
 (1+Tp1*s)(1+Tp2*s)

 Kp = NaN
 Tp1 = NaN
 Tp2 = NaN
 Tz = NaN

 From input 1 to output 3:
 1+Tz*s
 G1(s) = Kp * -------------------
 s(1+Tp1*s)(1+Tp2*s)

1 Functions

1-760

 Kp = NaN
 Tp1 = NaN
 Tp2 = NaN
 Tz = NaN

Parameterization:
 {'P2DIZ'}
 {'P2Z' }
 {'P2IZ' }
 Number of free coefficients: 13
 Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

idproc creates a MIMO model where each character vector in the type array defines the structure
of the corresponding I/O pair. Since type is a column vector of character vectors, sys is a one-input,
three-output model having the specified parameterization structure. type{k,1} specifies the
structure of the subsystem sys(k,1). All identifiable parameters are initialized to NaN.

Create Array of Process Models

Create a 3-by-1 array of process models, each containing one output and two input channels.

Specify the structure for each model in the array of process models.

type1 = ["P1D","P2DZ"];
type2 = ["P0","P3UI"];
type3 = ["P2D","P2DI"];
type = cat(3,type1,type2,type3);
size(type)

ans = 1×3

 1 2 3

Use type to create the array.

sysarr = idproc(type);

The first two dimensions of the cell array type set the output and input dimensions of each model in
the array of process models. The remaining dimensions of the cell array set the array dimensions.
Thus, sysarr is a three-model array of two-input, one-output process models.

Select a model from the array.

sysarr(:,:,2)

ans =

Process model with 2 inputs: y = G11(s)u1 + G12(s)u2
 From input 1 to output 1:

 idproc

1-761

 G11(s) = Kp

 Kp = NaN

 From input 2 to output 1:
 Kp
 G12(s) = ---------------------------------
 s(1+2*Zeta*Tw*s+(Tw*s)^2)(1+Tp3*s)

 Kp = NaN
 Tw = NaN
 Zeta = NaN
 Tp3 = NaN

Parameterization:
 {'P0'} {'P3IU'}
 Number of free coefficients: 5
 Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

This two-input, one-output model corresponds to the type2 entry in the type cell array.

Version History
Introduced before R2006a

See Also
idtf | procest | idss | tfest | ssest | pem

Topics
“Dynamic System Models”
“Building and Estimating Process Models Using System Identification Toolbox”
“Estimating Multiple-Input, Multi-Output Process Models”
“Disturbance Model Structure for Process Models”

1 Functions

1-762

idresamp
Resample time-domain data by decimation or interpolation

Syntax
datar = idresamp(data,R)
datar = idresamp(data,R,order,tol)
[datar,res_fact] = idresamp(data,R,order,tol)

Description
datar = idresamp(data,R) resamples data on a new sample interval R and stores the resampled
data as datar.

datar = idresamp(data,R,order,tol) filters the data by applying a filter of specified order
before interpolation and decimation. Replaces R by a rational approximation that is accurate to a
tolerance tol.

[datar,res_fact] = idresamp(data,R,order,tol) returns res_fact, which corresponds to
the value of R approximated by a rational expression.

Input Arguments
data

Name of time-domain iddata object or a matrix of data. Can be input-output or time-series data.

Data must be sampled at equal time intervals.
R

Resampling factor, such that R>1 results in decimation and R<1 results in interpolation.

Any positive number you specify is replaced by the rational approximation, Q/P.
order

Order of the filters applied before interpolation and decimation.

Default: 8
tol

Tolerance of the rational approximation for the resampling factor R.

Smaller tolerance might result in larger P and Q values, which produces more accurate answers
at the expense of slower computation.

Default: 0.1

Output Arguments
datar

Name of the resampled data variable. datar class matches the data class, as specified.

 idresamp

1-763

res_fact
Rational approximation for the specified resampling factor R and tolerance tol.

Any positive number you specify is replaced by the rational approximation, Q/P, where the data is
interpolated by a factor P and then decimated by a factor Q.

Version History
Introduced in R2007a

See Also
resample

1 Functions

1-764

idSaturation
Create a saturation nonlinearity estimator object

Syntax
NL = idSaturation
NL = idSaturation('LinearInterval',[a,b])

Description
NL = idSaturation creates a default saturation nonlinearity estimator object for estimating
Hammerstein-Wiener models. The linear interval is set to [NaN NaN]. The initial value of the linear
interval is determined from the estimation data range during estimation using nlhw. Use dot notation
to customize the object properties, if needed.

NL = idSaturation('LinearInterval',[a,b]) creates a saturation nonlinearity estimator
object initialized with linear interval, [a,b].

Alternatively, use NL = idSaturation([a,b]).

Object Description
idSaturation is an object that stores the saturation nonlinearity estimator for estimating
Hammerstein-Wiener models.

Use idSaturation to define a nonlinear function y = F(x, θ), where y and x are scalars, and θ
represents the parameters a and b that define the linear interval, [a,b].

The saturation nonlinearity function has the following characteristics:

a ≤ x < b F(x) = x
a > x F(x) = a
b ≤ x F(x) = b

For example, in the following plot, the linear interval is [-4,3].

 idSaturation

1-765

The value F(x) is computed by evaluate(NL,x), where NL is the idSaturation object.

For idSaturation object properties, see “Properties” on page 1-769.

Examples

Create a Default Saturation Nonlinearity Estimator

NL = idSaturation;

Specify the linear interval.

NL.LinearInterval = [-4,5];

Estimate a Hammerstein Model with Saturation

Load data.

load twotankdata;
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);

Create a saturation object with lower limit of 0 and upper limit of 5.

1 Functions

1-766

InputNL = idSaturation('LinearInterval',[0 5]);

Estimate model with no output nonlinearity.

m = nlhw(z1,[2 3 0],InputNL,[]);

Estimate MIMO Hammerstein-Wiener Model

Load the estimation data.

load motorizedcamera;

Create an iddata object.

z = iddata(y,u,0.02,'Name','Motorized Camera','TimeUnit','s');

z is an iddata object with 6 inputs and 2 outputs.

Specify the model orders and delays.

Orders = [ones(2,6),ones(2,6),ones(2,6)];

Specify the same nonlinearity estimator for each input channel.

InputNL = idSaturation;

Specify different nonlinearity estimators for each output channel.

 OutputNL = [idDeadZone,idWaveletNetwork];

Estimate the Hammerstein-Wiener model.

sys = nlhw(z,Orders,InputNL,OutputNL);

To see the shape of the estimated input and output nonlinearities, plot the nonlinearities.

plot(sys)

 idSaturation

1-767

Click on the input and output nonlinearity blocks on the top of the plot to see the nonlinearities.

Input Arguments
[a,b] — Linear interval
[NaN NaN] (default) | 2–element row vector

Linear interval of the saturation, specified as a 2–element row vector of doubles.

The saturation nonlinearity is initialized at the interval [a,b]. The interval values are adjusted to the
estimation data by nlhw. To remove the lower limit, set a to -Inf. The lower limit is not adjusted

1 Functions

1-768

during estimation. To remove the upper limit, set b to Inf. The upper limit is not adjusted during
estimation.

When the interval is [NaN NaN], the initial value of the linear interval is determined from the
estimation data range during estimation using nlhw.
Example: [-2 1]

Properties
LinearInterval

Linear interval of the saturation, specified as a 2–element row vector of doubles.

Default: [NaN NaN]

Free

Option to fix or free the parameters of LinearInterval, specified as a 2–element logical row vector.
When you set an element of Free to false, the corresponding value in LinearInterval remains
fixed during estimation to the initial value that you specify.

Default: [true true]

Output Arguments
NL — Saturation nonlinearity estimator object
idSaturation object

Saturation nonlinearity estimator object, returned as an idSaturation object.

Version History
Introduced in R2007a

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear

 idSaturation

1-769

Pre-R2021b Name R2021b Name
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
nlhw | idnlhw

Topics
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

1 Functions

1-770

idSigmoidNetwork
Sigmoid network function for nonlinear ARX and Hammerstein-Wiener models

Description
An idSigmoidNetwork object implements a sigmoid network function, and is a nonlinear mapping
function for estimating nonlinear ARX and Nonlinear Hammerstein-Wiener models. The mapping
function, which is also referred to as a nonlinearity, uses a combination of linear weights, an offset
and a nonlinear function to compute its output. The nonlinear function contains sigmoid unit
functions that operate on a ridge combination (weighted linear sum) of inputs.

Mathematically, idSigmoidNetwork is a function that maps m inputs X(t) = [x(t1),x2(t),…,xm(t)]T to a
scalar output y(t) using the following relationship:

y(t) = y0 + Χ(t)TPL + S(Χ(t))

Here:

• X(t) is an m-by-1 vector of inputs, or regressors.
• y0 is the output offset, a scalar.
• P is an m-by-p projection matrix, where m is the number of regressors and is p is the number of

linear weights. m must be greater than or equal to p.
• L is a p-by-1 vector of weights.
• S(X) is a sum of dilated and translated sigmoid functions. The total number of sigmoid functions is

referred to as the number of units n of the network.

 idSigmoidNetwork

1-771

For the definition of the sigmoid function term S(X) , see “More About” on page 1-776.

Use idSigmoidNetwork as the value of the OutputFcn property of an idnlarx model or the
InputNonlinearity and OutputLinearity properties of an idnlhw object. For example, specify
idSigmoidNetwork when you estimate an idnlarx model with the following command.

sys = nlarx(data,regressors,idSigmoidNetwork)

When nlarx estimates the model, it essentially estimates the parameters of the idSigmoidNetwork
function.

You can configure the idSigmoidNetwork function to disable components and fix parameters. To
omit the linear component, set LinearFcn.Use to false. To omit the offset, set Offset.Use to
false. To specify known values for the linear function and the offset, set their Value attributes
directly and set the corresponding Free attributes to False. Use evaluate to compute the output of
the function for a given vector of inputs.

Creation
Syntax
S = idSigmoidNetwork
S = idSigmoidNetwork(numUnits)
S = idSigmoidNetwork(numUnits,UseLinearFcn)
S = idSigmoidNetwork(numUnits,UseLinearFcn,UseOffset)

Description

S = idSigmoidNetwork creates a idSigmoidNetwork object S that uses 10 units. The number of
inputs is determined during model estimation and the number of outputs is 1.

S = idSigmoidNetwork(numUnits) specifies the number of sigmoid functions numUnits.

S = idSigmoidNetwork(numUnits,UseLinearFcn) specifies whether the function uses a linear
function as a subcomponent.

S = idSigmoidNetwork(numUnits,UseLinearFcn,UseOffset) specifies whether the function
uses an offset term y0 parameter.

Input Arguments

numUnits — Number of units
10 (default) | positive integer

Number of units, specified as a positive integer. numUnits determines the number of sigmoid
functions.

This argument sets the S.NonlinearFcn.NumberOfUnits property.

UseLinearFcn — Option to use linear function
true (default) | false

Option to use the linear function subcomponent, specified as true or false. This argument sets the
value of the S.LinearFcn.Use property.

1 Functions

1-772

UseOffset — Option to use offset term
true (default) | false

Option to use an offset term, specified as true or false. This argument sets the value of the
S.Offset.Use property.

Properties
Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

LinearFcn — Parameters of linear function
linear function property values (default)

Parameters of the linear function, specified as follows:

• Use — Option to use the linear function in the sigmoid network, specified as a scalar logical. The
default value is true.

• Value — Linear weights that compose L', specified as a 1-by-p vector.
• InputProjection — Input projection matrix P, specified as an m-by-p matrix, that transforms

the detrended input vector of length m into a vector of length p. For Hammerstein-Wiener models,
InputProjection is equal to 1.

• Free — Option to update entries of Value during estimation, specified as a 1-by-p logical vector.
The software honors the Free specification only if the starting value of Value is finite. The default
value is true.

Offset — Parameters of offset term
offset property values

Parameters of the offset term, specified as follows:

• Use — Option to use the offset in the sigmoid network, specified as a scalar logical. The default
value is true.

• Value — Offset value, specified as a scalar.
• Free — Option to update Value during estimation, specified as a scalar logical. The software

honors the Free specification of false only if the value of Value is finite. The default value is
true.

NonlinearFcn — Parameters of nonlinear function
nonlinear function property values

Parameters of the nonlinear function, specified as follows:

 idSigmoidNetwork

1-773

• NumberOfUnits — Number of units, specified as a positive integer. NumberOfUnits determines
the number of sigmoid functions.

• Parameters — Parameters of idSigmoidNetwork, specified as in the following table:

Field Name Description Default
InputProject
ion

Projection matrix Q, specified as an m-by-q matrix. Q
transforms the detrended input vector (X − X) of length m
into a vector of length q. Typically, Q has the same
dimensions as the linear projection matrix P. In this case, q is
equal to p, which is the number of linear weights.

For Hammerstein-Wiener models, InputProjection is
equal to 1.

[]

OutputCoeffi
cient

Sigmoid function output coefficients si, specified as an n-by-1
vector.

[]

Translation Translation matrix, specified as an n-by-q matrix of
translation row vectors ci.

[]

Dilation Dilation coefficients bi, specified as an n-by-1 vector. []

• Free — Option to estimate parameters, specified as a logical scalar. If all the parameters have
finite values, such as when the idSigmoidNetwork object corresponds to a previously estimated
model, then setting Free to false causes the parameters of the nonlinear function S(X) to remain
unchanged during estimation. The default value is true.

Examples

Estimate Nonlinear ARX Model with idSigmoidNetwork as Output Function

Load the data z7 and create a subset to use as estimation data.

load iddata7 z7
ze = z7(1:300);

Create and configure an idSigmoidNetwork mapping object. Fix the offset to 0.2 and the number of
units to 15.

S = idSigmoidNetwork;
S.Offset.Value = 0.2;
S.Offset.Free = false;
S.NonlinearFcn.NumberOfUnits = 15;

Create linear and polynomial model regressors. Use the input and output variable names from z7 as
the variable names for the regressors.

var_names = [z7.OutputName;z7.InputName]

var_names = 3x1 cell
 {'y1'}
 {'u1'}
 {'u2'}

1 Functions

1-774

Reg1 = linearRegressor(var_names,{1:4,0:4,1});
Reg2 = polynomialRegressor(var_names,{1:2,0:2,0},2);

Set the estimation options.

opt = nlarxOptions('SearchMethod','fmincon');
opt.SearchOptions.MaxIterations = 40;

Estimate the nonlinear ARX model.

sys = nlarx(ze,[Reg1;Reg2],S,opt)

sys =

Nonlinear ARX model with 1 output and 2 inputs
 Inputs: u1, u2
 Outputs: y1

Regressors:
 1. Linear regressors in variables y1, u1, u2
 2. Order 2 regressors in variables y1, u1, u2

Output function: Sigmoid network with 15 units
Sample time: 1 seconds

Status:
Termination condition: Maximum number of iterations or number of function evaluations reached..
Number of iterations: 40, Number of function evaluations: 88

Estimated using NLARX on time domain data "ze".
Fit to estimation data: 74.27% (prediction focus)
FPE: 6.11, MSE: 0.6547
More information in model's "Report" property.

Estimate Hammerstein-Wiener Model that Uses idSigmoidNetwork

Estimate a Hammerstein-Wiener model that uses idSigmoidNetwork as the output nonlinearity.

Load the data

load throttledata

Create an idSigmoidNetwork mapping object that has 15 units and that has no input nonlinearity
or offset.

S = idSigmoidNetwork(15,false,false)

S =
Sigmoid Network

 Nonlinear Function: Sigmoid network with 15 units
 Linear Function: not in use
 Output Offset: not in use

 Inputs: {1x0 cell}
 Outputs: {1x0 cell}

 idSigmoidNetwork

1-775

 NonlinearFcn: 'Sigmoid units and their parameters'
 LinearFcn: 'Linear function parameters'
 Offset: 'Offset parameters'

Estimate a Hammerstein-Wiener model.

sys = nlhw(ThrottleData,[4 4 0],[],S)

sys =

Hammerstein-Wiener model with 1 output and 1 input

Linear transfer function corresponding to the orders nb = 4, nf = 4, nk = 0

Input nonlinearity: None
Output nonlinearity: Sigmoid network with 15 units
Sample time: 0.01 seconds

Status:
Termination condition: Maximum number of iterations reached..
Number of iterations: 20, Number of function evaluations: 301

Estimated using NLHW on time domain data "ThrottleData".
Fit to estimation data: 68.09%
FPE: 159.5, MSE: 112.4
More information in model's "Report" property.

More About
Sigmoid Nonlinear Function S(X)

The sigmoid nonlinear function is a sum of the dilated and translated sigmoid functions, and is
described by the following equation:

S(X) = ∑
i = 1

n
sif (XTQbi + ci)

Here:

• Q is an m-by-q projection matrix, where m ≥ q.
• s1, s2, …, sn are scalar weights called output coefficients.
• b1, b2, …, bn are q-by-1 vectors called dilation coefficients .
• c1, c2, …, cn are scalars called translations.
• f (z) = 1

e−z + 1
. is the sigmoid function, also called a unit function of the sigmoid network. Here, z

is a scalar of the form biXTQ + ci.

Algorithms
idSigmoidNetwork uses an iterative search technique for estimating parameters.

1 Functions

1-776

Version History
Introduced in R2007a

Previous idnlarx data normalization information moved from mapping object properties to
idnlarx Normalization property
Behavior changed in R2022a

Information related to data normalization was moved from the idSigmoidNetwork mapping object
level to the model level. The Normalization property of the idnlarx model contains the data
centering and scaling information that the estimation process computes. In addition, the regressor-
selection process for the mapping objects has also moved to the model level. The model now passes
the actual regressor names rather than the selection indices to the mapping object, eliminating the
need for an index property at the mapping object level.

The following table summarizes the mapping object subproperties that were eliminated. For more
information, see the Normalization property of idnlarx.

Main
Properties /
Subproperties

Input Output LinearMdl Offset NonlinearMdl

Mean X X
Range X X
Minimum X X X
Maximum X X X
SelectedInpu
tIndex

 X X

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

 idSigmoidNetwork

1-777

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

Use of previous nonlinearity estimator properties is not recommended
Not recommended starting in R2021a

Starting in R2021a, the properties of the mapping objects, previously known as nonlinearity
estimators, have been reorganized. These objects are wavenet (W), sigmoidnet (S),
treepartition (T), customnet (C), and linear (L). The property changes do not apply to
neuralnet. The use of the pre-R2021a properties in the following table is discouraged. However, the
software still accepts commands that set these properties. There are no plans to exclude such
commands at this time.

Pre-R2021a Property R2021a Property Applicable Mapping Objects
NumberOfUnits NonlinearFcn.NumberOfUni

ts
W,S,T,C

LinearTerm LinearFcn.Use, Offset.Use W,S,C
Parameters Split into three pieces:

• LinearFcn.Value
• Offset.Value
• NonlinearFcn.Parameter

s

W,S,T,C,L

linear (L) excludes
NonlinearFcn.Parameters.

Options NonlinearFcn.Structure W,T

See Also
nlhw | nlarx | idnlhw | idnlarx | evaluate

Topics
“Available Mapping Functions for Nonlinear ARX Models”
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

1 Functions

1-778

idss
State-space model with identifiable parameters

Description
Use idss to create a continuous-time or discrete-time state-space model with identifiable (estimable)
coefficients, or to convert “Dynamic System Models” to state-space form.

A state-space model of a system with input vector u, output vector y, and disturbance e takes the
following form in continuous time:

dx t
dt = Ax t + Bu t + Ke t

y t = Cx t + Du t + e t

In discrete time, the state-space model takes the following form:

x k + 1 = Ax k + Bu k + Ke k
y k = Cx k + Du k + e k

For idss models, the elements of the state-space matrices A, B, C, and D can be estimable
parameters. The elements of the state disturbance K can also be estimable parameters. The idss
model stores the values of these matrix elements in the A, B, C, D, and K properties of the model.

Creation
You can obtain an idss model object in one of three ways.

• Estimate the idss model based on the input-output measurements of a system by using n4sid or
ssest. These estimation commands estimate the values of the estimable elements of the state-
space matrices. The estimated values are stored in the A, B, C, D, and K properties of the resulting
idss model. The Report property of the resulting model stores information about the estimation,
such as on the handling of initial state values and the options used in estimation. For example:

sys = ssest(data,nx);
A = sys.A;
B = sys.B;
sys.Report

For more examples of estimating an idss model, see ssest or n4sid.
• Create an idss model using the idss command. For example:

sys = idss(A,B,C,D)

You can create an idss model to configure an initial parameterization for estimation of a state-
space model to fit measured response data. When you do so, you can specify constraints on one or
more of the state-space matrix elements. For instance, you can fix the values of some elements, or
specify minimum or maximum values for the free elements. You can then use the configured model
as an input argument to an estimation command (ssest or n4sid) to estimate parameter values

 idss

1-779

with those constraints. For examples, see “Create State-Space Model with Identifiable
Parameters” on page 1-789 and “Configure Identifiable Parameters of State-Space Model” on
page 1-790.

• Convert an existing dynamic system model to an idss model using the idss command. For
example:

sys_ss = idss(sys_tf);

For information on functions you can use to extract information from or transform idss model
objects, see “Object Functions” on page 1-788.

Syntax
sys = idss(A,B,C,D)
sys = idss(A,B,C,D,K)
sys = idss(A,B,C,D,K,x0)
sys = idss(A,B,C,D,K,x0,Ts)
sys = idss(___ ,Name,Value)

sys = idss(sys0)
sys = idss(sys0,'split')

Description
Create State-Space Model

sys = idss(A,B,C,D) creates a state-space model with specified state-space matrices A,B,C,D.
By default, sys is a discrete-time model with an unspecified sample time and no state disturbance
element. Use this syntax especially when you want to configure an initial parameterization as an
input to a state-space estimation function such as n4sid or ssest.

sys = idss(A,B,C,D,K) specifies a disturbance matrix K.

sys = idss(A,B,C,D,K,x0) initializes the state values with the vector x0.

sys = idss(A,B,C,D,K,x0,Ts) specifies the sample time property Ts. Use Ts = 0 to create a
continuous-time model.

sys = idss(___ ,Name,Value) sets additional properties using one or more name-value pair
arguments. Specify name-value pair arguments after any of the input argument combinations in the
previous syntaxes.

Convert Dynamic System Model to State-Space Model

sys = idss(sys0) converts any dynamic system model sys0 to idss model form.

sys = idss(sys0,'split') converts sys0 to idss model form, and treats the last Ny input
channels of sys0 as noise channels in the returned model. sys0 must be a numeric (nonidentified)
tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs.

Input Arguments

x0 — Initial state values
column vector of zeros (default) | vector

1 Functions

1-780

Initial state values, specified as a column vector of Nx values.

sys0 — Dynamic system
dynamic system model

Dynamic system, specified as a dynamic system model to convert to an idss model.

• When sys0 is an identified model, its estimated parameter covariance is lost during conversion. If
you want to translate the estimated parameter covariance during the conversion, use
translatecov.

• When sys0 is a numeric (nonidentified) model, the state-space data of sys0 defines the A, B, C,
and D matrices of the converted model. The disturbance matrix K is fixed to zero. The
NoiseVariance value defaults to eye(Ny), where Ny is the number of outputs of sys.

For the syntax sys = idss(sys0,'split'), sys0 must be a numeric (nonidentified) tf, zpk, or
ss model object. Also, sys0 must have at least as many inputs as outputs. Finally, the subsystem
sys0(:,Ny+1:Ny+Nu) must contain a nonzero feedthrough term (the subsystem must be biproper).

Properties
A,B,C,D — Values of state-space matrices
matrices

Values of the state-space matrices, specified as matrices that correspond to each of the A, B, C, and D
matrices.

For a system with Ny outputs, Nu inputs, and Nx states, the state-space matrices have the following
dimensions:

• A — Nx-by-Nx matrix
• B — Nx-by-Nu matrix
• C — Ny-by-Nx matrix
• D — Ny-by-Nu matrix

If you obtain an idss model sys by identification using ssest or n4sid, then sys.A, sys.B, sys.C,
and sys.D contain the estimated values of the matrix elements.

If you create an idss model sys using the idss command, sys.A, sys.B, sys.C, and sys.D
contain the initial values of the state-space matrices that you specify with the A,B,C,D input
arguments.

For an idss model sys, each property sys.A, sys.B, sys.C, and sys.D is an alias of the
corresponding Value entry in the Structure property of sys. For example, sys.A is an alias of the
value of the property sys.Structure.A.Value.

K — Value of state disturbance matrix
zero matrix (default) | matrix

Value of the state disturbance matrix K, specified as an Nx-by-Ny matrix, where Nx is the number of
states and Ny is the number of outputs.

If you obtain an idss model sys by identification using ssest or n4sid, then sys.K contains the
estimated values of the matrix elements.

 idss

1-781

If you create an idss model sys using the idss command, sys.K contains the initial values of the
state-space matrices that you specify with the K input argument.

For an idss model sys, sys.K is an alias to the value of the property sys.Structure.K.Value.

StateName — State names
'' (default) | character vector | cell array

State names, specified as a character vector or cell array.

• First-order model — Character vector
• Model with two or more states — Cell array of character vectors
• Unnamed states — ''

Example: 'velocity' names the only state in a first-order model

StateUnit — State units
'' (default) | character vector | cell array

State units, specified as a character vector or cell array.

• First-order model — Character vector
• Model with two or more states — Cell array of character vectors
• States without specified units — ''

Use StateUnit to keep track of the units each state is expressed in. StateUnit has no effect on
system behavior.
Example: 'rad' corresponds to the units of the only state in a first-order model

Structure — Information about estimable parameters
structure property values

Information about the estimable parameters of the idss model, specified as property-specific values.
Structure.A, Structure.B, Structure.C, Structure.D, and Structure.K contain information
about the A, B, C, D, and K matrices, respectively. Each parameter in Structure contains the
following fields.

Field Description Examples
Value Parameter Values — Each

property sys.A, sys.B, sys.C,
and sys.D is an alias of the
corresponding Value entry in
the Structure property of
sys.NaN represents unknown
parameter values.

sys.Structure.A.Value
contains the initial or estimated
values of the A matrix.sys.A is
an alias of the value of the
property
sys.Structure.A.Value.

Minimum Minimum value that the
parameter can assume during
estimation

sys.Structure.K.Minimum
= 0 constrains all entries in the
K matrix to be greater than or
equal to zero.

1 Functions

1-782

Field Description Examples
Maximum Maximum value that the

parameter can assume during
estimation

Free Boolean specifying whether the
parameter is a free estimation
variable. If you want to fix the
value of a parameter during
estimation, set the
corresponding Free = false.

If A is a 3-by-3 matrix,
sys.Structure.A.Free =
eyes(3) fixes all of the off-
diagonal entries in A to the
values specified in
sys.Structure.A.Value. In
this case, only the diagonal
entries in A are estimable.

Scale Scale of the value of the
parameter. The estimation
algorithm does not use Scale.

Info Structure array that contains
the fields Label and Unit for
storing parameter labels and
units. Specify parameter labels
and units as character vectors.

'Time'

For an example of configuring model parameters using the Structure property, see “Configure
Identifiable Parameters of State-Space Model” on page 1-790.

NoiseVariance — Variance of model innovations
scalar | matrix

Variance (covariance matrix) of the model innovations e, specified as a scalar or matrix.

• SISO model — Scalar
• MIMO model with Ny outputs — Ny-by-Ny matrix

An identified model includes a white Gaussian noise component e(t). NoiseVariance is the variance
of this noise component. Typically, the model estimation function (such as ssest) determines this
variance.

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results for a state-space
model obtained using estimation commands, such as ssest, ssregest, and n4sid. Use Report to
find estimation information for the identified model, including the:

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit and other quality metrics

 idss

1-783

If you create the model by construction, the report properties, which convey estimation information,
are mostly empty.

A = [-0.1 0.4; -0.4 -0.1];
B = [1; 0];
C = [1 0];
D = 0;
sys = idss(A,B,C,D);
sys.Report

ans =

 Status: 'Created by direct construction or transformation. Not estimated.'
 Method: ''
 InitialState: ''
 N4Weight: ''
 N4Horizon: []
 Fit: [1×1 struct]
 Parameters: [1×1 struct]
 OptionsUsed: []
 RandState: []
 DataUsed: [1×1 struct]
 Termination: []

If you obtain the using estimation commands, the fields of Report contain information on the
estimation data, options, and results.

load iddata2 z2;
sys = ssest(z2,3);
sys.Report

ans =

 Status: 'Estimated using SSEST with prediction focus'
 Method: 'SSEST'
 InitialState: 'zero'
 N4Weight: 'CVA'
 N4Horizon: [5 8 8]
 Fit: [1×1 struct]
 Parameters: [1×1 struct]
 OptionsUsed: [1×1 idoptions.ssest]
 RandState: []
 DataUsed: [1×1 struct]
 Termination: [1×1 struct]

For more information on this property and how to use it, see the Output Arguments section of the
corresponding estimation command reference page and “Estimation Report”.

InputDelay — Input delay for each input channel
0 (default) | scalar | vector

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time
systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sample time Ts. For example, setting
InputDelay to 3 specifies a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

1 Functions

1-784

You can also set InputDelay to a scalar value to apply the same delay to all channels.

OutputDelay — Output delay for each output channel
0 (default)

For identified systems such as idss, OutputDelay is fixed to zero.

Ts — Sample Time
-1 (default) | 0 | positive scalar

Sample time, specified as one of the following.

• Continuous-time model — 0
• Discrete-time model with a specified sampling time — a positive scalar representing the sampling

period expressed in the unit specified by the TimeUnit property of the model
• Discrete-time model with unspecified sample time — -1

Changing this property does not discretize or resample the model. Use c2d and d2c to convert
between continuous- and discrete-time representations. Use d2d to change the sample time of a
discrete-time system.

TimeUnit — Units for time variable
'seconds' (default) | 'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' |
'hours' | 'days' | 'weeks' | 'months' | 'years'

Units for the time variable, the sample time Ts, and any time delays in the model, specified as a
scalar.

Changing this property does not resample or convert the data. Modifying the property changes only
the interpretation of the existing data. Use chgTimeUnit to convert data to different time units

InputName — Input channel names
'' (default) | character vector | cell array

Input channel names, specified as a character vector or cell array.

• Single-input model — Character vector. For example, 'controls'.
• Multi-input model — Cell array of character vectors.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For
example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

When you estimate a model using an iddata object data, the software automatically sets
InputName to data.InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

You can use input channel names in several ways, including:

 idss

1-785

• To identify channels on model display and plots
• To extract subsystems of MIMO systems
• To specify connection points when interconnecting models

InputUnit — Input channel units
'' (default) | character vector | cell array

Input channel units, specified as a character vector or cell array:

• Single-input model — Character vector
• Multi-input Model — Cell array of character vectors

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.

InputGroup — Input channel groups
struct with no fields (default) | struct

Input channel groups, specified as a structure. The InputGroup property lets you divide the input
channels of MIMO systems into groups so that you can refer to each group by name. In the
InputGroup structure, set field names to the group names, and field values to the input channels
belonging to each group.

For example, create input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively.

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

You can then extract the subsystem from the controls inputs to all outputs using the following
syntax:

sys(:,'controls')

OutputName — Output channel names
'' (default) | character vector | cell array

Output channel names, specified as a character vector or cell array.

• Single-input model — Character vector. For example, 'measurements'.
• Multi-input model — Cell array of character vectors.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For
example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

When you estimate a model using an iddata object, data, the software automatically sets
OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

You can use output channel names in several ways, including:

1 Functions

1-786

• To identify channels on model display and plots
• To extract subsystems of MIMO systems
• To specify connection points when interconnecting models

OutputUnit — Output channel units
'' (default) | character vector | cell array

Output channel units, specified as a character vector or cell array.

• Single-input model — Character vector. For example, 'seconds'.
• Multi-input Model — Cell array of character vectors.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

OutputGroup — Output channel groups
struct with no fields (default) | struct

Output channel groups, specified as a structure. The OutputGroup property lets you divide the
output channels of MIMO systems into groups and refer to each group by name. In the OutputGroup
structure, set field names to the group names, and field values to the output channels belonging to
each group.

For example, create output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively.

sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];

You can then extract the subsystem from all inputs to the measurement outputs using the following
syntax:

sys('measurement',:)

Name — System Name
'' (default) | character vector

System name, specified as a character vector. For example, 'system_1'.

Notes — Notes on system
0-by-1 string (default) | string | character vector

Any text that you want to associate with the system, specified as a string or a cell array of character
vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are
dynamic system models, you can set their Notes properties as follows.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

 idss

1-787

ans =

 'sys2 has a character vector.'

UserData — Data to associate with system
[] (default) | any MATLAB data type

Data to associate with the system, specified as any MATLAB data type.

SamplingGrid — Sampling grid
[] (default) | struct

Sampling grid for model arrays, specified as a structure.

For arrays of identified linear (IDLTI) models that you derive by sampling one or more independent
variables, this property tracks the variable values associated with each model. This information
appears when you display or plot the model array. Use this information to trace results back to the
independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values
to the sampled variable values associated with each model in the array. All sampling variables must
be numeric and scalar valued, and all arrays of sampled values must match the dimensions of the
model array.

For example, suppose that you collect data at various operating points of a system. You can identify a
model for each operating point separately and then stack the results together into a single system
array. You can tag the individual models in the array with information regarding the operating point.

nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)

Here, sys is an array containing three identified models obtained at 1000, 5000, and 10000 rpm,
respectively.

For model arrays that you generate by linearizing a Simulink model at multiple parameter values or
operating points, the software populates SamplingGrid automatically with the variable values that
correspond to each entry in the array.

Object Functions
In general, any function applicable to “Dynamic System Models” is applicable to an idss model
object. These functions are of four general types.

• Functions that operate and return idss model objects enable you to transform and manipulate
idss models. For instance:

• Use canon to transform an idss model into canonical form
• Use merge to merge estimated idss models.
• Use c2d to convert an idss from continuous to discrete time. Use d2c to convert an idss

from discrete to continuous time.
• Functions that perform analytical and simulation functions on idss objects, such as bode and sim
• Functions that retrieve or interpret model information, such as advice and getpar

1 Functions

1-788

• Functions that convert idss objects into a different model type, such as idpoly or idtf for time
domain or idfrd for continuous domain

The following lists contain a representative subset of the functions that you can use with idss
models.

Transformation and Manipulation
canon Canonical state-space realization
ss2ss State coordinate transformation for state-space model
balred Model order reduction
translatecov Translate parameter covariance across model transformation operations
setpar Set attributes such as values and bounds of linear model parameters
chgTimeUnit Change time units of dynamic system
d2d Resample discrete-time model
d2c Convert model from discrete to continuous time
c2d Convert model from continuous to discrete time
merge Merge estimated models

Analysis and Simulation
sim Simulate response of identified model
predict Predict state and state estimation error covariance at next time step using extended or

unscented Kalman filter, or particle filter
compare Compare identified model output with measured output
impulse Impulse response plot of dynamic system; impulse response data
step Step response plot of dynamic system; step response data
bode Bode plot of frequency response, or magnitude and phase data
data2state Map past data to states of state-space and nonlinear ARX models
findstates Estimate initial states of model

Information Extraction and Interpretation
idssdata State-space data of identified system
get Access model property values
getpar Obtain attributes such as values and bounds of linear model parameters
getcov Parameter covariance of identified model
advice Analysis and recommendations for data or estimated linear models

Conversion to Other Model Structures
idpoly Polynomial model with identifiable parameters
idtf Transfer function model with identifiable parameters
idfrd Frequency response data or model

Examples

Create State-Space Model with Identifiable Parameters

Create a 4th-order SISO state-space model with identifiable parameters. Initialize the initial state
values to 0.1 for all entries. Set the sample time to 0.1 s.

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];

 idss

1-789

C = [1 0 1 0];
D = 0;
K = zeros(4,1);
x0 = [0.1,0.1,0.1,0.1];
Ts = 0.1;

sys = idss(A,B,C,D,K,x0,Ts);

sys is a 4th-order SISO idss model. The number of states and input-output dimensions are
determined by the dimensions of the state-space matrices. By default, all entries in the matrices A, B,
C, D, and K are identifiable parameters.

You can use sys to specify an initial parameterization for state-space model estimation with ssest or
n4sid.

Specify Additional Attributes of State-Space Model

Create a 4th-order SISO state-space model with identifiable parameters. Name the input and output
channels of the model, and specify minutes as the model time unit.

You can use name-value pair arguments to specify additional model properties during model creation.

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];
D = 0;

sys = idss(A,B,C,D,'InputName','Drive','TimeUnit','minutes');

To change or specify most attributes of an existing model, you can use dot notation. For example,
change the output name.

sys.OutputName = 'Torque';

Configure Identifiable Parameters of State-Space Model

Configure an idss model so that it has no state disturbance element and only the nonzero entries of
the A matrix are estimable. Additionally, fix the values of the B matrix.

You can configure individual parameters of an idss model to specify constraints for state-space
model estimation with ssest or n4sid.

Create an idss model.

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];
D = 0;
K = zeros(4,1);
x0 = [0.1,0.1,0.1,0.1];

sys = idss(A,B,C,D,K,x0,0);

1 Functions

1-790

Setting all entries of K to 0 creates an idss model with no state disturbance element.

Use the Structure property of the model to fix the values of some of the parameters.

sys.Structure.A.Free = (A~=0);
sys.Structure.B.Free = false;
sys.Structure.K.Free = false;

The entries in sys.Structure.A.Free determine whether the corresponding entries in sys.A are
free (identifiable) or fixed. The first line sets sys.Structure.A.Free to a logical matrix that is
true wherever A is nonzero, and false everywhere else. This setting fixes the values of the zero
entries in sys.A.

The remaining lines fix all the values in sys.B and sys.K to the values that you specified during
model creation.

Convert Transfer Function into State-Space Model

Model a dynamic system using a transfer function. Then use idss to convert the transfer-function
model into state-space form.

Using idtf, construct a continuous-time, single-input, single-output (SISO) transfer function
described by:

G(s) = s + 4
s2 + 20s + 5

num = [1 4];
den = [1 20 5];
G = idtf(num,den)

G =
 s + 4

 s^2 + 20 s + 5

Continuous-time identified transfer function.

Parameterization:
 Number of poles: 2 Number of zeros: 1
 Number of free coefficients: 4
 Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

Convert the transfer function into state-space form.

sys0 = idss(G)

sys0 =
 Continuous-time identified state-space model:
 dx/dt = A x(t) + B u(t) + K e(t)
 y(t) = C x(t) + D u(t) + e(t)

 idss

1-791

 A =
 x1 x2
 x1 -20 -2.5
 x2 2 0

 B =
 u1
 x1 2
 x2 0

 C =
 x1 x2
 y1 0.5 1

 D =
 u1
 y1 0

 K =
 y1
 x1 0
 x2 0

Parameterization:
 FREE form (all coefficients in A, B, C free).
 Feedthrough: none
 Disturbance component: none
 Number of free coefficients: 8
 Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

Array of State-Space Models

Create an array of state-space models.

You can create an array of state-space models in one of several ways:

• Direct array construction using n-dimensional state-space arrays
• Array-building by indexed assignment
• Array-building using the stack command
• Sampling an identified model using the rsample command

Create an array by providing n-dimensional arrays as an input argument to idss, instead of 2-
dimensional matrices.

A = rand(2,2,3,4);
sysarr = idss(A,[2;1],[1 1],0);

When you provide a multi-dimensional array to idss in place of one of the state-space matrices, the
first two dimensions specify the numbers of states, inputs, or outputs of each model in the array. The

1 Functions

1-792

remaining dimensions specify the dimensions of the array itself. A is a 2-by-2-by-3-by-4 array.
Therefore, sysarr is a 3-by-4 array of idss models. Each model in sysarr has two states, specified
by the first two dimensions of A. Further, each model in sysarr has the same B, C, and D values.

Create an array by indexed assignment.

sysarr = idss(zeros(1,1,2));
sysarr(:,:,1) = idss([4 -3; -2 0],[2;1],[1 1],0);
sysarr(:,:,2) = idss(rand(2),rand(2,1),rand(1,2),1);

The first command preallocates the array. The first two dimensions of the array are the I/O
dimensions of each model in the array. Therefore, sysarr is a 2-element vector of SISO models.

The remaining commands assign an idss model to each position in sysarr. Each model in an array
must have the same I/O dimensions.

Add another model to sysarr using stack.

stack is an alternative to building an array by indexing.

sysarr = stack(1,sysarr,idss([1 -2; -4 9],[0;-1],[1 1],0));

This command adds another idss model along the first array dimension of sysarr. sysarr is now a
3-by-1 array of SISO idss models.

Version History
Introduced in R2006a

See Also
idssdata | ssest | ssestOptions | n4sid | pem | idgrey | idpoly | idproc | idtf |
translatecov

Topics
“Dynamic System Models”
“What Are State-Space Models?”
“State-Space Realizations”
“Estimate State-Space Models with Structured Parameterization”

 idss

1-793

idssdata
State-space data of identified system

Syntax
[A,B,C,D,K] = idssdata(sys)
[A,B,C,D,K,x0] = idssdata(sys)
[A,B,C,D,K,x0,dA,dB,dC,dD,dK,dx0] = idssdata(sys)
[A,B,C,D,K, ___] = idssdata(sys,j1,...,jN)
[A,B,C,D,K, ___] = idssdata(sys,'cell')

Description
[A,B,C,D,K] = idssdata(sys) returns the A,B,C,D and K matrices of the identified state-space
model sys.

[A,B,C,D,K,x0] = idssdata(sys) returns the initial state values, x0.

[A,B,C,D,K,x0,dA,dB,dC,dD,dK,dx0] = idssdata(sys) returns the uncertainties in the
system matrices for sys.

[A,B,C,D,K, ___] = idssdata(sys,j1,...,jN) returns data for the j1, ..., jn entries in
the model array sys.

[A,B,C,D,K, ___] = idssdata(sys,'cell') returns data for all the entries in the model array
sys as separate cells in cell arrays.

Input Arguments
sys

Identified model.

If sys is not an identified state-space model (idss or idgrey), then it is first converted to an idss
model. This conversion results in a loss of the model uncertainty information.

sys can be an array of identified models.

j1,...,jN

Integer indices of N entries in the array sys of identified systems.

Output Arguments
A,B,C,D,K

State-space matrices that represent sys as:

x[k + 1] = Ax[k] + Bu[k] + Ke[k]; x[0] = x0;
y[k] = Cx[k] + Du[k] + e[k];

1 Functions

1-794

If sys is an array of identified models, then A,B,C,D,K are multi-dimension arrays. To access the
state-space matrix, say A, for the k-th entry of sys, use A(:,:,k).

x0

Initial state.

If sys is an idss or idgrey model, then x0 is the value obtained during estimation. It is also stored
using the Report.Parameters property of sys.

For other model types, x0 is zero.

If sys is an array of identified models, then x0 contains a column for each entry in sys.

dA,dB,dC,dD,dK

Uncertainties associated with the state-space matrices A,B,C,D,K.

The uncertainty matrices represents 1 standard deviation of uncertainty.

If sys is an array of identified models, then dA,dB,dC,dD,dK are multi-dimension arrays. To access
the state-space matrix, say A, for the k-th entry of sys, use A(:,:,k).

dx0

Uncertainty associated with the initial state.

dx0 represents 1 standard deviation of uncertainty.

If sys is an array of identified models, then dx0 contains a column for each entry in sys.

Examples

Obtain Identified State-Space Matrices

Obtain the identified state-space matrices for a model estimated from data.

Identify a model using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.

sys is an idss model representing the identified system.

Obtain identified state-space matrices of sys.

[A,B,C,D,K] = idssdata(sys);

 idssdata

1-795

Obtain Initial State of Identified Model

Obtain the initial state associated with an identified model.

Identify a model using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.

sys is an idss model representing the identified system.

Obtain the initial state associated with sys.

[A,B,C,D,K,x0] = idssdata(sys);

A, B, C, D and K represent the state-space matrices of the identified model sys. x0 is the initial state
identified for sys.

Obtain Uncertainty Data of State-Space Matrices of Identified Model

Obtain the uncertainty matrices of the state-space matrices of an identified model.

Identify a model using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.

sys is an idss model representing the identified system.

Obtain the uncertainty matrices associated with the state-space matrices of sys.

[A,B,C,D,K,x0,dA,dB,dC,dD,dx0] = idssdata(sys);

dA, dB, dC, dD and dK represent the uncertainty associated with the state-space matrices of the
identified model sys. dx0 represents the uncertainty associated with the estimated initial state.

Obtain State-Space Matrices for Multiple Identified Models

Obtain the state-space matrices for multiple models from an array of identified models.

Identify multiple models using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys2 = n4sid(data,2,'InputDelay',2);
sys3 = n4sid(data,3,'InputDelay',2);

1 Functions

1-796

sys4 = n4sid(data,4,'InputDelay',2);
sys = stack(1,sys2,sys3,sys4);

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.

sys is an array of idss models. The first entry of sys is a second-order identified system. The second
and third entries of sys are third- and fourth-order identified systems, respectively.

Obtain the state-space matrices for the first and third entries of sys.

[A,B,C,D,K,x0] = idssdata(sys,1);
[A,B,C,D,K,x0] = idssdata(sys,3);

Obtain State-Space Matrices for Identified Model as Cell Array

Obtain the state-space matrices of an array of identified models in cell arrays.

Identify multiple models using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys3 = n4sid(data,3,'InputDelay',2);
sys4 = n4sid(data,4,'InputDelay',2);
sys = stack(1,sys3,sys4);

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.

sys is an array of idss models. The first entry of sys is a third-order identified system and the
second entry is a fourth-order identified system.

Obtain the state-space matrices of sys in cell arrays.

[A,B,C,D,K,x0] = idssdata(sys,'cell');

A, B, C, D and K are cell arrays containing the state-space matrices of the individual entries of the
identified model array sys. x0 is a cell array containing the estimated initial state of the individual
entries of the identified model array sys.

Version History
Introduced in R2012a

See Also
ssdata | idss | tfdata | zpkdata | polydata

 idssdata

1-797

idSupportVectorMachine
Support vector machine regression mapping function for nonlinear ARX models (requires Statistics
and Machine Learning Toolbox)

Description
An idSupportVectormachine object implements a support vector machine (SVM) regression
model, and is a nonlinear mapping function for estimating nonlinear ARX models. This mapping
object, which is also referred to as a nonlinearity, incorporates objects that the mapping function
creates using Statistics and Machine Learning Toolbox functions. The mapping object contains a
single component—the nonlinear component that the SVM algorithm represents.

The input to the mapping object can be a vector of the regressors of a nonlinear ARX model.

Mathematically, idSupportVectorMachine is a function that maps m inputs X(t) = [x(t1),x2(t),
…,xm(t)]T to a scalar output y(t) using the following relationship:

y(t) = S(Χ(t))

Here, S(X(t)) is the regressive SVM function that constitutes the kernel of the
idSupportVectorMachine object, and can be expressed as:

S(X) = ∑
n = 1

N
αnG(xn, X) + b

Here:

• X is an m-by-1 vector of inputs, or regressors.

1 Functions

1-798

• N is the number of support vectors in the trained model.
• xn is the nth support vector in the trained model.
• αn is the weight associated with each support vector.
• G is the Gram matrix that results from the operation of the specified kernel function on X and xn.
• b is the offset of the trained model.

The SVM mapping object implements linear epsilon-insensitive SVM regression, which is particularly
robust to outliers. In this type of regression, a primary goal of the algorithm is to find a function f(x)
that deviates from a training response yn by a value no greater than ε for each training point. The
algorithm accommodates situations where no such linear function is available by introducing “slack
variables” ζ and ζ* that provide a softer margin beyond ε. The corresponding loss function, known as
the ε-insensitive loss function, ignores observed values that are within ε by treating them as equal to
0. The loss, Lε, is based only on the distance between the observed value y and the ε boundary when
the value is beyond that boundary, as described by:

Lε =
0 if y − f x ≤ ε
y − f x − ε otherwise

For more information about SVM regression models, see “Understanding Support Vector Machine
Regression” (Statistics and Machine Learning Toolbox).

Use idSupportVectorMachine as the value of the OutputFcn argument of an idnlarx model. For
example, specify idSupportVectorMachine when you estimate an idnlarx model with the
following command.

sys = nlarx(data,regressors,idSupportVectorMachine)

You can configure the idSupportVectorMachine object to fix parameters during estimation and
modify options. For example, if you are using a previously estimated idSupportVectorMachine
model S and want to retain the model parameters, fix the parameters during idnlarx estimation by
setting the S.Free property to false. To modify an estimation option, set the value of the option
property in S.EstimationOptions. For example, to change the solver to 'ISDA', use the command
S.EstimationOptions.Solver = 'ISDA'. Use evaluate to compute the output of the function
for a given vector of inputs.

Creation
Syntax
S = idSupportVectorMachine
S = idSupportVectorMachine(KernelFunction)
S = idSupportVectorMachine(KernelFunction,EpsilonMargin)

Description

S = idSupportVectorMachine creates an idSupportVectorMachine object S with the kernel
function 'Gaussian' and default kernel parameters. The number of inputs is determined during
model estimation and the number of outputs is 1.

S = idSupportVectorMachine(KernelFunction) specifies the specific kernel
KernelFunction .

 idSupportVectorMachine

1-799

S = idSupportVectorMachine(KernelFunction,EpsilonMargin) specifies the property
EpsilonMargin, which is half the width of the epsilon-insensitive band.

Properties
Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

KernelFunction — SVM kernel function name
'Gaussian' (default) | 'rbf' | 'Linear' | 'Polynomial'

SVM kernel function name, specified as 'Gaussian', 'rbf', 'Linear', or 'Polynomial'. The
SVM algorithm uses the kernel function to compute the Gram matrix.

KernelScale — Kernel scale parameter
'auto' (default) | positive scalar

Kernel scale parameter, specified as 'auto' or a positive scalar. The software divides elements of the
predictor matrix by this value prior to computing the Gram matrix. KernelScale is an important
tuning parameter for SVM models.

When you specify 'auto', the software uses the fitrsvm 'auto' setting.

EpsilonMargin — Half the width of the epsilon-insensitive band
'auto' (default) | nonnegative scalar

Half the width of the epsilon-insensitive band, specified as 'auto' or a nonnegative scalar. For more
information on this band, see “Understanding Support Vector Machines” (Statistics and Machine
Learning Toolbox).

Polynomial Order — Polynomial kernel function order
3 (default) | positive integer

Polynomial kernel function order, specified as a positive integer that the software uses when
KernelFunction is 'Polynomial'.

KernelOffset — Kernel Offset
0 (default) | nonnegative scalar

Kernel offset order, specified as a nonnegative scalar. The software adds KernelOffset to each
element of the Gram matrix.

BoxConstraint — Box constraint
1 (default) | positive scalar

1 Functions

1-800

Box constraint that is the upper bound for the absolute value of the alpha coefficients, specified as a
positive scalar.

Parameters — Support vector parameters
parameter property values

Support vector parameters of the trained SVM model, specified as shown in the following table.

Parameter Description Default
Alpha Initial estimates of the α

weights associated with the
support vectors, specified as a
numeric vector with length
equal to the number of rows in
the estimation data set.

You can set the values of Alpha
only prior to estimation.

[]

LinearCoefficient Linear coefficients that the
software estimates when
KernelFunction is
'Linear' .

Read-only property

Bias SVM model offset term that the
software estimates.

Read-only property

IsSupportVector Logical vector with length equal
to the number of observations
that indicates which
observations are support
vectors.

Read-only property

Free — Option to free or fix parameters
true (default) | false

Option to free or fix SVM model parameters during estimation, specified as a logical scalar. If all the
parameters have finite values, such as when the idSupportVectorMachine object corresponds to a
previously estimated model, then setting Free to false causes the parameters of the kernel G(X) to
remain unchanged during estimation. The default value is true.

EstimationOptions — Estimation options
estimation option property values

Estimation options for the idSupportVectorMachine model, specified as shown in the following
table. For more information on any of these options, see fitrsvm.

Option Description Default
OutlierFraction Expected proportion of outliers

in the training data, specified as
a numeric scalar in the interval
[0,1]

[]

 idSupportVectorMachine

1-801

Option Description Default
CacheSize Cache size in MB that the

software reserves in memory for
training the model, specified as
a positive scalar.

1000

Solver Solver used for parameter
estimation, specified as one of
the following values:

• 'SMO' — Sequential Minimal
Optimization

• 'ISDA' — Iterative Single
Data Algorithm

• 'ISDA', if you set
OutlierFraction to a
positive value

• 'SMO', otherwise

Examples

Estimate Nonlinear ARX Model with idSupportVectorMachine as Output Function

Load the data z2.

load iddata2 z2

Create an idSupportVectorMachine mapping object.

S = idSupportVectorMachine

S =
Support Vector Machine Function

 Nonlinear Function: Support Vector Machine function using a Gaussian kernel

 Inputs: {1x0 cell}
 Outputs: {1x0 cell}
 KernelFunction: 'Gaussian'
 EpsilonMargin: 'auto'
 PolynomialOrder: 3
 KernelOffset: 0
 BoxConstraint: 1
 KernelScale: 'auto'
 Parameters: 'Support vector parameters'
 Free: 1
 EstimationOptions: 'Estimation option set'

Set the KernelScale property to 5.

S.KernelScale = 5;

Estimate a nonlinear ARX model that uses S as the output function.

sys = nlarx(z2,[4 4 1],S);

View the properties of sys.OutputFcn.

1 Functions

1-802

sys.OutputFcn

ans =
Support Vector Machine Function
Inputs: y1(t-1), y1(t-2), y1(t-3), y1(t-4), u1(t-1), u1(t-2), u1(t-3), u1(t-4)
Output: y1(t)

 Nonlinear Function: Support Vector Machine function using a Gaussian kernel

 Inputs: {1x8 cell}
 Outputs: {'y1(t)'}
 KernelFunction: 'Gaussian'
 EpsilonMargin: 1.0424
 PolynomialOrder: 3
 KernelOffset: 0
 BoxConstraint: 1
 KernelScale: 5
 Parameters: 'Support vector parameters'
 Free: 1
 EstimationOptions: 'Estimation option set'

Compare sys with z2.

compare(z2,sys)

 idSupportVectorMachine

1-803

Version History
Introduced in R2022a

See Also
fitrsvm | nlarx | idnlarx | idnlhw | evaluate

Topics
“Piezoelectric Actuator Model Identification Using Machine Learning”
“Understanding Support Vector Machine Regression” (Statistics and Machine Learning Toolbox)
“Available Mapping Functions for Nonlinear ARX Models”
“Piezoelectric Actuator Model Identification Using Machine Learning”

1 Functions

1-804

idtf
Transfer function model with identifiable parameters

Description
An idtf model represents a system as a continuous-time or discrete-time transfer function with
identifiable (estimable) coefficients. Use idtf to create a transfer function model, or to convert
“Dynamic System Models” to transfer function form.

A SISO transfer function is a ratio of polynomials with an exponential term. In continuous time,

G s = e−τsbnsn + bn− 1sn− 1 + ... + b0
sm + am− 1sm− 1 + ... + a0

.

In discrete time,

G z−1 = z−kbnz−n + bn− 1z−n + 1 + ... + b0
z−m + am− 1z−m + 1 + ... + a0

.

In discrete time, z–k represents a time delay of kTs, where Ts is the sample time.

For idtf models, the denominator coefficients a0,...,am–1 and the numerator coefficients b0,...,bn can
be estimable parameters. (The leading denominator coefficient is always fixed to 1.) The time delay τ
(or k in discrete time) can also be an estimable parameter. The idtf model stores the polynomial
coefficients a0,...,am–1 and b0,...,bn in the Denominator and Numerator properties of the model,
respectively. The time delay τ or k is stored in the IODelay property of the model.

Unlike idss and idpoly, idtf fixes the noise parameter to 1 rather than parameterizing it. So, in
y = Gu + He, H = 1.

A MIMO transfer function contains a SISO transfer function corresponding to each input-output pair
in the system. For idtf models, the polynomial coefficients and transport delays of each input-output
pair are independently estimable parameters.

Creation
You can obtain an idtf model object in one of three ways.

• Estimate the idtf model based on input-output measurements of a system using tfest. The
tfest command estimates the values of the transfer function coefficients and transport delays.
The estimated values are stored in the Numerator, Denominator, and IODelay properties of the
resulting idtf model. When you reference numerator and denominator properties, you can use
the shortcuts num and den. The Report property of the resulting model stores information about
the estimation, such as handling of initial conditions and options used in estimation. For example,
you can use the following commands to estimate and get information about a transfer function.

sys = tfest(data,nx);
num = sys.Numerator;

 idtf

1-805

den = sys.den;
sys.Report

For more examples of estimating an idtf model, see tfest.

When you obtain an idtf model by estimation, you can extract estimated coefficients and their
uncertainties from the model. To do so, use commands such as tfdata, getpar, or getcov.

• Create an idtf model using the idtf command. For example, create an idtf model with the
numerator and denominator that you specify.

sys = idtf(num,den)

You can create an idtf model to configure an initial parameterization for estimation of a transfer
function to fit measured response data. When you do so, you can specify constraints on such
values as the numerator and denominator coefficients and transport delays. For example, you can
fix the values of some parameters, or specify minimum or maximum values for the free
parameters. You can then use the configured model as an input argument to tfest to estimate
parameter values with those constraints. For examples, see “Create Continuous-Time Transfer
Function Model” on page 1-816 and “Create Discrete-Time Transfer Function” on page 1-817.

• Convert an existing dynamic system model to an idtf model using the idtf command. For
example, convert the state-space model sys_ss to a transfer function.

sys_tf = idtf(sys_ss);

For a more detailed example, see “Convert Identifiable State-Space Model to Identifiable Transfer
Function” on page 1-819

For information on functions you can use to extract information from or transform idtf model
objects, see “Object Functions” on page 1-815.

Syntax
sys = idtf(numerator,denominator)
sys = idtf(numerator,denominator,Ts)
sys = idtf(___ ,Name,Value)

sys = idtf(sys0)

Description
Create Transfer Function Model

sys = idtf(numerator,denominator) creates a continuous-time transfer function model with
identifiable parameters. numerator specifies the current values of the transfer function numerator
coefficients. denominator specifies the current values of the transfer function denominator
coefficients.

sys = idtf(numerator,denominator,Ts) creates a discrete-time transfer function model with
sample time Ts.

sys = idtf(___ ,Name,Value) creates a transfer function with the properties on page 1-807
specified by one or more Name,Value pair arguments. Specify name-value pair arguments after any
of the input argument combinations in the previous syntaxes.

1 Functions

1-806

Convert Dynamic System Model to Transfer Function Model

sys = idtf(sys0) converts any dynamic system model sys0 to idtf model form.

Input Arguments

sys0 — Dynamic system
dynamic system model

Any dynamic system to convert to an idtf model.

When sys0 is an identified model, its estimated parameter covariance is lost during conversion. If
you want to translate the estimated parameter covariance during the conversion, use
translatecov.

Properties
Numerator — Values of transfer function numerator coefficients
vector | cell array

Values of transfer function numerator coefficients, specified as a row vector or a cell array.

For SISO transfer functions, the values of the numerator coefficients are stored as a row vector in the
following order:

• Descending powers of s or p (for continuous-time transfer functions)
• Ascending powers of z–1 or q–1 (for discrete-time transfer functions)

Any coefficient whose initial value is not known is stored as NaN.

For MIMO transfer functions with Ny outputs and Nu inputs, Numerator is a Ny-by-Nu cell array of
numerator coefficients for each input/output pair. For an example of a MIMO transfer function, see
“Create MIMO Discrete-Time Transfer Function” on page 1-818.

If you create an idtf model sys using the idtf command, sys.Numerator contains the initial
values of numerator coefficients that you specify with the numerator input argument.

If you obtain an idtf model by identification using tfest, then sys.Numerator contains the
estimated values of the numerator coefficients.

For an idtf model sys, the property sys.Numerator is an alias for the value of the property
sys.Structure.Numerator.Value.

Denominator — Values of transfer function denominator coefficients
vector | cell array

Values of transfer function denominator coefficients, specified as a row vector or a cell array.

For SISO transfer functions, the values of the denominator coefficients are stored as a row vector in
the following order:

• Descending powers of s or p (for continuous-time transfer functions)
• Ascending powers of z–1 or q–1 (for discrete-time transfer functions)

 idtf

1-807

The leading coefficient in Denominator is fixed to 1. Any coefficient whose initial value is not known
is stored as NaN.

For MIMO transfer functions with Ny outputs and Nu inputs, Denominator is an Ny-by-Nu cell array
of denominator coefficients for each input-output pair. For an example of a MIMO transfer function,
see “Create MIMO Discrete-Time Transfer Function” on page 1-818.

If you create an idtf model sys using theidtf command, sys.Denominator contains the initial
values of denominator coefficients that you specify with the denominator input argument.

If you obtain an idtf model sys by identification using tfest, then sys.Denominator contains the
estimated values of the denominator coefficients.

For an idtf model sys, the property sys.Denominator is an alias for the value of the property
sys.Structure.Denominator.Value.

Variable — Transfer function display variable
's' (default) | 'p' | 'z^-1' | 'q^-1'

Transfer function display variable, specified as one of the following values:

• 's' — Default for continuous-time models
• 'p' — Equivalent to 's'
• 'z^-1' — Default for discrete-time models
• 'q^-1' — Equivalent to 'z^-1'

The value of Variable is reflected in the display, and also affects the interpretation of the
Numerator and Denominator coefficient vectors for discrete-time models. When Variable is set to
'z^-1' or 'q^-1', the coefficient vectors are ordered as ascending powers of the variable.

For an example of using the Variable property, see “Specify Transfer Function Display Variable” on
page 1-818.

IODelay — Transport delays
0 (default) | numeric array

Transport delays, specified as a numeric array containing a separate transport delay for each input-
output pair.

For continuous-time systems, transport delays are expressed in the time unit stored in the TimeUnit
property. For discrete-time systems, transport delays are expressed as integers denoting delay of a
multiple of the sample time Ts.

For a MIMO system with Ny outputs and Nu inputs, set IODelay as an Ny-by-Nu array. Each entry of
this array is a numerical value representing the transport delay for the corresponding input-output
pair. You can set IODelay to a scalar value to apply the same delay to all input-output pairs.

If you create an idtf model sys using the idtf command, then sys.IODelay contains the initial
values of the transport delay that you specify with a name-value pair argument.

If you obtain an idtf model sys by identification using tfest, then sys.IODelay contains the
estimated values of the transport delay.

1 Functions

1-808

For an idtf model sys, the property sys.IODelay is an alias for the value of the property
sys.Structure.IODelay.Value.

Structure — Information about estimable parameters
structure property values | array of structure property values

Property-specific information about the estimable parameters of the idtf model, specified as a single
structure or an array of structures.

• SISO system — Single structure.
• MIMO system with Ny outputs and Nu inputs — Ny-by-Nu array. The element Structure(i,j)

contains information corresponding to the transfer function for the (i,j) input-output pair.

Structure.Numerator, Structure.Denominator, and Structure.IODelay contain information
about the numerator coefficients, denominator coefficients, and transport delay, respectively. Each
parameter in Structure contains the following fields.

Field Description Examples
Value Parameter values. Each

property is an alias of the
corresponding Value entry in
the Structure property of
sys.NaN represents unknown
parameter values.

sys.Structure.Numerator.
Value contains the initial or
estimated values of SISO
numerator coefficients.
sys.Numerator is an alias of
the value of this property.
sys.Numerator{i,j} is the
alias of the MIMO property
sys.Structure(i,j).Numer
ator.Value.

Minimum Minimum value that the
parameter can assume during
estimation.

sys.Structure.IODelay.Mi
nimum = 0.1 constrains the
transport delay to values
greater than or equal to 0.1.
sys.Structure.IODelay.Mi
nimum must be greater than or
equal to zero.

Maximum Maximum value that the
parameter can assume during
estimation.

sys.Structure.IODelay.Ma
ximum = 0.5 constrains the
transport delay to values less
than or equal to 0.5.
sys.Structure.IODelay.Ma
ximum must be greater than or
equal to zero.

 idtf

1-809

Field Description Examples
Free Boolean specifying whether the

parameter is a free estimation
variable. If you want to fix the
value of a parameter during
estimation, set the
corresponding Free value to
false. For denominators, the
value of Free for the leading
coefficient, specified by
sys.Structure.Denominato
r.Free(1), is always false
(the leading denominator
coefficient is always fixed to 1).

sys.Structure.Denominato
r.Free = false fixes all of
the denominator coefficients in
sys to the values specified in
sys.Structure.Denominato
r.Value.

Scale Scale of the value of the
parameter. The estimation
algorithm does not use Scale.

Info Structure array that contains
the fields Label and Unit for
storing parameter labels and
units. Specify parameter labels
and units as character vectors.

'Time'

NoiseVariance — Variance of model innovations
scalar | matrix

Variance (covariance matrix) of the model innovations e, specified as a scalar or matrix.

• SISO model — Scalar
• MIMO model with Ny outputs — Ny-by-Ny matrix

An identified model includes a white Gaussian noise component e(t). NoiseVariance is the variance
of this noise component. Typically, the model estimation function (such as tfest) determines this
variance.

Report — Summary report
report field values

This property is read-only.

Summary report that contains information about the estimation options and results for a transfer
function model obtained using estimation commands, such as tfest and impulseest. Use Report
to find estimation information for the identified model, including:

• Estimation method
• Estimation options
• Search termination conditions
• Estimation data fit and other quality metrics

If you create the model by construction, the contents of Report are irrelevant.

1 Functions

1-810

sys = idtf([1 4],[1 20 5]);
sys.Report.OptionsUsed

ans =

 []

If you obtain the model using estimation commands, the fields of Report contain information on the
estimation data, options, and results.

load iddata2 z2;
sys = tfest(z2,3);
sys.Report.OptionsUsed

 InitializeMethod: 'iv'
 InitializeOptions: [1×1 struct]
 InitialCondition: 'auto'
 Display: 'off'
 InputOffset: []
 OutputOffset: []
 EstimateCovariance: 1
 Regularization: [1×1 struct]
 SearchMethod: 'auto'
 SearchOptions: [1×1 idoptions.search.identsolver]
 WeightingFilter: []
 EnforceStability: 0
 OutputWeight: []
 Advanced: [1×1 struct]

For more information on this property and how to use it, see the Output Arguments section of the
corresponding estimation command reference page and “Estimation Report”.

InputDelay — Input delay for each input channel
0 (default) | scalar | vector

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time
systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sample time Ts. For example, setting
InputDelay to 3 specifies a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Estimation treats InputDelay as a fixed constant of the model. Estimation uses the IODelay
property for estimating time delays. To specify initial values and constrains for estimation of time
delays, use sys.Structure.IODelay.

OutputDelay — Output delay for each output channel
0 (default)

For identified systems such as idtf, OutputDelay is fixed to zero.

Ts — Sample Time
0 (default) | -1 | positive scalar

 idtf

1-811

Sample time, specified as one of the following.

• Continuous-time model — 0
• Discrete-time model with a specified sampling time — Positive scalar representing the sampling

period expressed in the unit specified by the TimeUnit property of the model
• Discrete-time model with unspecified sample time — -1

Changing this property does not discretize or resample the model. Use c2d and d2c to convert
between continuous- and discrete-time representations. Use d2d to change the sample time of a
discrete-time system.

TimeUnit — Units for time variable
'seconds' (default) | 'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' |
'hours' | 'days' | 'weeks' | 'months' | 'years'

Units for the time variable, the sample time Ts, and any time delays in the model, specified as a
scalar.

Changing this property does not resample or convert the data. Modifying the property changes only
the interpretation of the existing data. Use chgTimeUnit to convert data to different time units.

InputName — Input channel names
'' (default) | character vector | cell array

Input channel names, specified as a character vector or cell array.

• Single-input model — Character vector, for example, 'controls'
• Multi-input model — Cell array of character vectors

Alternatively, use automatic vector expansion to assign input names for multi-input models. For
example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

When you estimate a model using an iddata object data, the software automatically sets
InputName to data.InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

You can use input channel names in several ways, including:

• To identify channels on model display and plots
• To extract subsystems of MIMO systems
• To specify connection points when interconnecting models

InputUnit — Input channel units
'' (default) | character vector | cell array

Input channel units, specified as a character vector or cell array.

• Single-input model — Character vector

1 Functions

1-812

• Multi-input Model — Cell array of character vectors

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.

InputGroup — Input channel groups
struct with no fields (default) | struct

Input channel groups, specified as a structure. The InputGroup property lets you divide the input
channels of MIMO systems into groups so that you can refer to each group by name. In the
InputGroup structure, set field names to the group names, and field values to the input channels
belonging to each group.

For example, create input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively.

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

You can then extract the subsystem from the controls inputs to all outputs using the following
syntax:

sys(:,'controls')

OutputName — Output channel names
'' (default) | character vector | cell array

Output channel names, specified as a character vector or cell array.

• Single-input model — Character vector, for example, 'measurements'
• Multi-input model — Cell array of character vectors

Alternatively, use automatic vector expansion to assign output names for multi-output models. For
example, if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

When you estimate a model using an iddata object data, the software automatically sets
OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.

You can use output channel names in several ways, including:

• To identify channels on model display and plots
• To extract subsystems of MIMO systems
• To specify connection points when interconnecting models

OutputUnit — Output channel units
'' (default) | character vector | cell array

Output channel units, specified as a character vector or cell array.

 idtf

1-813

• Single-input model — Character vector, for example, 'seconds'
• Multi-input Model — Cell array of character vectors

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

OutputGroup — Output channel groups
struct with no fields (default) | struct

Output channel groups, specified as a structure. The OutputGroup property lets you divide the
output channels of MIMO systems into groups and refer to each group by name. In the OutputGroup
structure, set field names to the group names, and field values to the output channels belonging to
each group.

For example, create output groups named temperature and measurement that include output
channels 1 and 3, 5, respectively.

sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];

You can then extract the subsystem from all inputs to the measurement outputs using the following
syntax:

sys('measurement',:)

Name — System Name
'' (default) | character vector

System name, specified as a character vector, for example, 'system_1'.

Notes — Notes on system
0-by-1 string (default) | string | character vector

Any text that you want to associate with the system, specified as a string or a cell array of character
vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are
dynamic system models, you can set their Notes properties as follows.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 'sys2 has a character vector.'

UserData — Data to associate with system
[] (default) | any MATLAB data type

Data to associate with the system, specified as any MATLAB data type.

1 Functions

1-814

SamplingGrid — Sampling grid
[] (default) | struct

Sampling grid for model arrays, specified as a structure.

For arrays of identified linear (IDLTI) models that you derive by sampling one or more independent
variables, this property tracks the variable values associated with each model. This information
appears when you display or plot the model array. Use this information to trace results back to the
independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values
to the sampled variable values associated with each model in the array. All sampling variables must
be numeric and scalar valued, and all arrays of sampled values must match the dimensions of the
model array.

For example, suppose that you collect data at various operating points of a system. You can identify a
model for each operating point separately and then stack the results together into a single system
array. You can tag the individual models in the array with information regarding the operating point.

nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)

Here, sys is an array containing three identified models obtained at 1000, 5000, and 10000 rpm,
respectively.

For model arrays that you generate by linearizing a Simulink model at multiple parameter values or
operating points, the software populates SamplingGrid automatically with the variable values that
correspond to each entry in the array.

Object Functions
In general, any function applicable to “Dynamic System Models” is applicable to an idtf model
object. These functions are of four general types.

• Functions that operate and return idtf model objects enable you to transform and manipulate
idtf models. For instance:

• Use merge to merge estimated idtf models.
• Use c2d to convert an idtf from continuous to discrete time. Use d2c to convert an idtf

from discrete to continuous time.
• Functions that perform analytical and simulation functions on idtf objects, such as bode and sim
• Functions that retrieve or interpret model information, such as advice and getpar
• Functions that convert idtf objects into a different model type, such as idpoly for time domain

or idfrd for frequency domain

The following lists contain a representative subset of the functions that you can use with idtf
models.

Transformation and Manipulation
translatecov Translate parameter covariance across model transformation operations
setpar Set attributes such as values and bounds of linear model parameters

 idtf

1-815

chgTimeUnit Change time units of dynamic system
d2d Resample discrete-time model
d2c Convert model from discrete to continuous time
c2d Convert model from continuous to discrete time
merge Merge estimated models

Analysis and Simulation
sim Simulate response of identified model
predict Predict state and state estimation error covariance at next time step using extended or

unscented Kalman filter, or particle filter
compare Compare identified model output with measured output
impulse Impulse response plot of dynamic system; impulse response data
step Step response plot of dynamic system; step response data
bode Bode plot of frequency response, or magnitude and phase data

Information Extraction and Interpretation
tfdata Access transfer function data
get Access model property values
getpar Obtain attributes such as values and bounds of linear model parameters
getcov Parameter covariance of identified model
advice Analysis and recommendations for data or estimated linear models

Conversion to Other Model Structures
idpoly Polynomial model with identifiable parameters
idss State-space model with identifiable parameters
idfrd Frequency response data or model

Examples

Create Continuous-Time Transfer Function Model

Specify a continuous-time, single-input, single-output (SISO) transfer function with estimable
parameters. The initial values of the transfer function are given by the following equation:

G(s) = s + 4
s2 + 20s + 5

num = [1 4];
den = [1 20 5];
G = idtf(num,den)

G =
 s + 4

 s^2 + 20 s + 5

Continuous-time identified transfer function.

Parameterization:
 Number of poles: 2 Number of zeros: 1
 Number of free coefficients: 4

1 Functions

1-816

 Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

G is an idtf model. num and den specify the initial values of the numerator and denominator
polynomial coefficients in descending powers of s. The numerator coefficients with initial values 1
and 4 are estimable parameters. The denominator coefficients with initial values 20 and 5 are also
estimable parameters. The leading denominator coefficient is always fixed to 1.

You can use G to specify an initial parameterization for estimation with tfest.

Create Transfer Function with Known Input Delay and Specified Attributes

Specify a continuous-time, SISO transfer function with known input delay. The transfer function initial
values are given by the following equation:

G(s) = e−5 . 8s 5
s + 5

Label the input of the transfer function with the name 'Voltage' and specify the input units as
volt.

Use name-value pair arguments to specify the delay, input name, and input unit.

num = 5;
den = [1 5];
input_delay = 5.8;
input_name = 'Voltage';
input_unit = 'volt';
G = idtf(num,den,'InputDelay',input_delay,...
 'InputName',input_name,'InputUnit',input_unit);

G is an idtf model. You can use G to specify an initial parameterization for estimation with tfest. If
you do so, model properties such as InputDelay, InputName, and InputUnit are applied to the
estimated model. The estimation process treats InputDelay as a fixed value. If you want to estimate
the delay and specify an initial value of 5.8 s, use the IODelay property instead.

Create Discrete-Time Transfer Function

Specify a discrete-time SISO transfer function with estimable parameters. The initial values of the
transfer function are given by the following equation:

H(z) = z − 0 . 1
z + 0 . 8

Specify the sample time as 0.2 seconds.

num = [1 -0.1];
den = [1 0.8];

 idtf

1-817

Ts = 0.2;
H = idtf(num,den,Ts);

num and den are the initial values of the numerator and denominator polynomial coefficients. For
discrete-time systems, specify the coefficients in ascending powers of z−1.

Ts specifies the sample time for the transfer function as 0.2 seconds.

H is an idtf model. The numerator and denominator coefficients are estimable parameters (except
for the leading denominator coefficient, which is fixed to 1).

Create MIMO Discrete-Time Transfer Function

Specify a discrete-time, two-input, two-output transfer function. The initial values of the MIMO
transfer function are given by the following equation:

H(z) =

1
z + 0 . 2

z
z + 0 . 7

−z + 2
z − 0 . 3

3
z + 0 . 3

Specify the sample time as 0.2 seconds.

nums = {1,[1,0];[-1,2],3};
dens = {[1,0.2],[1,0.7];[1,-0.3],[1,0.3]};
Ts = 0.2;
H = idtf(nums,dens,Ts);

nums and dens specify the initial values of the coefficients in cell arrays. Each entry in the cell array
corresponds to the numerator or denominator of the transfer function of one input-output pair. For
example, the first row of nums is {1,[1,0]}. This cell array specifies the numerators across the first
row of transfer functions in H. Likewise, the first row of dens, {[1,0.2],[1,0.7]}, specifies the
denominators across the first row of H.

Ts specifies the sample time for the transfer function as 0.2 seconds.

H is an idtf model. All of the polynomial coefficients are estimable parameters, except for the
leading coefficient of each denominator polynomial. These coefficients are always fixed to 1.

Specify Transfer Function Display Variable

Specify the following discrete-time transfer function in terms of q^-1:

H(q−1) = 1 + 0 . 4q−1

1 + 0 . 1q−1− 0 . 3q−2

Specify the sample time as 0.1 seconds.

num = [1 0.4];
den = [1 0.1 -0.3];

1 Functions

1-818

Ts = 0.1;
convention_variable = 'q^-1';
H = idtf(num,den,Ts,'Variable',convention_variable);

Use a name-value pair argument to specify the variable q^-1.

num and den are the numerator and denominator polynomial coefficients in ascending powers of q−1.

Ts specifies the sample time for the transfer function as 0.1 seconds.

H is an idtf model.

Gain Matrix Transfer Function

Specify a transfer function with estimable coefficients whose initial value is given by the following
static gain matrix:

H(s) =
1 0 1
1 1 0
3 0 2

M = [1 0 1; 1 1 0; 3 0 2];
H = idtf(M);

H is an idtf model that describes a three input (Nu = 3), three output (Ny = 3) transfer function.
Each input-output channel is an estimable static gain. The initial values of the gains are given by the
values in the matrix M.

Convert Identifiable State-Space Model to Identifiable Transfer Function

Convert a state-space model with identifiable parameters to a transfer function with identifiable
parameters.

Convert the following identifiable state-space model to an identifiable transfer function.

x∼(t) =
−0 . 2 0

0 −0 . 3
x(t) +

−2
4

u(t) +
0 . 1
0 . 2

e(t)

y(t) = 1 1 x(t)

A = [-0.2, 0; 0, -0.3];
B = [2;4];
C = [1, 1];
D = 0;
K = [0.1; 0.2];
sys0 = idss(A,B,C,D,K,'NoiseVariance',0.1);
sys = idtf(sys0);

A, B, C, D, and K are matrices that specify sys0, an identifiable state-space model with a noise
variance of 0.1.

 idtf

1-819

sys = idtf(sys0) creates an idtf model sys.

Estimate Transfer Function Model by Specifying Number of Poles

Load the time-domain system-response data in timetable tt1.

load sdata1.mat tt1;

Set the number of poles np to 2 and estimate a transfer function.

np = 2;
sys = tfest(tt1,np);

sys is an idtf model containing the estimated two-pole transfer function.

View the numerator and denominator coefficients of the resulting estimated model sys.

sys.Numerator

ans = 1×2

 2.4554 176.9856

sys.Denominator

ans = 1×3

 1.0000 3.1625 23.1631

To view the uncertainty in the estimates of the numerator and denominator and other information,
use tfdata.

Create Array of Transfer Function Models

Create an array of transfer function models with identifiable coefficients. Each transfer function in
the array is of the form:

H s = a
s + a .

The initial value of the coefficient a varies across the array, from 0.1 to 1.0, in increments of 0.1.

H = idtf(zeros(1,1,10));
for k = 1:10
 num = k/10;
 den = [1 k/10];
 H(:,:,k) = idtf(num,den);
end

The first command preallocates a one-dimensional, 10-element array, H, and fills it with empty idtf
models.

1 Functions

1-820

The first two dimensions of a model array are the output and input dimensions. The remaining
dimensions are the array dimensions. H(:,:,k) represents the kth model in the array. Thus, the for
loop replaces the kth entry in the array with a transfer function whose coefficients are initialized with
a = k/10.

Version History
Introduced in R2012a

See Also
tfdata | getcov | getpar | idpoly | idss | idproc | idfrd | oe | tfest | translatecov

Topics
“Dynamic System Models”
“What are Transfer Function Models?”
“Estimate Transfer Function Models with Prior Knowledge of Model Structure and Constraints”

 idtf

1-821

idTreeEnsemble
Decision tree ensemble mapping function for nonlinear ARX models (requires Statistics and Machine
Learning Toolbox)

Description
An idTreeEnsemble object implements a decision tree ensemble model, and is a nonlinear mapping
function for estimating nonlinear ARX models. This mapping object incorporates regression tree
ensembles that the mapping function creates using Statistics and Machine Learning Toolbox. Unlike
most other mapping objects for idnlarx models, which typically contain offset, linear, and nonlinear
components, the idTreeEnsemble model contains only a nonlinear component.

Mathematically, the idTreeEnsemble object maps m inputs x(t) = [x1(t),x2(t),…,xm(t)]T to a scalar
output y(t) using a decision tree regression ensemble model.

Here:

• x(t) is an m-by-1 vector of inputs, or regressors.
• y(t) is the scalar output.

For more information about creating regression tree ensembles, see fitrensemble.

Use idTreeEnsemble as the value of the OutputFcn property of an idnlarx model. For example,
specify idTreeEnsemble when you estimate an idnlarx model with the following command.

sys = nlarx(data,regressors,idTreeEnsemble)

When nlarx estimates the model, it essentially estimates the parameters of the idTreeEnsemble
object.

1 Functions

1-822

You can configure the idTreeEnsemble function to set options and fix parameters. To modify the
estimation options, set the option property in E.EstimationOptions, where E is the
idTreeEnsemble object. For example, to change the fit method to 'lsboost-resampled', use
E.EstimationOptions.FitMethod = 'lsboost-resampled'. To fix the values of an existing
estimated idTreeEnsemble during subsequent nlarx estimations, set the Free property to false.
To apply parallel processing, set E.EstimationOptions.UseParallel to true. Use evaluate to
compute the output of the function for a given vector of regressor inputs.

Creation

Syntax
E = idTreeEnsemble
E = idTreeEnsemble(fitmethod)

Description

E = idTreeEnsemble creates an empty idTreeEnsemble object E with the default estimation fit
method of 'bag'. The number of regressor inputs is determined during model estimation and the
number of idTreeEnsemble outputs is 1.

E = idTreeEnsemble(fitmethod) sets the ensemble estimation method to the value in
fitmethod.

Input Arguments

fitmethod — Ensemble estimation method
'bag' (default) | 'lsboost-reweighted' | 'lsboost-resampled'

Method to use for estimating the parameters of the idTreeEnsemble model, specified as 'bag',
'lsboost-reweighted', or 'lsboost-resampled'.

This argument sets the property E.EstimationOptions.FitMethod. For more information, see
Estimation Options.

Properties
Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

Free — Option to update parameters
true (default) | false

 idTreeEnsemble

1-823

Option to update the parameters of RegressionEnsembleModel during nonlinear ARX model
estimation, specified as true or false. When free is true, the estimation process updates the
ensemble model when it estimates the idnlarx model that contains it. When free is false, the
ensemble model is fixed during estimation. Setting free to false is useful when you are using a
previously estimated ensemble model as a mapping function for nlarx.

Estimation Options — Estimation options
estimation option property values

Estimation options for the idTreeEnsemble model, specified as follows. For more information on
any of these options, see the corresponding name-value argument in fitrensemble.

Main Option Description
FitMethod Method to use for estimating the parameters of the

idTreeEnsemble model, specified as one of the items in the
following table.

Option Description
'bag' Bagging (bootstrap aggregation) (default)
'lsboost-
reweighte
d'

Least-squares boosting with reweighting

'lsboost-
resampled
'

Least-squares boosting with resampling

1 Functions

1-824

Main Option Description
Learners Options that control the estimation of individual regression

trees (weak learners) in the ensemble, specified as described
in the following table. For more information on these
properties, see the corresponding argument descriptions in
templateTree.

Option Description Default
MaxNumSplits Maximum number

of decision splits,
or branch nodes,
per tree, specified
as 'auto' or a
positive integer.

'auto'

MergeLeaves Option to merge
leaves that
originate from the
same parent node
and that provide a
sum of risk values
greater than or
equal to the risk
associated with the
parent node,
specified as 'on'
or 'off'. Node
risk is defined as
the node error
weighted by the
node probability.

'off'

MinLeafSize Minimum number
of observations per
leaf, specified as
positive integer.

5

PredictorSelect
ion

Algorithm used to
select the best split
predictor at each
node, specified as
one of the
following:

• 'allsplits'
• 'curvature'
• 'interaction

-curvature'

For more
information on
these choices, see
the corresponding

'allsplits'

 idTreeEnsemble

1-825

Main Option Description
Option Description Default

argument in
templateTree.

Prune Flag to estimate
the optimal
sequence of pruned
subtrees, specified
as 'off' or 'on'.

'off'

QuadraticErrorT
olerance

Quadratic error
tolerance per node,
specified as a
positive scalar. A
regression tree
stops splitting
nodes when the
weighted mean
squared error per
node drops below
QuadraticErrorT
olerance*ε,
where ε is the
weighted mean
squared error of all
n responses
computed before
growing the
decision tree.

1e-6

LearnRate Learning rate for shrinkage, specified as a numerical scalar in
the interval (0,1]. To train an ensemble using shrinkage, set
LearnRate to a value less than 1. For example, 0.1 is a
popular choice. Training an ensemble using shrinkage requires
more learning iterations, but can achieve better accuracy. The
default value is 1.

NumLearningCycles Number of ensemble learning cycles, specified as a positive
integer. The default value is 100.

ObservationWeights ObservationWeights — Observation weights, specified as
[] or as a numeric column vector of length n, where n is the
number of observations. The software weights each
observation with the corresponding value in
ObservationWeights. When ObservationWeights is set to
[], all observations get equal weight. The default value is [].

1 Functions

1-826

Main Option Description
ResampleData ResampleData — Option to resample the data, specified as

'on' (default) or 'off'.

• If FitMethod is set to 'bag', then ResampleData must
be set to 'on'.

• If FitMethod is set to 'lsboost-reweighted', then
ResampleData has no effect.

ResampleFraction ResampleFraction — Fraction of training set to resample,
specified as a positive scalar in (0,1].

• If FitMethod is set to 'lsboost-reweighted', then
ResampleFraction has no effect.

ReplaceData ReplaceData — Option to sample with replacement, specified
as 'on' (default) or 'off'. This property has an effect only if
either FitMethod is set to 'bag' or ResampleData is set to
'on' and FitMethod is set to 'lsboost-resampled' .

Regularize Regularize — Option to find optimal weights for learners,
specified as 'on' (default) or 'off'.

RegularizeOptions RegularizeOptions — Options for regularization, specified
as described in the following table. The software applies these
options when Regularize is 'on'. For more information on
these options, see the corresponding arguments in
regularize.

Option Description
'Lambda' Lasso Penalty

Equivalent to lambda argument in regularize.
'MaxItera
tions'

Maximum iterations for lasso search.

Equivalent to maxiter argument in
regularize.

The default value is 1000.
'NumPasse
s'

Maximum number of passes for lasso.

Equivalent to maxiter argument in
regularize.

The default value is 10.
'Relative
Tolerance
'

Relative tolerance on the regularized loss for
lasso.

Equivalent to reltol argument in regularize.

The default value is 1e-3.

Shrink Shrink — Option to prune ensemble and return a compact
version, specified as 'off' (default) or 'on'.

 idTreeEnsemble

1-827

Main Option Description
ShrinkOptions ShrinkOptions — Options for shrink, specified as described

in the following table. The software applies these options when
Shrink is 'on'. For more information on these options, see
the corresponding arguments in shrink.

Option Description
'Lambda' Lasso Penalty. Do not specify if Regularize is

true.

Equivalent to lambda argument in shrink.

The default value is [].
'Threshol
d'

Lower cutoff on weights for weak learners.

Equivalent to threshold argument in shrink.

The default value is 0.

UseParallel Option to use parallel computations for model training and
response computation, specified as false (default) or true.
Setting UseParallel to true is especially useful when you
have a large ensemble, as the software can perform the
computations for the individual regression trees in parallel.
This option requires Parallel Computing Toolbox™.

Examples

Estimate Nonlinear ARX Model with idTreeEnsemble as Output Function

Load the data mrdamper. This data contains damping force (F) and velocity (V) information for a fluid
damper, with a sample time of Ts.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','mrdamper'))

Create an iddata object data that uses F as the output and V as the input. Divide data into
estimation and validation data sets ze and zv.

data = iddata(F,V,Ts);
ze = data(1:3000);
zv = data(3001:end);

Create an idTreeEnsemble mapping object E with default settings.

E = idTreeEnsemble;

Estimate a nonlinear ARX model sys that uses E for the output function.

sys = nlarx(ze,[16 16 0],E);

The model stores the estimated mapping object in the property sys.OutputFcn.

sys.OutputFcn

1 Functions

1-828

ans =
Regression Tree Ensemble
Inputs: y1(t-1), y1(t-2), y1(t-3), y1(t-4), y1(t-5), y1(t-6), y1(t-7), y1(t-8), y1(t-9), y1(t-10), y1(t-11), y1(t-12), y1(t-13), y1(t-14), y1(t-15), y1(t-16), u1(t), u1(t-1), u1(t-2), u1(t-3), u1(t-4), u1(t-5), u1(t-6), u1(t-7), u1(t-8), u1(t-9), u1(t-10), u1(t-11), u1(t-12), u1(t-13), u1(t-14), u1(t-15)
Output: y1(t)

 Nonlinear Function: Bagged Regression Tree Ensemble

 Inputs: {1×32 cell}
 Outputs: {'y1(t)'}
 Free: 1
 EstimationOptions: 'Estimation option set'

Compare the model simulated output to the estimation data output.

compare(ze,sys)

Compare the model simulated output to the validation data output.

compare(zv,sys)

 idTreeEnsemble

1-829

sys shows a good fit to both the estimation data and the validation data.

Version History
Introduced in R2021b

Parallel processing option added

The parallel processing option EstimationOptions.UseParallel enables independent
computations for each regression tree.

Previous idnlarx data normalization information moved from mapping object properties to
idnlarx Normalization property
Behavior changed in R2022a

Information related to data normalization was moved from the idTreeEnsemble mapping object
level to the model level. The Normalization property of the idnlarx model contains the data
centering and scaling information that the estimation process computes. In addition, the regressor-
selection process for the mapping objects has also moved to the model level. The model now passes
the actual regressor names rather than the selection indices to the mapping object, eliminating the
need for an index property at the mapping object level.

The following table summarizes the mapping object subproperties that were eliminated. For more
information, see the Normalization property of idnlarx.

1 Functions

1-830

Main
Properties /
Subproperties

Input Output LinearMdl Offset NonlinearMdl

Mean X X
Range X X
Minimum X X X
Maximum X X X
SelectedInpu
tIndex

 X X

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

See Also
nlarx | idnlarx | fitrensemble | evaluate

Topics
“Framework for Ensemble Learning” (Statistics and Machine Learning Toolbox)
“Available Mapping Functions for Nonlinear ARX Models”

 idTreeEnsemble

1-831

idTreePartition
Tree-partitioned nonlinear function for nonlinear ARX models

Description
An idTreePartition object implements a tree-partitioned nonlinear function, and is a nonlinear
mapping function for estimating nonlinear ARX models. The mapping function, which is also referred
to as a nonlinearity, uses a combination of linear weights, an offset and a nonlinear function to
compute its output. The nonlinear function contains idTreePartition unit functions that operate
on a radial combination of inputs.

Mathematically, idTreePartition is a nonlinear function y = F(x) that maps m inputs X(t) =
[x(t1),x2(t),…,xm(t)]T to a scalar output y(t). F is a piecewise-linear (affine) function of x:

F(x) = xL + [1, x]Ck + d

Here, x belongs to the partition Pk. L is a 1-by-m vector, Ck is a 1-by-m+1 vector, and Pk is a partition
of the x-space.

For more information about the mapping function F(x) see “Algorithms” on page 1-837.

Use idTreePartition as the value of the OutputFcn property of an idnlarx model. For example,
specify idTreePartition when you estimate an idnlarx model with the following command.

sys = nlarx(data,regressors,idTreePartition)

When nlarx estimates the model, it essentially estimates the parameters of the idTreePartition
function.

1 Functions

1-832

You can configure the idTreePartition function to fix parameters. To omit the linear component,
set LinearFcn.Use to false. Use evaluate to compute the output of the function for a given
vector of inputs.

Creation

Syntax
T = idTreePartition
T = idTreePartition(numUnits)

Description

T = idTreePartition creates a idTreePartition object t that is a binary tree nonlinear
mapping object. The function computes the number of tree nodes J, represented by the property
NumberOfUnits, automatically during estimation. The tree has the number of leaves equal to 2^(J
+1)-1.

T = idTreePartition(numUnits) specifies the number of idTreePartition nodes numUnits.

Input Arguments

numUnits — Number of units
'auto' (default) | positive integer

Number of units, specified as 'auto' or a positive integer. numUnits determines the number of tree
nodes.

This argument sets the T.NonlinearFcn.NumberOfUnits property.

Properties
Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

LinearFcn — Parameters of linear function
linear function property values (default)

Parameters of the linear function, specified as follows:

• Value — Value of L, specified as a 1-by-m vector.

 idTreePartition

1-833

• Free — Option to update entries of Value during estimation. specified as a logical scalar. The
software honors the Free specification only if the starting value of Value is finite. The default
value is true.

The software computes the value of LinearFcn as X'*L.

Offset — Parameters of offset term
offset property values

Parameters of the offset term, specified as follows:

• Value — Offset value, specified as a scalar.
• Free — Option to update Value during estimation, specified as a scalar logical. The software

honors the Free specification of false only if the value of Value is finite. The default value is
true.

NonlinearFcn — Parameters of nonlinear function
nonlinear function property values

Parameters of the nonlinear function, specified as follows:

• NumberOfUnits — Number of units, specified as 'auto' or a positive integer. NumberOfUnits
determines the number of nodes N in the tree. When N is set to:

• 'auto', the software selects N by pruning.
• a positive integer before estimation, then the software sets N to the largest value of the form

2^(J+1)-1 less than this integer.
• Parameters — estimated parameter values.idTreePartition, specified as in the following

table:

Field Name Description
SampleLength Length of the estimation data
NoiseVariance Estimated variance of the noise in the estimation data
Tree Structure that contains the tree parameters, as described in the following

list:

• TreeLevelPntr: N-by-1 vector containing the levels j of each node.
• AncestorDescendantPntr: N-by-3 matrix, such that the entry (k,1)

is the ancestor of node k, and entries (k,2) and (k,3) are the left
and right descendants, respectively.

• LocalizingVectors: N-by-(m+1) matrix, such that the rth row is
B_r.

• LocalParVector: N-by-(m+1) matrix, such that the kth row is C_k.
• LocalCovMatrix: N-by-((m+1)m/2) matrix such that the kth row is

the covariance matrix of C_k. C_k is reshaped as a row vector.

• Free — Option to estimate parameters, specified as a logical scalar. If all the parameters have
finite values, such as when the idTreePartition object corresponds to a previously estimated
model, then setting Free to false causes the parameters of the nonlinear component of the
function F(X) to remain unchanged during estimation. The default value is true.

1 Functions

1-834

• Structure — Advanced options that affect the initial model.

Property Description Default
FinestCell Integer or character vector

specifying the minimum
number of data points in the
smallest partition.

'auto'

Threshold Threshold parameter used by
the adaptive pruning
algorithm. Smaller threshold
value corresponds to a shorter
branch that is terminated by
the active partition D_a.
Higher threshold value results
in a longer branch

1.0

Stabilizer Penalty parameter of the
penalized least-squares
algorithm used to compute
local parameter vectors C_k.
Higher stabilizer value
improves stability, but may
deteriorate the accuracy of
the least-square estimate.

1e-6

Examples

Estimate Nonlinear ARX Model with idTreePartition as Output Function

Load the data

load iddata1 z1

Create an idTreePartition object with default settings.

T = idTreePartition

T =
Tree Partition

 Nonlinear Function: Tree Partition with number of units chosen automatically
 Linear Function: uninitialized
 Output Offset: uninitialized

 Inputs: {1x0 cell}
 Outputs: {1x0 cell}
 NonlinearFcn: 'Tree structure'
 LinearFcn: 'Linear function parameters'
 Offset: 'Offset parameters'
 EstimationOptions: 'Estimation options'

Estimate a nonlinear ARX model using T.

 idTreePartition

1-835

sys = nlarx(z1,[2 2 1],T);

View the output function of sys.

disp(sys.OutputFcn)

Tree Partition
Inputs: y1(t-1), y1(t-2), u1(t-1), u1(t-2)
Output: y1(t)

 Nonlinear Function: Tree Partition with 31 units
 Linear Function: initialized to [1.19 -0.419 0.873 0.844]
 Output Offset: initialized to 5.96e-17

 Inputs: {'y1(t-1)' 'y1(t-2)' 'u1(t-1)' 'u1(t-2)'}
 Outputs: {'y1(t)'}
 NonlinearFcn: '<Tree structure>'
 LinearFcn: '<Linear function parameters>'
 Offset: '<Offset parameters>'
 EstimationOptions: '<Estimation options>'

T now has 31 nodes.

Specify idTreePartition Parameters

Load the data

load iddata7 z7
ze = z7(1:300);

Create an idTreePartition object and use dot notation to set parameters.

T = idTreePartition;
T.Offset.Value = 0.2;
T.Offset.Free = false;
T.NonlinearFcn.NumberOfUnits = 30;

Specify model regressors.

Reg1 = linearRegressor({'y1','u1'},{1:4, 0:4});
Reg2 = polynomialRegressor({'y1','u1'},{1:2, 0:2},2);

Estimate a nonlinear ARX model.

sys = nlarx(ze, [Reg1;Reg2], T);

View postestimation OutputFcn properties.

sys.OutputFcn

ans =
Tree Partition
Inputs: y1(t-1), y1(t-2), y1(t-3), y1(t-4), u1(t), u1(t-1), u1(t-2), u1(t-3), u1(t-4), y1(t-1)^2, y1(t-2)^2, u1(t)^2, u1(t-1)^2, u1(t-2)^2
Output: y1(t)

 Nonlinear Function: Tree Partition with 15 units

1 Functions

1-836

 Linear Function: initialized to [0.0725 0.895 -0.0727 -0.475 0.0725 -0.106 0.0304 1.02 1.43 0.000459 -0.00473 0 0 0]
 Output Offset: fixed to 0.2

 Inputs: {1x14 cell}
 Outputs: {'y1(t)'}
 NonlinearFcn: 'Tree structure'
 LinearFcn: 'Linear function parameters'
 Offset: 'Offset parameters'
 EstimationOptions: 'Estimation options'

sys.OutputFcn.Input

ans =
Function inputs

 Name: {1x14 cell}
 Mean: [-4.8010e-17 -3.6007e-17 -3.6007e-17 -1.2002e-17 9.0018e-17 ...]
 Range: [2x14 double]

disp(sys.OutputFcn.Offset)

Output Offset: fixed to 0.2
 Value: 0.2000
 Free: 0

sys.OutputFcn.NonlinearFcn

ans =
Tree structure

 NumberOfUnits: 15
 Parameters: 'Tree Partition parameters'
 Free: 1
 Inputs: {1x14 cell}
 Outputs: {'y1(t):Nonlinear'}

Algorithms
The mapping F is defined by a dyadic partition P of the x-space, such that on each partition element
Pk, F is a linear mapping. When x belongs to Pk, F(x) is given by:

F(x) = xL + [1, x]Ck + d

where L is 1-by-m vector and d is a scalar common for all elements of partition. Ck is a 1-by-(m+1)
vector.

The mapping F and associated partition P of the x-space are computed as follows:

1 Given the value of J, a dyadic tree with J levels and N = 2J–1 nodes is initialized.
2 Each node at level 1 < j < J has two descendants at level j + 1 and one parent at level j – 1.

• The root node at level 1 has two descendants.

 idTreePartition

1-837

• Nodes at level J are terminating leaves of the tree and have one parent.
3 One partition element is associated to each node k of the tree.

• The vector of coefficients Ck is computed using the observations on the corresponding
partition element Pk by the penalized least-squares algorithm.

• When the node k is not a terminating leaf, the partition element Pk is cut into two to obtain
the partition elements of descendant nodes. The cut is defined by the half-spaces (1,x)Bk > 0
or <=0 (move to left or right descendant), where Bk is chosen to improve the stability of least-
square computation on the partitions at the descendant nodes.

4 When the value of the mapping F, defined by the idTreePartition object, is computed at x, an
adaptive algorithm selects the active node k of the tree on the branch of partitions that contain x.

When the Focus option in nlarxOptions is 'prediction', idTreePartition uses a noniterative
technique for estimating parameters. Iterative refinements are not possible for models containing this
nonlinearity estimator.

You cannot use idTreePartition when Focus is 'simulation' because this nonlinear mapping
object is not differentiable. Minimization of simulation error requires differentiable nonlinear
functions.

Version History
Introduced in R2007a

Previous idnlarx data normalization information moved from mapping object properties to
idnlarx Normalization property
Behavior changed in R2022a

Information related to data normalization was moved from the idTreePartition mapping object
level to the model level. The Normalization property of the idnlarx model contains the data
centering and scaling information that the estimation process computes. In addition, the regressor-
selection process for the mapping objects has also moved to the model level. The model now passes
the actual regressor names rather than the selection indices to the mapping object, eliminating the
need for an index property at the mapping object level.

The following table summarizes the mapping object subproperties that were eliminated. For more
information, see the Normalization property of idnlarx.

Main
Properties /
Subproperties

Input Output LinearMdl Offset NonlinearMdl

Mean X X
Range X X
Minimum X X X
Maximum X X X
SelectedInpu
tIndex

 X X

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

1 Functions

1-838

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

Use of previous nonlinearity estimator properties is not recommended
Not recommended starting in R2021a

Starting in R2021a, the properties of the mapping objects, previously known as nonlinearity
estimators, have been reorganized. These objects are idWaveletNetwork (W), idSigmoidNetwork
(S), idTreePartition (T), customnet (C), and linear (L). The property changes do not apply to
neuralnet. The use of the pre-R2021a properties in the following table is discouraged. However, the
software still accepts commands that set these properties. There are no plans to exclude such
commands at this time.

Pre-R2021a Property R2021a Property Applicable Mapping Objects
NumberOfUnits NonlinearFcn.NumberOfUni

ts
W,S,T,C

LinearTerm LinearFcn.Use, Offset.Use W,S,C
Parameters Split into three pieces:

• LinearFcn.Value
• Offset.Value
• NonlinearFcn.Parameter

s

W,S,T,C,L

linear (L) excludes
NonlinearFcn.Parameters.

Options NonlinearFcn.Structure W,T

See Also
nlarx | idnlarx | evaluate

 idTreePartition

1-839

Topics
“Available Mapping Functions for Nonlinear ARX Models”

1 Functions

1-840

idUnitGain
Specify absence of nonlinearities for specific input or output channels in Hammerstein-Wiener models

Syntax
unit=idUnitGain

Description
unit=idUnitGain instantiates an object that specifies an identity mapping F(x)=x to exclude
specific input and output channels from being affected by a nonlinearity in Hammerstein-Wiener
models.

Use the idUnitGain object as an argument in the nlhw estimator to set the corresponding channel
nonlinearity to unit gain.

For example, for a two-input and one-output model, to exclude the second input from being affected
by a nonlinearity, use the following syntax:

m = nlhw(data,orders,['idSaturation''idUnitGain'],'idDeadZone')

In this case, the first input saturates and the output has an associated deadzone nonlinearity.

idUnitGain Properties
idUnitGain does not have properties.

Examples
For example, for a one-input and one-output model, to exclude the output from being affected by a
nonlinearity, use the following syntax:

m = nlhw(Data,Orders,'idSaturation','idUnitGain')

In this case, the input has a saturation nonlinearity.

If nonlinearities are absent in input or output channels, you can replace idUnitGain with an empty
matrix. For example, to specify a Wiener model with a sigmoid nonlinearity at the output and a unit
gain at the input, use the following command:

m = nlhw(Data,Orders,[],'idSigmoidNetwork');

Tips
Use the idUnitGain object to exclude specific input and output channels from being affected by a
nonlinearity in Hammerstein-Wiener models. idUnitGain is a linear function y = F(x), where F(x)=x.

 idUnitGain

1-841

Version History
Introduced in R2007a

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
nlhw | idnlhw

Topics
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

1 Functions

1-842

idWaveletNetwork
Wavelet network function for nonlinear ARX and Hammerstein-Wiener models

Description
An idWaveletNetwork object implements a wavelet network function, and is a nonlinear mapping
function for estimating nonlinear ARX and Nonlinear Hammerstein-Wiener models. The mapping
function, which is also referred to as a nonlinearity, uses a combination of linear weights, an offset
and a nonlinear function to compute its output. The nonlinear function contains wavelet unit
functions that operate on a radial combination of inputs.

Mathematically, idWaveletNetwork is a function that maps m inputs X(t) = [x(t1),x2(t),…,xm(t)]T to a
scalar output y(t) using the following relationship:

y(t) = y0 + Χ(t)TPL + W(Χ(t)) + S(Χ(t))

Here:

• X(t) is an m-by-1 vector of inputs, or regressors.
• y0 is the output offset, a scalar.
• P is an m-by-p projection matrix, where m is the number of regressors and is p is the number of

linear weights. m must be greater than or equal to p.
• L is a p-by-1 vector of weights.
• W(X) and S(X) together constitute the nonlinear function of the wavelet network. W(X) is a sum of

dilated and translated wavelets while S(X) is a sum of dilated and translated scaling functions

 idWaveletNetwork

1-843

(also known as scalelets). The total number of wavelet dw and scaling functions ds is referred to as
the number of units of the network.

For definitions of the wavelet function term W(X) and the scaling function term S(X), see “More
About” on page 1-853.

Use idWaveletNetwork as the value of the OutputFcn property of an idnlarx model or the
InputNonlinearity and OutputLinearity properties of an idnlhw object. For example, specify
idWaveletNetwork when you estimate an idnlarx model with the following command.

sys = nlarx(data,regressors,idWaveletNetwork)

When nlarx estimates the model, it essentially estimates the parameters of the idWaveletNetwork
function.

You can configure the idWaveletNetwork function to disable components and fix parameters. To
omit the linear component, set LinearFcn.Use to false. To omit the offset, set Offset.Use to
false. To specify known values for the linear function and the offset, set their Value attributes
directly and set the corresponding Free attributes to False. Use evaluate to compute the output of
the function for a given vector of inputs.

Creation

Syntax
W = idWaveletNetwork
W = idWaveletNetwork(numUnits)
W = idWaveletNetwork(numUnits,UseLinearFcn)
W = idWaveletNetwork(numUnits,UseLinearFcn,UseOffset)

Description

W = idWaveletNetwork creates a idWaveletNetwork object W, for which the function computes
the number of units automatically during model estimation.

W = idWaveletNetwork(numUnits) specifies the number of units numUnits. This syntax includes
an option that allows you to interactively assess the relationship between the number of units and
unexplained variance.

W = idWaveletNetwork(numUnits,UseLinearFcn) specifies whether the function uses a linear
function as a subcomponent.

W = idWaveletNetwork(numUnits,UseLinearFcn,UseOffset) specifies whether the function
uses an offset term.

Input Arguments

numUnits — Number of units
'auto' (default) | 'interactive' | positive integer

Number of units, specified as the string or character vector that represents 'auto' or
'interactive', or as a positive integer. numUnits determines the number of wavelets or scaling
functions, or, if both elements are present, the combined number of wavelets and scaling functions.

1 Functions

1-844

Typically, the wavelet network contains either wavelets or scaling functions, but not both. Specify
numUnits as one of the following values:

• 'auto' — The software determines the number of units automatically during model estimation.
• 'interactive' — During model estimation, the software displays an interactive bar plot that

relates unexplained variance to the number of units. Click on a bar to view the achievable fit to
the estimation data for the selected number of units. A blue bar indicates the optimal choice,
based on the generalized cross-validation (GCV) criterion. A general rule for the selection of the
number of units is to use the smallest number of units that capture most of the variance.

• Positive integer — The software uses the specified value directly.

This argument sets the W.NonlinearFcn.NumberOfUnits property.

UseLinearFcn — Option to use linear function
true (default) | false

Option to use the linear function subcomponent, specified as true or false. This argument sets the
value of the W.LinearFcn.Use property.

UseOffset — Option to use offset term
true (default) | false

Option to use an offset term, specified as true or false. This argument sets the value of the
W.Offset.Use property.

Properties
Inputs — Input signal names
cell array

Input signal names for the inputs to the mapping object, specified as a 1-by-m cell array, where m is
the number of input signals. This property is determined during estimation.

Outputs — Output signal name
cell array

Output signal name for the output of the mapping object, specified as a 1-by-1 cell array. This
property is determined during estimation.

LinearFcn — Parameters of linear function
linear function property values (default)

Parameters of the linear function, specified as follows:

• Use — Option to use the linear function in the wavelet network, specified as a scalar logical. The
default value is true. For an example of setting this option, see “Exclude Linear Term from
Wavelet Network Mapping Object” on page 1-848.

• Value — Linear weights that compose L', specified as a 1-by-p vector.
• InputProjection — Input projection matrix P, specified as an m-by-p matrix, that transforms

the input vector of length m into a vector of length p. For Hammerstein-Wiener models,
InputProjection is equal to 1.

 idWaveletNetwork

1-845

• Free — Option to update entries of Value during estimation, specified as a 1-by-p logical vector.
The software honors the Free specification only if the starting value of Value is finite. The default
value is true.

Offset — Parameters of offset term
offset property values

Parameters of the offset term, specified as follows:

• Use — Option to use the offset in the wavelet network, specified as a scalar logical. The default
value is true.

• Value — Offset value, specified as a scalar.
• Free — Option to update Value during estimation, specified as a scalar logical. The software

honors the Free specification of false only if the value of Value is finite. The default value is
true.

NonlinearFcn — Parameters of nonlinear function
nonlinear function property values

Parameters of the nonlinear function, specified as follows:

• NumberOfUnits — Number of units, specified as 'auto', 'interactive', or a positive integer.
NumberOfUnits determines the number of wavelets or scaling functions, or, if both elements are
present, the combined number of wavelets and scaling functions. Typically, the wavelet network
contains either wavelets or scaling functions, but not both. The options for NumberOfUnits are
as follows:

• 'auto' — The software determines the number of units automatically during model
estimation.

• 'interactive' — During model estimation, the software displays an interactive bar plot that
relates unexplained variance to the number of units. Click on a bar to view the achievable fit to
the estimation data for the selected number of units. A blue bar indicates the optimal choice,
based on the generalized cross-validation (GCV) criterion. A general rule for the selection of
the number of units is to use the smallest number of units that capture most of the variance.

• Positive integer — The software uses the specified value directly.
• Structure — Advanced options that control the structure of the wavelet and scaling functions,
specified as in the following table.

Property Description Default
FinestCell Minimum number of data

points in the smallest cell,
specified as 'auto' or a
positive integer. A cell is the
area covered by the part of a
wavelet that is significantly
nonzero. The default setting
of 'auto' specifies that the
software determines this
value during estimation.

'auto'

1 Functions

1-846

Property Description Default
MinimumCells Minimum number of cells in

the partition, specified as a
positive integer.

16

MaximumCells Maximum number of cells in
the partition, specified as a
positive integer.

16

MaximumLevels Maximum number of wavelet
levels, specified as a positive
integer.

10

DilationStep Dilation step size, specified as
a positive integer.

2

TranslationStep Translation step size,
specified as a positive integer.

1

• Parameters — Parameters of idWaveletNetwork, specified as in the following table.

Field Name Description Default
InputProject
ion

Projection matrix Q, specified as an m-by-q matrix. Q
transforms the detrended input vector (X − X) of length m
into a vector of length q. Typically, Q has the same
dimensions as the linear projection matrix P. In this case, q is
equal to p, which is the number of linear weights.

For Hammerstein-Wiener models, InputProjection is
equal to 1.

[]

ScalingCoeff
icient

Scaling function coefficients si, specified as a ds-by-1 vector. []

ScalingTrans
lation

Scaling translation matrix, specified as a ds-by-q matrix of
scaling translation row vectors ei.

[]

ScalingDilat
ion

Scaling function dilation coefficients di, specified as an ds-
by-1 vector.

[]

WaveletCoeff
icient

Wavelet function coefficients wi, specified as a dw-by-1 vector. []

WaveletTrans
lation

Wavelet translation matrix, ei, specified as a dw-by-q matrix
of wavelet translation row vectors ci.

[]

WaveletDilat
ion

Wavelet dilation coefficients bi, specified as an dw-by-1
vector.

[]

• Free — Option to estimate parameters, specified as a logical scalar. If all the parameters have
finite values, such as when the idWaveletNetwork object corresponds to a previously estimated
model, then setting Free to false causes the parameters of the nonlinear functions W(X) and
S(X) to remain unchanged during estimation. The default value is true.

Examples

 idWaveletNetwork

1-847

Create Wavelet Network Mapping Object

MO = idWaveletNetwork;

View the idWaveletNetwork object.

disp(MO)

Wavelet Network

 Nonlinear Function: Wavelet network with number of units chosen automatically
 Linear Function: uninitialized
 Output Offset: uninitialized

 Inputs: {1x0 cell}
 Outputs: {1x0 cell}
 NonlinearFcn: '<Wavelet and scaling function units and their parameters>'
 LinearFcn: '<Linear function parameters>'
 Offset: '<Offset parameters>'
 EstimationOptions: '<Estimation options>'

Exclude Linear Term from Wavelet Network Mapping Object

Create the idWaveletNetwork mapping object MO.

MO = idWaveletNetwork;

Exclude the linear term from MO.

MO.LinearFcn.Use = false;

View the idWaveletNetwork object.

disp(MO)

Wavelet Network

 Nonlinear Function: Wavelet network with number of units chosen automatically
 Linear Function: not in use
 Output Offset: uninitialized

 Inputs: {1x0 cell}
 Outputs: {1x0 cell}
 NonlinearFcn: '<Wavelet and scaling function units and their parameters>'
 LinearFcn: '<Linear function parameters>'
 Offset: '<Offset parameters>'
 EstimationOptions: '<Estimation options>'

The linear function is not in use.

Estimate Nonlinear ARX Model with Specific Mapping Function

Load the estimation data.

1 Functions

1-848

load twotankdata y u;

Create an iddata object from the estimation data.

z = iddata(y,u,0.2);

Create a wavelet network mapping object with five units.

MO = idWaveletNetwork(5);

Estimate the nonlinear ARX model.

sys = nlarx(z,[4 4 1],MO)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Wavelet network with 5 units
Sample time: 0.2 seconds

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 96.8% (prediction focus)
FPE: 3.553e-05, MSE: 3.515e-05
More information in model's "Report" property.

Estimate MIMO Hammerstein-Wiener Model

Load the estimation data.

load motorizedcamera;

Create an iddata object.

z = iddata(y,u,0.02,'Name','Motorized Camera','TimeUnit','s');

z is an iddata object with six inputs and two outputs.

Specify the model orders and delays.

Orders = [ones(2,6),ones(2,6),ones(2,6)];

Specify the same nonlinearity estimator for each input channel.

InputNL = idWaveletNetwork;

Specify different nonlinearity estimators for each output channel.

 OutputNL = [idDeadZone,idWaveletNetwork];

Estimate the Hammerstein-Wiener model.

 idWaveletNetwork

1-849

sys = nlhw(z,Orders,InputNL,OutputNL);

To see the shape of the estimated input and output nonlinearities, plot the nonlinearities.

plot(sys)

Click on the input and output nonlinearity blocks on the top of the plot to see the nonlinearities.

Apply idWaveletNetwork Constraints when Estimating Nonlinear ARX Model

Load the estimation data.

1 Functions

1-850

load iddata7 z7;

Specify idWaveletNetwork for the model output function. Configure the idWaveletNetwork
object to have a fixed offset value of 1 and to use five units in the nonlinear component.

w = idWaveletNetwork;
w.Offset.Value = 1;
w.Offset.Free = false;
w.NonlinearFcn.NumberOfUnits = 5;

Specify a linear model regressor set using a lag array that produces four consecutive output
regressors and five consecutive input regressors.

reg = linearRegressor({'y1','u1'},{1:4,0:4});

Estimate the nonlinear ARX model.

sys = nlarx(z7,reg,w);

Examine the postestimation properties of the output function.

disp(sys.OutputFcn)

Wavelet Network
Inputs: y1(t-1), y1(t-2), y1(t-3), y1(t-4), u1(t), u1(t-1), u1(t-2), u1(t-3), u1(t-4)
Output: y1(t)

 Nonlinear Function: Wavelet network with 5 units
 Linear Function: initialized to [-1.12 0.469 1.25 0.556 -0.81 -0.261 -0.074 0.711 1.15]
 Output Offset: fixed to 1

 Inputs: {1x9 cell}
 Outputs: {'y1(t)'}
 NonlinearFcn: '<Wavelet and scaling function units and their parameters>'
 LinearFcn: '<Linear function parameters>'
 Offset: '<Offset parameters>'
 EstimationOptions: '<Estimation options>'

disp(sys.OutputFcn.Input)

Function inputs

 Name: {1x9 cell}
 Mean: [5.3829e-17 7.1772e-17 2.6914e-17 0 -4.4857e-18 -4.4857e-17 ...]
 Range: [2x9 double]

disp(sys.OutputFcn.NonlinearFcn)

Wavelet and scaling function units and their parameters

 NumberOfUnits: 5
 Parameters: '<Wavelet parameters>'
 Free: 1
 Inputs: {1x9 cell}
 Outputs: {'y1(t):Nonlinear'}

 idWaveletNetwork

1-851

Apply idWaveletNetwork Constraints when Estimating Hammerstein-Wiener Model

Load the estimation data.

load throttledata

Specify idWaveletNetwork for the model output nonlinearity and set the arguments for NumUnits
to 5 and UseLinearFcn and UseOffset to false.

w = idWaveletNetwork(5,false,false);

An alternative method for removing the linear function and offset is to use dot notation after creating
the nonlinearity.

w.LinearFcn.Use = false;
w.Offset.Use = false;

Estimate the model, using an order specification of [4 4 1].

sys = nlhw(ThrottleData,[4 4 1],[],w);

Compare the simulated model response with the estimation data.

compare(ThrottleData,sys);

1 Functions

1-852

More About
Wavelet Nonlinear Function W(X)

The wavelet nonlinear function is a sum of the dilated and translated wavelets, and is described by
the following equation:

W(X) = ∑
i = 1

dw
wifw(biXTQ− ci)

Here:

• Q is an m-by-q projection matrix, where m ≥ q
• w1, w2, …, wdw are scalar coefficients called wavelet coefficients.
• b1, b2, …, bdw are scalars called wavelet dilations that multiply the input matrix X.
• c1, c2, …, cdw are 1-by-q row vectors called wavelet translations.
• fw(x) = e−xxT /2 is a radial function that depends only upon the squared magnitude of the vector x.

x is a row vector that is composed of a linear combination of inputs with an offset ci.

Scaling Nonlinear Function S(X)

The scaling nonlinear function is a sum of the dilated and translated scaling functions, and is
described by the following equation:

S(X) = ∑
i = 1

ds
sifs(biXTQ− ei)

Here:

• Q is an m-by-q projection matrix, where m ≥ q.
• s1, s2, …, sds are scalar coefficients called scaling coefficients.
• d1, d2, …, dds are scalars called scaling dilations that multiply the input matrix X.
• e1, e2, …, eds are 1-by-q row vectors called scaling translations.
• fs(x) = (m− xxT)e−xxT /2 is a radial function that depends only upon the squared magnitude of the

vector x. x is a row vector that is composed of a linear combination of inputs with an offset ei. m is
equal to the number of inputs, dim(x).

Algorithms
You can use idWaveletNetwork in both nonlinear ARX and Hammerstein-Wiener models. The
algorithms for estimating idWaveletNetwork parameters depend on which model you are
estimating.

• In a nonlinear ARX model, idWaveletNetwork uses either a noniterative or an iterative
technique for predicting the parameters, depending on option settings in nlarxOptions.

• If the Focus option is set to 'prediction', then idWaveletNetwork uses a fast noniterative
technique to estimate parameters [1]. Successive refinements after the first estimation use an
iterative algorithm.

 idWaveletNetwork

1-853

• If the Focus option is set to 'simulation', then idWaveletNetwork uses an iterative
technique to estimate parameters.

• To always use either an iterative or a noniterative algorithm, specify the IterativeWavenet
property of nlarxOptions as 'on' or 'off', respectively.

• In a Hammerstein-Wiener model, idWaveletNetwork uses iterative minimization to determine
the parameters.

Version History
Introduced in R2007a

Previous idnlarx data normalization information moved from mapping object properties to
idnlarx Normalization property
Behavior changed in R2022a

Information related to data normalization was moved from the idWaveletNetwork mapping object
level to the model level. The Normalization property of the idnlarx model contains the data
centering and scaling information that the estimation process computes. In addition, the regressor-
selection process for the mapping objects has also moved to the model level. The model now passes
the actual regressor names rather than the selection indices to the mapping object, eliminating the
need for an index property at the mapping object level.

The following table summarizes the mapping object subproperties that were eliminated. For more
information, see the Normalization property of idnlarx.

Main
Properties /
Subproperties

Input Output LinearMdl Offset NonlinearMdl

Mean X X
Range X X
Minimum X X X
Maximum X X X
SelectedInpu
tIndex

 X X

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork

1 Functions

1-854

Pre-R2021b Name R2021b Name
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

Use of previous nonlinearity estimator properties is not recommended
Not recommended starting in R2021a

Starting in R2021a, the properties of the mapping objects, previously known as nonlinearity
estimators, have been reorganized. These objects are wavenet (W), sigmoidnet (S),
treepartition (T), customnet (C), and linear (L). The property changes do not apply to
neuralnet. The use of the pre-R2021a properties in the following table is discouraged. However, the
software still accepts commands that set these properties. There are no plans to exclude such
commands at this time.

Pre-R2021a Property R2021a Property Applicable Mapping Objects
NumberOfUnits NonlinearFcn.NumberOfUni

ts
W,S,T,C

LinearTerm LinearFcn.Use, Offset.Use W,S,C
Parameters Split into three pieces:

• LinearFcn.Value
• Offset.Value
• NonlinearFcn.Parameter

s

W,S,T,C,L

linear (L) excludes
NonlinearFcn.Parameters.

Options NonlinearFcn.Structure W,T

References
[1] Qinghua Zhang. “Using Wavelet Network in Nonparametric Estimation.” IEEE Transactions on

Neural Networks 8, no. 2 (March 1997): 227–36. https://doi.org/10.1109/72.557660.

See Also
nlhw | nlarx | idnlhw | idnlarx | evaluate

Topics
“Available Mapping Functions for Nonlinear ARX Models”
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”

 idWaveletNetwork

1-855

ifft
Transform iddata objects from frequency to time domain

Syntax
dat = ifft(Datf)

Description
ifft transforms a frequency-domain iddata object to the time domain. It requires the frequencies
on Datf to be equally spaced from frequency 0 to the Nyquist frequency. This means that if there are
N frequencies in Datf and the sample time is Ts, then

Datf.Frequency = [0:df:F], where F is pi/Ts if N is odd and F = pi/Ts*(1-1/N) if N is even.

Version History
Introduced in R2007a

See Also
iddata | fft

1 Functions

1-856

impulse
Impulse response plot of dynamic system; impulse response data

Syntax
impulse(sys)
impulse(sys,tFinal)
impulse(sys,t)
impulse(sys1,sys2,...,sysN, ___)
impulse(sys1,LineSpec1,...,sysN,LineSpecN, ___)

y = impulse(sys,t)
[y,tOut] = impulse(sys)
[y,tOut] = impulse(sys,tFinal)
[y,t,x] = impulse(sys)
[y,t,x,ysd] = impulse(sys)

Description
Impulse Response Plots

impulse(sys) plots the response of a dynamic system model to an impulse input. The model sys
can be continuous or discrete.

• For continuous-time sys, the impulse input is the Dirac impulse δ(t). For continuous-time sys
with direct feedthrough, impulse ignores the infinite pulse at t = 0.

• For discrete-time sys with sample time Ts, the function computes the response to a unit-area
pulse of length Ts and height 1/Ts. This pulse approaches the continuous-time Dirac impulse
δ(t) as Ts goes to zero.

sys can be SISO or MIMO. For MIMO systems, the plot displays the impulse responses for each I/O
channel. impulse automatically determines the time steps and duration of the simulation based on
the system dynamics.

impulse(sys,tFinal) simulates the impulse response from t = 0 to the final time t = tFinal.
The function uses system dynamics to determine the intervening time steps.

impulse(sys,t) plots the impulse response at the times that you specify in the vector t.

impulse(sys1,sys2,...,sysN, ___) plots the impulse response of multiple dynamic systems on
the same plot. All systems must have the same number of inputs and outputs. You can use multiple
dynamic systems with any of the previous input-argument combinations.

impulse(sys1,LineSpec1,...,sysN,LineSpecN, ___) specifies a color, line style, and marker
for each system in the plot. You can use LineSpec with any of the previous input-argument
combinations. When you need additional plot customization options, use impulseplot instead.
Impulse Response Data

y = impulse(sys,t) returns the impulse response sys at the times specified in the vector t. This
syntax does not draw a plot.

 impulse

1-857

[y,tOut] = impulse(sys) also returns a vector of times tOut corresponding to the responses in
y. If you do not provide an input vector t of times, impulse chooses the length and time step of tOut
based on the system dynamics.

[y,tOut] = impulse(sys,tFinal) computes the impulse response up to the end time tFinal.
impulse chooses the time step of tOut based on the system dynamics.

[y,t,x] = impulse(sys) also returns the state trajectories x, when sys is a state-space model
such as an ss or idss model.

[y,t,x,ysd] = impulse(sys) also computes the standard deviation ysd of the impulse response
y, when sys is an identified model such as an idss, idtf, or idnlarx model.

Examples

Impulse Response of Dynamic System

Plot the impulse response of a continuous-time system represented by the following transfer function.

sys s = 4
s2 + 2s + 10

For this example, create a tf model that represents the transfer function. You can similarly plot the
impulse response of other dynamic system model types, such as zero-pole gain (zpk) or state-space
(ss) models.

sys = tf(4,[1 2 10]);

Plot the impulse response.

impulse(sys)

1 Functions

1-858

The impulse plot automatically includes a dotted horizontal line indicating the steady-state
response. In a MATLAB® figure window, you can right-click on the plot to view other impulse-
response characteristics such as peak response and transient time.

Impulse Response of Discrete-Time System

Plot the impulse response of a discrete-time system. The system has a sample time of 0.2 s and is
represented by the following state-space matrices.

A = [1.6 -0.7;
 1 0];
B = [0.5; 0];
C = [0.1 0.1];
D = 0;

Create the state-space model and plot its impulse response.

sys = ss(A,B,C,D,0.2);
impulse(sys)

 impulse

1-859

The impulse response reflects the discretization of the model, as it shows the response as computed
every 0.2 seconds.

Impulse Response at Specified Times

Examine the impulse response of the following zero-pole-gain model.

sys = zpk(-1,[-0.2+3j,-0.2-3j],1) * tf([1 1],[1 0.05])

sys =

 (s+1)^2

 (s+0.05) (s^2 + 0.4s + 9.04)

Continuous-time zero/pole/gain model.

impulse(sys)

1 Functions

1-860

By default, impulse chooses an end time that shows the steady state that the response is trending
toward. To get a closer look at the transient response, limit the impulse plot to t = 20 s.

impulse(sys,20)

 impulse

1-861

Alternatively, you can specify the exact times at which you want to examine the impulse response,
provided they are separated by a constant interval. For instance, examine the response from the end
of the transient until the system reaches steady state.

t = 20:0.2:120;
impulse(sys,t)

1 Functions

1-862

Even though this plot begins at t = 20, impulse always applies the impulse input at t = 0.

Impulse Response Plot of MIMO Systems

Consider the following second-order state-space model:

ẋ1

ẋ2
=
−0 . 5572 −0 . 7814
0 . 7814 0

x1
x2

+
1 −1
0 2

u1
u2

y = 1 . 9691 6 . 4493
x1
x2

A = [-0.5572,-0.7814;0.7814,0];
B = [1,-1;0,2];
C = [1.9691,6.4493];
sys = ss(A,B,C,0);

This model has two inputs and one output, so it has two channels: from the first input to the output
and from the second input to the output. Each channel has its own impulse response.

When you use impulse, it computes the responses of all channels.

impulse(sys)

 impulse

1-863

The left plot shows the impulse response of the first input channel, and the right plot shows the
impulse response of the second input channel. Whenever you use impulse to plot the responses of a
MIMO model, it generates an array of plots representing all the I/O channels of the model. For
instance, create a random state-space model with five states, three inputs, and two outputs, and plot
its impulse response.

sys = rss(5,2,3);
impulse(sys)

1 Functions

1-864

In a MATLAB figure window, you can restrict the plot to a subset of channels by right-clicking on the
plot and selecting I/O Selector.

Compare Impulse Response of Multiple Systems

impulse allows you to plot the responses of multiple dynamic systems on the same axis. For
instance, compare the closed-loop response of a system with a PI controller and a PID controller.
Create a transfer function of the system and tune the controllers.

H = tf(4,[1 2 10]);
C1 = pidtune(H,'PI');
C2 = pidtune(H,'PID');

Form the closed-loop systems and plot their impulse responses.

sys1 = feedback(H*C1,1);
sys2 = feedback(H*C2,1);
impulse(sys1,sys2)
legend('PI','PID','Location','SouthEast')

 impulse

1-865

By default, impulse chooses distinct colors for each system that you plot. You can specify colors and
line styles using the LineSpec input argument.

 impulse(sys1,'r--',sys2,'b')
 legend('PI','PID','Location','SouthEast')

1 Functions

1-866

The first LineSpec 'r--' specifies a dashed red line for the response with the PI controller. The
second LineSpec 'b' specifies a solid blue line for the response with the PID controller. The legend
reflects the specified colors and linestyles. For more plot customization options, use impulseplot.

Impulse Response of Systems in a Model Array

The example Compare Impulse Response of Multiple Systems shows how to plot responses of
several individual systems on a single axis. When you have multiple dynamic systems arranged in a
model array, impulse plots all their responses at once.

Create a model array. For this example, use a one-dimensional array of second-order transfer
functions having different natural frequencies. First, preallocate memory for the model array. The
following command creates a 1-by-5 row of zero-gain SISO transfer functions. The first two
dimensions represent the model outputs and inputs. The remaining dimensions are the array
dimensions.

 sys = tf(zeros(1,1,1,5));

Populate the array.

w0 = 1.5:1:5.5; % natural frequencies
zeta = 0.5; % damping constant
for i = 1:length(w0)

 impulse

1-867

 sys(:,:,1,i) = tf(w0(i)^2,[1 2*zeta*w0(i) w0(i)^2]);
end

(For more information about model arrays and how to create them, see “Model Arrays” (Control
System Toolbox).) Plot the impulse responses of all models in the array.

impulse(sys)

impulse uses the same linestyle for the responses of all entries in the array. One way to distinguish
among entries is to use the SamplingGrid property of dynamic system models to associate each
entry in the array with the corresponding w0 value.

sys.SamplingGrid = struct('frequency',w0);

Now, when you plot the responses in a MATLAB figure window, you can click a trace to see which
frequency value it corresponds to.

Impulse Response Data

When you give it an output argument, impulse returns an array of response data. For a SISO system,
the response data is returned as a column vector of length equal to the number of time points at
which the response is sampled. You can provide the vector t of time points, or allow impulse to
select time points for you based on system dynamics. For instance, extract the impulse response of a
SISO system at 101 time points between t = 0 and t = 5 s.

1 Functions

1-868

sys = tf(4,[1 2 10]);
t = 0:0.05:5;
y = impulse(sys,t);
size(y)

ans = 1×2

 101 1

For a MIMO system, the response data is returned in an array of dimensions N-by-Ny-by-Nu, where
Ny and Nu are the number of outputs and inputs of the dynamic system. For instance, consider the
following state-space model, representing a two-input, one-output system.

A = [-0.5572,-0.7814;0.7814,0];
B = [1,-1;0,2];
C = [1.9691,6.4493];
sys = ss(A,B,C,0);

Extract the impulse response of this system at 200 time points between t = 0 and t = 20 s.

t = linspace(0,20,200);
y = impulse(sys,t);
size(y)

ans = 1×3

 200 1 2

y(:,i,j) is a column vector containing the impulse response from the jth input to the ith output at
the times t. For instance, extract the impulse response from the second input to the output.

y12 = y(:,1,2);
plot(t,y12)

 impulse

1-869

Impulse Responses of Identified Models with Confidence Regions

Compare the impulse response of a parametric identified model to a non-parametric (empirical)
model. Also view their 3 σ confidence regions.

Load the data.

load iddata1 z1

Estimate a parametric model.

sys1 = ssest(z1,4);

Estimate a non-parametric model.

sys2 = impulseest(z1);

Plot the impulse responses for comparison.

t = (0:0.1:10)';
[y1, ~, ~, ysd1] = impulse(sys1,t);
[y2, ~, ~, ysd2] = impulse(sys2,t);
plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')
hold on
plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')

1 Functions

1-870

Impulse Response of Identified Time-Series Model

Compute the impulse response of an identified time-series model.

A time-series model, also called a signal model, is one without measured input signals. The impulse
plot of this model uses its (unmeasured) noise channel as the input channel to which the impulse
signal is applied.

Load the data.

load iddata9;

Estimate a time-series model.

sys = ar(z9, 4);

sys is a model of the form A y(t) = e(t) , where e(t) represents the noise channel. For
computation of impulse response, e(t) is treated as an input channel, and is named e@y1.

Plot the impulse response.

impulse(sys)

 impulse

1-871

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value for
both plotting and returning response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model. When you use output arguments, the function returns response data for the
nominal model only.

• Sparse state-space models such as sparss and mechss models. You must specify final time
tFinal for sparse state-space models.

• Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can
also plot confidence intervals and return standard deviations of the frequency response.

impulse does not support frequency-response data models such as frd, genfrd, or idfrd models.

1 Functions

1-872

If sys is an array of models, the function plots the responses of all models in the array on the same
axes.

tFinal — End time for impulse response
positive scalar

End time for impulse response, specified as a positive scalar value. impulse simulates the impulse
response from t = 0 to t = tFinal.

• For continuous-time systems, the function determines the step size and number of points
automatically from system dynamics. Express tFinal in the system time units, specified in the
TimeUnit property of sys.

• For discrete-time systems, the function uses the sample time of sys as the step size. Express
tFinal in the system time units, specified in the TimeUnit property of sys.

• For discrete-time systems with unspecified sample time (Ts = -1), impulse interprets tFinal
as the number of sampling periods to simulate.

t — Time vector
vector

Time vector at which to compute the impulse response, specified as a vector of positive scalar values.
Express t in the system time units, specified in the TimeUnit property of sys.

• For continuous-time models, specify t in the form Ti:dt:Tf. To obtain the response at each time
step, the function uses dt as the sample time of a discrete approximation to the continuous
system.

• For discrete-time models, specify t in the form Ti:Ts:Tf, where Ts is the sample time of sys.

impulse always applies the impulse input at t = 0, regardless of Ti.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

Output Arguments
y — Impulse response data
array

Impulse response data, returned as an array.

• For SISO systems, y is a column vector of the same length as t (if provided) or tOut (if you do not
provide t).

 impulse

1-873

• For single-input, multi-output systems, y is a matrix with as many rows as time samples and as
many columns as outputs. Thus, the jth column of y, or y(:,j), contains the impulse response of
from the input to the jth output.

• For MIMO systems, the impulse responses of each input channel are stacked up along the third
dimension of y. The dimensions of y are then N-by-Ny-by-Nu, where:

• N is the number of time samples.
• Ny is the number of system outputs.
• Nu is the number of system inputs.

Thus, y(:,i,j) is a column vector containing the impulse response from the jth input to the ith
output at the times specified in t or tOut.

tOut — Times at which impulse response is computed
vector

Times at which impulse response is computed, returned as a vector. When you do not provide a
specific vector t of times, impulse chooses this time vector based on the system dynamics. The
times are expressed in the time units of sys.

x — State trajectories
array

State trajectories, returned as an array. When sys is a state-space model, x contains the evolution of
the states of sys at each time in t or tOut. The dimensions of x are N-by-Nx-by-Nu, where:

• N is the number of time samples.
• Nx is the number of states.
• Nu is the number of system inputs.

Thus, the evolution of the states in response to an impulse injected at the kth input is given by the
array x(:,:,k). The row vector x(i,:,k) contains the state values at the ith time step.

ysd — Standard deviation of impulse response
array

Standard deviation of the impulse response of an identified model, returned as an array of the same
dimensions as y. If sys does not contain parameter covariance information, then ysd is empty.

Limitations
• The impulse response of a continuous system with nonzero D matrix is infinite at t = 0. impulse

ignores this discontinuity and returns the lower continuity value Cb at t = 0.
• The impulse command does not work on continuous-time models with internal delays. For such

models, use pade to approximate the time delay before computing the impulse response.

Tips
• When you need additional plot customization options, use impulseplot instead.
• To simulate system responses to arbitrary input signals, use lsim.

1 Functions

1-874

Algorithms
Continuous-time models are first converted to state-space form. The impulse response of a single-
input state-space model

ẋ = Ax + bu
y = Cx

is equivalent to the following unforced response with initial state b.

ẋ = Ax, x(0) = b
y = Cx

To simulate this response, the system is discretized using zero-order hold on the inputs. The sample
time is chosen automatically based on the system dynamics, except when a time vector t = 0:dt:Tf
is supplied. Hence, dt is used as sample time.

Version History
Introduced before R2006a

See Also
Linear System Analyzer | step | lsim | impulseest | pade | impulseplot

 impulse

1-875

impulseest
Nonparametric impulse response estimation

Syntax
sys = impulseest(data)
sys = impulseest(data,n)
sys = impulseest(data,n,nk)
sys = impulseest(___ ,opt)

Description
sys = impulseest(data) estimates an impulse response model sys, also known as a finite
impulse response (FIR) model, using time-domain or frequency-domain data data. The function uses
persistence-of-excitation analysis on the input data to select the model order (number of nonzero
impulse response coefficients.

Use nonparametric impulse response estimation to analyze input/output data for feedback effects,
delays, and significant time constants.

sys = impulseest(data,n) estimates an nth-order impulse response model that corresponds to
the time range 0:Ts:(n–1)*Ts, where Ts is the data sample time.

sys = impulseest(data,n,nk) specifies a transport delay of nk samples in the estimated
impulse response.

sys = impulseest(___ ,opt) specifies estimation options using the options set opt. You can use
this syntax with any of the previous input argument combinations.

Examples

Identify Nonparametric Impulse Response Model from Data

Estimate a nonparametric impulse response model using data from a hair dryer. The input is the
voltage applied to the heater and the output is the heater temperature. Use the first 500 samples for
estimation.

Load the data and use the first 500 samples to estimate the model.

load dry2
ze = dry2(1:500);
sys = impulseest(ze);

ze is an iddata object that contains time-domain data. sys, the identified nonparametric impulse
response model, is an idtf model.

Analyze the impulse response of the identified model from time 0 to 1.

h = impulseplot(sys,1);

1 Functions

1-876

Determine the point at which a significant response to the impulse begins. First, display the region
that bounds amplitudes that are not significantly different from zero. To do so, right-click the plot and
select Characteristics > Confidence Region. For impulse response plots, by default, this selection
displays a confidence region with a width of one standard deviation that is centered at zero, instead
of one centered at the response values. You can modify these defaults by right-clicking the plot and
selecting Properties > Options.

Alternatively, you can use the showConfidence command.

showConfidence(h);

 impulseest

1-877

The first response value that is significantly different than zero occurs at 0.24 seconds, or the third
sample. This implies that the transport delay is three samples. To generate a model that imposes the
three-sample delay, set the transport delay, which is the third argument, to 3. You must also set the
second argument, the order n, to its default value of [] as a placeholder.

sys1 = impulseest(ze,[],3);
h1 = impulseplot(sys1,1);
showConfidence(h1);

1 Functions

1-878

The response is identically zero until 0.24 seconds.

Specify Order of FIR Model

Load the estimation data.

load iddata3 z3;

Estimate a 35th-order FIR model.

n = 35;
sys = impulseest(z3,n);

You can confirm the model order of sys by displaying the number of terms.

nsys = size(sys.num)

nsys = 1×2

 1 35

Set n to [] so that the function automatically determines n. Display the model order.

 impulseest

1-879

n = [];
sys1 = impulseest(z3,n);
nsys1 = size(sys1.Numerator)

nsys1 = 1×2

 1 70

The model order is 70. The default value for the order is [], so setting the order to [] is equivalent to
omitting the specification.

Specify Transport Delay in FIR Model

Estimate an impulse response model with a transport delay of 3 samples.

If you know about the presence of delay in the input/output data in advance, use the delay value as a
transport delay for impulse response estimation.

Generate data that contains a 3-sample input-to-output lag.

Create a random input signal. Construct an idpoly model that includes three sample delays, which
you implement by using three leading zeros in the B polynomial.

u = rand(100,1);
A = [1 .1 .4];
B = [0 0 0 4 -2];
C = [1 1 .1];
sys = idpoly(A,B,C);

Simulate the model response y to the noise signal, using the AddNoise option and a sample time of 1
second. Encapsulate y in an iddata object.

opt = simOptions('AddNoise',true);
y = sim(sys,u,opt);
data = iddata(y,u,1);

Estimate and plot a 20th order model with no transport delay.

n = 20;
model1 = impulseest(data,n);
impulseplot(model1);

1 Functions

1-880

The plot shows that the impulse response includes nonzero samples during the 3-second delay period.

Estimate a model with a 3-sample transport delay.

nk = 3;
model2 = impulseest(data,n,nk);
impulseplot(model2)

 impulseest

1-881

The first three samples are identically zero.

Obtain Regularized Estimate of Impulse Response Model

Obtain regularized estimates of impulse response model using the regularizing kernel estimation
option.

Estimate a model using regularization. impulseest performs regularized estimates by default, using
the tuned and correlated kernel ('TC').

load iddata3 z3;
sys1 = impulseest(z3);

Estimate a model with no regularization.

opt = impulseestOptions('RegularizationKernel','none');
sys2 = impulseest(z3,opt);

Compare the impulse responses of both models.

h = impulseplot(sys2,sys1,70);
legend('sys2','sys1')

1 Functions

1-882

As the plot shows, using regularization makes the response smoother.

Plot the confidence intervals.

showConfidence(h);

 impulseest

1-883

The uncertainty in the computed response is reduced at larger lags for the model using
regularization. Regularization decreases variance at the price of some bias. The tuning of the 'TC'
regularization is such that the variance error dominates the overall error.

Use Regularized Impulse Response Model to Estimate State-Space Model

Load the estimation data.

load regularizationExampleData eData;

Recreate the transfer function model that was used for generating the estimation data (true system).

num = [0.02008 0.04017 0.02008];
den = [1 -1.561 0.6414];
Ts = 1;
trueSys = idtf(num,den,Ts);

Obtain a regularized impulse response (FIR) model with an order of 70.

opt = impulseestOptions('RegularizationKernel','DC');
m0 = impulseest(eData,70,opt);

Convert the model into a state-space model and reduce the model order.

1 Functions

1-884

m1 = idss(m0);
m1 = balred(m1,15);

Estimate a second state-space model directly from eData by using regularized reduction of an ARX
model.

m2 = ssregest(eData,15);

Compare the impulse responses of the true system and the estimated models.

impulse(trueSys,m1,m2,50);
legend('trueSys','m1','m2');

The three model responses are similar.

Test Measured Data for Feedback Effects

Use the empirical impulse response to measured data to determine whether the data includes
feedback effects. Feedback effects can be present when the impulse response includes statistically
significant response values for negative time values.

Compute the noncausal impulse response using a fourth-order prewhitening filter and no
regularization, automatic order selection, and negative lag.

 impulseest

1-885

load iddata3 z3;
opt = impulseestOptions('pw',4,'RegularizationKernel','none');
sys = impulseest(z3,[],'negative',opt);

sys is a noncausal model containing response values for negative time.

Analyze the impulse response of the identified model.

h = impulseplot(sys);

View the zero-response region at one standard deviation by right-clicking on the plot and selecting
Characteristics > Confidence Region. Alternatively, you can use the showConfidence command.

showConfidence(h);

1 Functions

1-886

The large response value at t=0 (zero lag) suggests that the data comes from a process containing
feedthrough. That is, the input affects the output instantaneously. The large response value can also
indicate direct feedback, such as proportional control without some delay so that y(t) partly
determines u(t).

Other indications of feedback in the data are the significant response values such as those at -7
seconds and -9 seconds.

Compute Impulse Response on Frequency Response Data

Compute an impulse response model for frequency response data.

Load the frequency response data, which contains measured amplitude AMP and phase PHA for the
frequency vector W.

load demofr;

Create the complex frequency response zfr and encapsulate it in an idfrd object that has a sample
time of 0.1 seconds. Plot the data.

zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
data = idfrd(zfr,W,Ts);

Estimate an impulse response model from data and plot the response.

 impulseest

1-887

sys = impulseest(data);
impulseplot(sys)

Compare Identified Nonparametric and Parametric Models

Identify parametric and nonparametric models for a data set, and compare their step responses.

Estimate the impulse response model sys1 (nonparametric) and state-space model sys2
(parametric) using the estimation data set z1.

load iddata1 z1;
sys1 = impulseest(z1);
sys2 = ssest(z1,4);

sys1 is a discrete-time identified transfer function model. sys2 is a continuous-time identified state-
space model.

Compare the step responses for sys1 and sys2.

step(sys1,'b',sys2,'r');
legend('Impulse response model','State-space model');

1 Functions

1-888

Input Arguments
data — Estimation data
iddata object | idfrd object | frd object

Estimation data, specified as an iddata object, an idfrd object, or an frd object, with at least one
input signal and a nonzero sample time.

For time-domain estimation, specify data as an iddata object containing the input and output signal
values.

For frequency-domain estimation, specify data as one of the following:

• Frequency response data (idfrd object or frd object)
• iddata object with properties specified as follows:

• InputData — Fourier transform of the input signal
• OutputData — Fourier transform of the output signal
• Domain — ‘Frequency’

n — Order of FIR model
[] (default) | positive integer | matrix

Order of the FIR model, specified as a positive integer, [], or a matrix.

 impulseest

1-889

• If data contains a single input channel and output channel, or if you want to apply the same
model order to all input/output pairs, specify n as a positive integer.

• If data contains Nu input channels and Ny output channels, and you want to specify individual
model orders for the input/output pairs, specify n as an Ny-by-Nu matrix of positive integers, such
that N(i,j) represents the length of the impulse response from input j to output i.

• If you want the function to determine the order automatically, specify n as []. The software uses
persistence-of-excitation analysis on the input data to select the order.

Example: sys = impulseest(data,70) estimates an impulse response model of order 70.

nk — Transport delay
zero matrix (default) | 'negative' | 0 | 1 | scalar integer | matrix

Transport delay in the estimated impulse response, specified as a scalar integer, 'negative', or an
Ny-by-Nu matrix, where Ny is the number of outputs and Nu is the number of inputs. The impulse
response (input j to output i) coefficients correspond to the time span nk(i,j)*Ts : Ts :
(n(ij)+nk(i,j)-1)*Ts.

• If you know the value of the transport delay, specify nk as a scalar integer or a matrix of scalar
integers.

• If you do not know the delay value, specify nk as 0. Once you estimate the impulse response, you
can determine the true delay from the nonsignificant impulse response values in the beginning
portion of the response. For an example of finding a true delay, see “Identify Nonparametric
Impulse Response Model from Data” on page 1-876.

• To generate the impulse response coefficients for negative time values, which is useful for
feedback analysis, use a negative integer. If you specify a negative value, the value must be the
same across all output channels. You can also specify nk as 'negative' to automatically pick
negative lags for all input/output channels of the model. For an example of using negative time
values, see “Test Measured Data for Feedback Effects” on page 1-885.

• To create a system whose leading numerator coefficient is zero, specify nk as 1.

The function stores positive values of nk greater than 1 in the IODelay property of sys
(sys.IODelay = max(nk-1,0)), and negative values in the InputDelay property.

opt — Estimation options
impulseestOptions option set

Estimation options, specified as an impulseestOptions option set, that specify the following:

• Prefilter order
• Regularization algorithm
• Input and output data offsets
• Advanced options such as structure

Use impulseestOptions to create the options set.

Output Arguments
sys — Estimated impulse response model
idtf object

1 Functions

1-890

Estimated impulse response model, returned as an idtf model that encapsulates an FIR model.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report Field Description
Status Summary of the model status, which indicates

whether the model was created by construction
or obtained by estimation.

Method Estimation command used.
Fit Quantitative assessment of the estimation,

returned as a structure. See “Loss Function and
Model Quality Metrics” for more information on
these quality metrics. The structure has the
following fields:

Field Description
FitP
erce
nt

Normalized root mean squared error
(NRMSE) measure of how well the
response of the model fits the estimation
data, expressed as the percentage
fitpercent = 100(1-NRMSE).

Loss
Fcn

Value of the loss function when the
estimation completes.

MSE Mean squared error (MSE) measure of
how well the response of the model fits
the estimation data.

FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC)

measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameters Estimated values of model parameters.
OptionsUsed Option set used for estimation. If no custom

options were configured, this field is a set of
default options. See impulseestOptions for
more information.

RandState State of the random number stream at the start
of estimation. Empty, [], if randomization was
not used during estimation. For more
information, see rng.

 impulseest

1-891

Report Field Description
DataUsed Attributes of the data used for estimation,

returned as a structure with the following fields.

Field Description
Name Name of the data set.
Type Data type.
Leng
th

Number of data samples.

Ts Sample time.
Inte
rSam
ple

Input intersample behavior, returned as
one of the following values:

• 'zoh' — Zero-order hold maintains a
piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a
piecewise-linear input signal between
samples.

• 'bl' — Band-limited behavior
specifies that the continuous-time
input signal has zero power above the
Nyquist frequency.

Inpu
tOff
set

Offset removed from time-domain input
data during estimation. For nonlinear
models, it is [].

Outp
utOf
fset

Offset removed from time-domain output
data during estimation. For nonlinear
models, it is [].

For more information on using Report, see “Estimation Report”.

Tips
• To view the impulse or step response of sys, use either impulseplot or stepplot, respectively.
• A response value that corresponds to a negative time value and that is significantly different from

zero in the impulse response of sys indicates the presence of feedback in the data.
• To view the region of responses that are not significantly different from zero (the zero-response

region) in a plot, right-click on the plot and select Characteristics > Confidence Region. A
patch depicting the zero-response region appears on the plot. The impulse response at any time
value is significant only if it lies outside the zero-response region. The level of confidence in
significance depends on the number of standard deviations specified in showConfidence or
options in the property editor. The default value is 1 standard deviation, which gives 68%
confidence. A common choice is 3 standard deviations, which gives 99.7% confidence.

1 Functions

1-892

Algorithms
Correlation analysis refers to methods that estimate the impulse response of a linear model, without
specific assumptions about model orders.

The impulse response, g, is the system output when the input is an impulse signal. The output
response to a general input, u(t), is the convolution with the impulse response. In continuous time:

y(t) =∫−∞
t

g τ u t − τ dτ

In discrete time:

y t = ∑
k = 1

∞
g k u t − k

The values of g(k) are the discrete-time impulse response coefficients.

You can estimate the values from observed input/output data in several different ways. impulseest
estimates the first n coefficients using the least-squares method to obtain a finite impulse response
(FIR) model of order n.

impulseest provides several important options for the estimation:

• Regularization — Regularize the least-squares estimate. With regularization, the algorithm forms
an estimate of the prior decay and mutual correlation among g(k), and then merges this prior
estimate with the current information about g from the observed data. This approach results in an
estimate that has less variance but also some bias. You can choose one of several kernels to
encode the prior estimate.

This option is essential because the model order n can often be quite large. In cases without
regularization, n can be automatically decreased to secure a reasonable variance.

Specify the regularizing kernel using the RegularizationKernel name-value argument of
impulseestOptions.

• Prewhitening — Prewhiten the input by applying an input-whitening filter of order PW to the data.
Use prewhitening when you are performing unregularized estimation. Using a prewhitening filter
minimizes the effect of the neglected tail—k > n—of the impulse response. To achieve
prewhitening, the algorithm:

1 Defines a filter A of order PW that whitens the input signal u:

1/A = A(u)e, where A is a polynomial and e is white noise.
2 Filters the inputs and outputs with A:

uf = Au, yf = Ay
3 Uses the filtered signals uf and yf for estimation.

Specify prewhitening using the PW name-value pair argument of impulseestOptions.
• Autoregressive Parameters — Complement the basic underlying FIR model by NA autoregressive

parameters, making it an ARX model.

y t = ∑
k = 1

n
g k u t − k − ∑

k = 1

NA
aky t − k

 impulseest

1-893

This option both gives better results for small n values and allows unbiased estimates when data
are generated in closed loop. impulseest sets NA to 5 when t > 0 and sets NA to 0 (no
autoregressive component) when t < 0.

• Noncausal effects — Include response to negative lags. Use this option if the estimation data
includes output feedback:

u(t) = ∑
k = 0

∞
h(k)y t − k + r t

where h(k) is the impulse response of the regulator and r is a setpoint or disturbance term. The
algorithm handles the existence and character of such feedback h, and estimates h in the same
way as g by simply trading places between y and u in the estimation call. Using impulseest with
an indication of negative delays, mi = impulseest(data,nk,nb), where nk < 0, returns a
model mi with an impulse response

h(− nk), h(− nk− 1), ..., h(0), g(1), g(2), ..., g(nb + nk)

that has an alignment that corresponds to the lags nk, nk + 1, .., 0, 1, 2, ..., nb + nk . The algorithm
achieves this alignment because the input delay (InputDelay) of model mi is nk.

For a multi-input multi-output system, the impulse response g(k) is an ny-by-nu matrix, where ny is
the number of outputs and nu is the number of inputs. The i–j element of the matrix g(k) describes the
behavior of the ith output after an impulse in the jth input.

Version History
Introduced in R2012a

See Also
impulseestOptions | impulse | impulseplot | idtf | step | cra | spa

Topics
“What Is Time-Domain Correlation Analysis?”

1 Functions

1-894

impulseestOptions
Options set for impulseest

Syntax
options = impulseestOptions
options = impulseestOptions(Name,Value)

Description
options = impulseestOptions creates a default options set for impulseest.

options = impulseestOptions(Name,Value) creates an options set with the options specified
by one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

RegularizationKernel

Regularizing kernel, used for regularized estimates of impulse response for all input-output channels.
Regularization reduces variance of estimated model coefficients and produces a smoother response
by trading variance for bias. For more information, see [1].

Regularization is specified as one of the following values:

• 'TC' — Tuned and correlated kernel
• 'none' — No regularization is used
• 'CS' — Cubic spline kernel
• 'SE' — Squared exponential kernel
• 'SS' — Stable spline kernel
• 'HF' — High frequency stable spline kernel
• 'DI' — Diagonal kernel
• 'DC' — Diagonal and correlated kernel

Default: 'TC'

PW

Order of the input prewhitening filter. Must be one of the following:

 impulseestOptions

1-895

• 'auto' — Uses a filter of order 10 when RegularizationKernel is 'none'; otherwise, 0.
• Nonnegative integer

Use a nonzero value of prewhitening only for unregularized estimation (RegularizationKernel is
'none').

Default: 'auto'

InputOffset

Input signal offset level of time-domain estimation data. Must be one of the following:

• An Nu-element column vector, where Nu is the number of inputs. For multi-experiment data,
specify a Nu-by-Ne matrix, where Ne is the number of experiments. The offset value
InputOffset(i,j) is subtracted from the ith input signal of the jth experiment.

• [] — No offsets.

Default: []

OutputOffset

Output signal offset level of time-domain estimation data. Must be one of the following:

• An Ny-element column vector, where Ny is the number of outputs. For multi-experiment data,
specify a Ny-by-Ne matrix, where Ne is the number of experiments. The offset value
OputOffset(i,j) is subtracted from the ith output signal of the jth experiment.

• [] — No offsets.

Default: []

Advanced

Structure, used during regularized estimation, with the following fields:

• MaxSize — Maximum allowable size of Jacobian matrices formed during estimation. Specify a
large positive number.

Default: 250e3
• SearchMethod — Search method for estimating regularization parameters, specified as one of

the following values:

• 'fmincon': Trust-region-reflective constrained minimizer. In general, 'fmincon' is better
than 'gn' for handling bounds on regularization parameters that are imposed automatically
during estimation.

• 'gn': Quasi-Newton line search.

SearchMethod is used only when RegularizationKernel is not 'none'.

Default: 'fmincon'
• AROrder — Order of the AR-part in the model from input to output. Specify as a positive integer.

An order>0 allows more accurate models of the impulse response in case of feedback and non-
white output disturbances.

1 Functions

1-896

Default: 5
• FeedthroughInSys — Specify whether the impulse response value at zero lag must be attributed

to feedthrough in the system (true) or to feedback effects (false). Applies only when you
compute the response values for negative lags.

Default: false

Output Arguments
options

Option set containing the specified options for impulseest.

Examples

Create Default Options Set for Impulse Response Estimation

Create a default options set for impulseest.

options = impulseestOptions;

Specify Regularizing Kernel and Prewhitening Options for Impulse Response Estimation

Specify 'HF' regularizing kernel and order of prewhitening filter for impulseest.

options = impulseestOptions('RegularizationKernel','HF','PW',5);

Alternatively, use dot notation to specify these options.

options = impulseestOptions;
options.RegularizationKernel = 'HF';
options.PW = 5;

Tips
• A linear model cannot describe arbitrary input-output offsets. Therefore, before using the data,

you must either detrend it or remove the levels using InputOffset and OutputOffset. You can
reintroduce the removed data during simulations by using the InputOffset and OutputOffset
simulation options. For more information, see simOptions.

• Estimating the impulse response by specifying either InputOffset, OutputOffset or both is
equivalent to detrending the data using getTrend and detrend. For example:

opt = impulseestOptions('InputOffset',in_off,'OutputOffset',out_off);
impulseest(data,opt);

is the same as:

Tr = getTrend(data),
Tr.InputOffset = in_off

 impulseestOptions

1-897

TR.OutputOffset = out_off
dataT = detrend(data,Tr)
impulseest(dataT)

Version History
Introduced in R2012b

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References

[1] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer Functions, Regularizations and
Gaussian Processes - Revisited”, Automatica, Volume 48, August 2012.

See Also
impulseest

1 Functions

1-898

impulseplot
Plot impulse response with additional plot customization options

Syntax
h = impulseplot(sys)
h = impulseplot(sys1,sys2,...,sysN)
h = impulseplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = impulseplot(___ ,tFinal)
h = impulseplot(___ ,t)
h = impulseplot(AX, ___)
h = impulseplot(___ ,plotoptions)

Description
impulseplot lets you plot dynamic system impulse responses with a broader range of plot
customization options than impulse. You can use impulseplot to obtain the plot handle and use it
to customize the plot, such as modify the axes labels, limits and units. You can also use impulseplot
to draw an impulse response plot on an existing set of axes represented by an axes handle. To
customize an existing impulse plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox). To create impulse plots with default options or to extract impulse response data, use
impulse.

h = impulseplot(sys) plots the impulse response of the dynamic system model sys and returns
the plot handle h to the plot. You can use this handle h to customize the plot with the getoptions
and setoptions commands.

h = impulseplot(sys1,sys2,...,sysN) plots the impulse response of multiple dynamic
systems sys1,sys2,…,sysN on the same plot. All systems must have the same number of inputs and
outputs to use this syntax.

h = impulseplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and
color for the impulse response of each system. All systems must have the same number of inputs and
outputs to use this syntax.

h = impulseplot(___ ,tFinal) simulates the impulse response from t = 0 to the final time t =
tFinal. Specify tFinal in the system time units, specified in the TimeUnit property of sys. For
discrete-time systems with unspecified sample time (Ts = -1), impulseplot interprets tFinal as
the number of sampling intervals to simulate.

h = impulseplot(___ ,t) simulates the impulse response using the time vector t. Specify t in
the system time units, specified in the TimeUnit property of sys.

 impulseplot

1-899

h = impulseplot(AX, ___) plots the impulse response on the Axes object in the current figure
with the handle AX.

h = impulseplot(___ ,plotoptions) plots the impulse response with the options set specified
in plotoptions. You can use these options to customize the impulse plot appearance using the
command line. Settings you specify in plotoptions overrides the preference settings in the
MATLAB session in which you run impulseplot. Therefore, this syntax is useful when you want to
write a script to generate multiple plots that look the same regardless of the local preferences.

Examples

Customize Impulse Plot using Plot Handle

For this example, use the plot handle to change the time units to minutes and turn on the grid.

Generate a random state-space model with 5 states and create the impulse response plot with plot
handle h.

rng("default")
sys = rss(5);
h = impulseplot(sys);

Change the time units to minutes and turn on the grid. To do so, edit properties of the plot handle, h
using setoptions.

1 Functions

1-900

setoptions(h,'TimeUnits','minutes','Grid','on');

The impulse plot automatically updates when you call setoptions.

Alternatively, you can also use the timeoptions command to specify the required plot options. First,
create an options set based on the toolbox preferences.

plotoptions = timeoptions('cstprefs');

Change properties of the options set by setting the time units to minutes and enabling the grid.

plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
impulseplot(sys,plotoptions);

 impulseplot

1-901

You can use the same option set to create multiple impulse plots with the same customization.
Depending on your own toolbox preferences, the plot you obtain might look different from this plot.
Only the properties that you set explicitly, in this example TimeUnits and Grid, override the toolbox
preferences.

Impulse Plot with Specified Grid Color

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a
impulse plot with red colored grid lines.

Create the MIMO state-space model sys_mimo.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

Create an impulse plot with plot handle h and use getoptions for a list of the options available.

1 Functions

1-902

h = impulseplot(sys_mimo)

h =

 resppack.timeplot

p = getoptions(h)

p =

 Normalize: 'off'
 SettleTimeThreshold: 0.0200
 RiseTimeLimits: [0.1000 0.9000]
 TimeUnits: 'seconds'
 ConfidenceRegionNumberSD: 1
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {3x1 cell}

 impulseplot

1-903

 XLimMode: {3x1 cell}
 YLimMode: {3x1 cell}

Use setoptions to update the plot with the required customization.

setoptions(h,'Grid','on','GridColor',[1 0 0]);

The impulse plot automatically updates when you call setoptions. For MIMO models,
impulseplot produces a grid of plots, each plot displaying the impulse response of one I/O pair.

Plot Impulse Responses of Identified Models with Confidence Region

Compare the impulse response of a parametric identified model to a nonparametric (empirical)
model, and view their 3-σ confidence regions. (Identified models require System Identification
Toolbox™ software.)

Identify a parametric and a nonparametric model from sample data.

load iddata1 z1
sys1 = ssest(z1,4);
sys2 = impulseest(z1);

Plot the impulse responses of both identified models. Use the plot handle to display the 3-σ
confidence regions.

1 Functions

1-904

t = -1:0.1:5;
h = impulseplot(sys1,'r',sys2,'b',t);
showConfidence(h,3)
legend('parametric','nonparametric')

The nonparametric model sys2 shows higher uncertainty.

Customized Impulse Response Plot at Specified Time

For this example, examine the impulse response of the following zero-pole-gain model and limit the
impulse plot to tFinal = 15 s. Use 15-point blue text for the title. This plot should look the same,
regardless of the preferences of the MATLAB session in which it is generated.

sys = zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]);
tFinal = 15;

First, create a default options set using timeoptions.

plotoptions = timeoptions;

Next change the required properties of the options set plotoptions.

plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];

 impulseplot

1-905

Now, create the impulse response plot using the options set plotoptions.

h = impulseplot(sys,tFinal,plotoptions);

Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox
preferences of the MATLAB session.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Sparse state-space models, such as sparss or mechss models. Final time tFinal must be
specified when using sparse models.

• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models
requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value to plot
the impulse response data.

1 Functions

1-906

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model.

• Identified LTI models, such as idtf, idss, or idproc models.

If sys is an array of models, the function plots the impulse response of all models in the array on the
same axes.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Pentagram
'h' Hexagram

Color Description
y yellow
m magenta
c cyan

 impulseplot

1-907

Color Description
r red
g green
b blue
w white
k black

tFinal — Final time for impulse response computation
scalar

Final time for impulse response computation, specified as a scalar. Specify tFinal in the system time
units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sample
time (Ts = -1), impulseplot interprets tFinal as the number of sampling intervals to simulate.

t — Time for impulse response simulation
vector

Time for impulse response simulation, specified as a vector. Specify the time vector t in the system
time units, specified in the TimeUnit property of sys. The time vector must be real, finite, and must
contain monotonically increasing and evenly spaced time samples.

The time vector t is:

• t = Tinitial:Tsample:Tfinal, for discrete-time systems.
• t = Tinitial:dt:Tfinal, for continuous-time systems. Here, dt is the sample time of a discrete

approximation of the continuous-time system.

AX — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are
Cartesian axes, then impulseplot plots on the current axes. Use AX to plot into specific axes when
creating a impulse plot.

plotoptions — Impulse plot options set
TimePlotOptions object

Impulse plot options set, specified as a TimePlotOptions object. You can use this option set to
customize the impulse plot appearance. Use timeoptions to create the option set. Settings you
specify in plotoptions overrides the preference settings in the MATLAB session in which you run
impulseplot. Therefore, plotoptions is useful when you want to write a script to generate
multiple plots that look the same regardless of the local preferences.

For the list of available options, see timeoptions.

Output Arguments
h — Plot handle
handle object

Plot handle, returned as a handle object. Use the handle h to get and set the properties of the
impulse plot using getoptions and setoptions. For the list of available options, see the Properties

1 Functions

1-908

and Values Reference section in “Customizing Response Plots from the Command Line” (Control
System Toolbox).

Version History
Introduced in R2012a

See Also
getoptions | impulse | setoptions | showConfidence

Topics
“Customizing Response Plots from the Command Line” (Control System Toolbox)

 impulseplot

1-909

init
Set or randomize initial parameter values

Syntax
m = init(m0)
m = init(m0,R,pars,sp)

Description
m = init(m0) randomizes initial parameter estimates for model structures m0 for any linear or
nonlinear identified model. It does not support idnlgrey models. m is the same model structure as
m0, but with a different nominal parameter vector. This vector is used as the initial estimate by pem.

m = init(m0,R,pars,sp) randomizes parameters around pars with variances given by the row
vector R. Parameter number k is randomized as pars(k) + e*sqrt(R(k)), where e is a normal
random variable with zero mean and a variance of 1. The default value of R is all ones, and the default
value of pars is the nominal parameter vector in m0.

Only models that give stable predictors are accepted. If sp = 'b', only models that are both stable
and have stable predictors are accepted.

sp = 's' requires stability only of the model, and sp = 'p' requires stability only of the predictor.
sp = 'p' is the default.

Sufficiently free parameterizations can be stabilized by direct means without any random search. To
just stabilize such an initial model, set R = 0. With R > 0, randomization is also done.

For model structures where a random search is necessary to find a stable model/predictor, a
maximum of 100 trials is made by init. It can be difficult to find a stable predictor for high-order
systems by trial and error.

Version History
Introduced before R2006a

See Also
idnlarx | idnlhw | rsample | simsd

1 Functions

1-910

initialCondition
Initial condition representation for linear time-invariant systems

Description
An initialCondition object encapsulates the initial-condition information for a linear time-
invariant (LTI) model. The object generalizes the numeric vector representation of the initial states of
a state-space model so that the information applies to linear models of any form—transfer functions,
polynomial models, or state-space models.

You can estimate and retrieve initial conditions when you identify a linear model using commands
such as tfest or compare model response to measured input/output data using compare. The
software estimates the initial condition value by minimizing the simulation or prediction error against
the measured output data. You can then apply those initial conditions in a subsequent simulation,
using commands such as sim or predict, to confirm model performance with respect to the same
measurement data. Use the initialCondition command to create an initialCondition object
from a state-space model specification or from any LTI model of a free response.

The initialCondition object can also be seen as a representation of the free response of a linear
model. The simulation functions use this information to compute the model response in the following
manner:

1 Compute the forced response of the model to the input signal. The forced response is the
standard simulation output when there are no specified initial conditions.

2 Compute the impulse response of the model and scale the result to generate the free response of
the model to the specified initial conditions.

3 Add the forced response and the free response together to form the total system response.

The figure illustrates this process.

 initialCondition

1-911

For continuous systems (Ts = 0), the free response G(s) for the initial state vector x0 is

G(s) = C(sI − A)−1x0

Here, C is equivalent to the state-space measurement matrix C and A is equivalent to the state-space
state matrix A.

For discrete systems (Ts >0), the free response G(z) is

G(z) = zC(zI − A)−1x0

The initialCondition object represents the free response in state-space form. The object is a
structure with properties containing the state-space A and C matrices and the initial state vector x0.
For idtf and idpoly models, using an initialCondition object is the only way to represent and
use initial conditions for simulation. For idss models, you can use either an initialCondition
object or a numeric initial state vector. When you obtain initial conditions ic for multiexperiment
data, ic is an object array, with one initialCondition object for each experiment.

Creation
You can obtain an initialCondition object in one of four ways.

• Model estimation — Specify that the estimation function return the estimated initial condition that
corresponds to the estimation input/output data. For example, you can use the following command
to obtain the estimated initial condition ic for a transfer function model sys that is estimated
with input/output data z.

[sys,ic] = tfest(z,2,1)

For an example, see “Obtain Estimated Initial Conditions” on page 1-916.

1 Functions

1-912

• Model-to-data comparison using any input/output data — Specify that compare return the
estimated initial condition that the function estimates internally to support the fit assessment.
For example, you can use the following command to obtain the initial condition ic for the linear
model sys when determining the fit against input/output data z. yp is the simulated or predicted
model output.

[yp,fit,ic] = compare(z,sys)

For an example, see “Obtain Initial Conditions for New Data” on page 1-920.
• Direct construction — Use the initialCondition command to encapsulate the state-space form

of a free-response model in an initialCondition object.

ic = initialCondition(A,X0,C,Ts)

For an example, see “Construct initialCondition Object from State-Space Model” on page 1-926.
• Free-response model conversion — Use the initialCondition command to convert an LTI free-

response model into an initialCondition object.

ic = initialCondition(G)

For an example, see “Convert Free-Response Model to initialCondition Object” on page 1-929.

For information on functions you can use to extract information from or transform
initialCondition objects, see “Object Functions” on page 1-914.

Syntax
ic = initialCondition(A,X0,C,Ts)
ic = initialCondition(G)

Description

ic = initialCondition(A,X0,C,Ts) creates an initialCondition object that represents the
free response to an initial condition, expressed in state-space form, of an LTI model.

dx = Ax
y = Cx
x(0) = x0

ic stores this model in the form of properties on page 1-914. A and C correspond to a state-space
realization of the model, X0 to the initial state vector x0, and Ts to the sample time. You can use ic to
specify initial conditions when simulating any type of LTI system.

ic = initialCondition(G) creates an initialCondition object corresponding to a linear
model G of the free response.

Input Arguments

G — Free-response model
LTI model

Free-response model, specified as an LTI model with no inputs. In the continuous-time case, G must
be strictly proper. In the discrete-time case, G must be biproper. For an example of using a free-

 initialCondition

1-913

response model to obtain an initialCondition object, see “Convert Free-Response Model to
initialCondition Object” on page 1-929.

Properties
A — A matrix of state-space realization of LTI free response
numeric matrix

A matrix of the state-space realization of the LTI free response, specified as an Nx-by-Nx numeric
matrix, where Nx is the number of states. For an example of using this property, see “Obtain
Estimated Initial Conditions” on page 1-916.

X0 — Initial states of state-space realization of LTI free response
numeric vector

Initial states of the state-space realization of the LTI free response, specified as a numeric vector of
length Nx. For an example of using this property, see “Obtain Estimated Initial Conditions” on page 1-
916.

C — C matrix of state-space realization of LTI free response
numeric matrix

C matrix of the state-space realization of the LTI free response, specified as an Ny-by-Nx numeric
matrix, where Ny is the number of outputs. For an example of using this property, see “Obtain
Estimated Initial Conditions” on page 1-916.

Ts — Sample time
0 | –1 | positive scalar

Sample time of the LTI free response, specified as one of the following:

• Continuous-time model — 0
• Discrete-time model with a specified sampling time — Positive scalar representing the sampling

period expressed in the unit specified by the TimeUnit property of the model
• Discrete-time model with unspecified sample time — –1

The sample time of an initialCondition object is the same as for the dynamic system model that
the object corresponds to.

Object Functions
Functions applicable to initialCondition objects are those that can return, use, or convert the
objects.

1 Functions

1-914

Initial Condition (IC)
Role

LTI Function Type Syntax Example Example Links

Return estimated IC
objects

All estimation functions,
compare

[sys,ic] =
tfest(data,2,1)

“Obtain Estimated
Initial Conditions” on
page 1-916

“Obtain Initial
Conditions for
Multiexperiment Data”
on page 1-923

“Obtain Initial
Conditions for New
Data” on page 1-920

Use IC objects for
model response

Option sets for model
response functions

opt =
simOptions('Initia
lCondition',ic)

“Apply Initial Conditions
in Simulation” on page
1-918

Convert IC objects into
Dynamic System Models
(DSMs)

DSM object functions g = idtf(ic) “Visualize Free
Response to Initial
Condition” on page 1-
917

Analyze models
converted from IC
objects

DSM analysis functions y_g = impulse(g) “Visualize Free
Response to Initial
Condition” on page 1-
917

Estimate and Return Initial Conditions
tfest Estimate transfer function model
procest Estimate process model using time-domain or frequency-domain data
arx Estimate parameters of ARX, ARIX, AR, or ARI model
armax Estimate parameters of ARMAX, ARIMAX, ARMA, or ARIMA model using time-domain

data
bj Estimate Box-Jenkins polynomial model using time-domain data
oe Estimate output-error polynomial model using time-domain or frequency-domain data
polyest Estimate polynomial model using time- or frequency-domain data
compare Compare identified model output with measured output

Use Initial Conditions
sim Simulate response of identified model
simOptions Option set for sim
predict Predict state and state estimation error covariance at next time step using

extended or unscented Kalman filter, or particle filter
predictOptions Option set for predict
pe Prediction error for identified model
peOptions Option set for pe
resid Compute and test residuals
residOptions Option set for resid
compare Compare identified model output with measured output
compareOptions Option set for compare

 initialCondition

1-915

Convert Initial Conditions to Dynamic System Model
idss State-space model with identifiable parameters
idpoly Polynomial model with identifiable parameters
idtf Transfer function model with identifiable parameters

Analyze Free Model Response using idss Form
impulse Impulse response plot of dynamic system; impulse response data
freqresp Evaluate system response over a grid of frequencies

Examples

Obtain Estimated Initial Conditions

Estimate a transfer function model and obtain estimated initial conditions.

Load and plot the data.

load iddata1ic.mat z1i
plot(z1i)

The output data does not start at 0.

Estimate a second-order transfer function sys_tf. Specify that the function return the initial
conditions ic.

1 Functions

1-916

[sys_tf,ic] = tfest(z1i,2,1);

Examine the contents of ic. ic includes, in state-space form, the free response model defined by
matrices A and C, the initial state vector X0, and the sample time Ts.

A = ic.A

A = 2×2

 -2.9841 -5.5848
 4.0000 0

C = ic.C

C = 1×2

 0.2957 5.2441

x0 = ic.X0

x0 = 2×1

 -0.9019
 -0.6161

Ts = ic.Ts

Ts = 0

ic is specific to the estimation data z1i. You can use ic to establish initial conditions when you
simulate any LTI model using the input signal from z1i and compare the response with the z1i
output signal.

Visualize Free Response to Initial Condition

Visualize the free response encapsulated in an initialCondition object by generating an impulse
response.

Estimate a transfer function and return the initial condition ic_tf.

load iddata1ic z1i
[sys_tf,ic_tf] = tfest(z1i,2,1);
ic_tf

ic_tf =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [0.2957 5.2441]
 Ts: 0

ic_tf contains the information necessary to compute the free response to an initial condition.

 initialCondition

1-917

Convert ic_tf into an idss object that can be passed to the impulse function.

ic_tfss = idss(ic_tf);

Create a time vector t that spans the data set. Compute the impulse response.

t = 0:0.1:9.9;
t = t';
yimp = impulse(ic_tfss,t);
plot(t,yimp)
title('Free Response to Initial Condition')

The free response is a transient that lasts for about four seconds.

Apply Initial Conditions in Simulation

Load the data and estimate a second-order transfer function sys. Return initial conditions in ic.

load iddata1ic z1i
[sys,ic] = tfest(z1i,2,1);

Simulate sys using the estimation data, but without incorporating the initial condition. Plot the
simulated output with the measured output.

1 Functions

1-918

y_no_ic = sim(sys,z1i);
plot(y_no_ic,z1i)
legend('Model Response','Measured Output')

The measured and simulated outputs do not agree at the beginning of the simulation.

Incorporate ic into the simOptions option set opt. Simulate and plot the model response using
opt.

opt = simOptions('InitialCondition',ic);
y_ic = sim(sys,z1i,opt);
plot(y_ic,z1i);
legend('Model Response','Measured Output')

 initialCondition

1-919

The simulation combines the model response to the input signal with the free response to the initial
condition. The measured and simulated outputs now have better agreement at the beginning of the
simulation.

Obtain Initial Conditions for New Data

An estimated initialCondition object is specific to the data from which you estimated it. If you
want to simulate your model with new data, such as validation data, you need to estimate a new
initial condition for that data. To do so, use the compare command.

Load data and split it into estimation and validation data sets.

load iddata1 z1
z1_est = z1(1:150);
z1_val = z1(151:300);
plot(z1_est,z1_val);
legend('Estimation Data','Validation Data')

1 Functions

1-920

Examine the start points of each output data set.

e0 = z1_est.y(1)

e0 = -0.5872

v0 = z1_val.y(1)

v0 = -7.4390

The two data sets have different starting conditions.

Estimate a second-order transfer function model using z1_est. Return the estimated initial
conditions in ic_est. Display the X0 property of ic_est. This property represents the estimated
initial state vector that the free-response model defined by ic_est.A and ic_est.C responds to.

[sys,ic_est] = tfest(z1_est,2,1);
ic_est.X0

ans = 2×1

 -0.4082
 0.0095

You can use ic_est if you want to simulate sys using z1_est. Alternatively, you can use compare,
which estimates the initial condition independently. Use compare twice, once to plot the data and
once to return the results. Display the initial state vector ic_estc.X0 that compare estimates.

 initialCondition

1-921

compare(z1_est,sys)

[yce,fit,ic_estc] = compare(z1_est,sys);
ic_estc.X0

ans = 2×1

 -0.4082
 0.0095

The initial state vector ic_estc.X0 is identical to ic_est.

Now evaluate the model with the validation data set. Estimate the initial conditions with the
validation data.

compare(z1_val,sys)

1 Functions

1-922

[ycv,fit,ic_valc] = compare(z1_val,sys);
ic_valc.X0

ans = 2×1

 -1.7536
 -0.9547

You can use ic_val when you simulate sys with the z1_val input signal and compare the model
response to the z1_val output signal.

Obtain Initial Conditions for Multiexperiment Data

Estimate an initialCondition object array using multiexperiment data.

Load data from two experiments. Merge the two data sets into one multiexperiment data set.

load iddata1 z1
load iddata2 z2
z12 = merge(z1,z2)

z12 =
Time domain data set containing 2 experiments.

 initialCondition

1-923

Experiment Samples Sample Time
 Exp1 300 0.1
 Exp2 400 0.1

Outputs Unit (if specified)
 y1

Inputs Unit (if specified)
 u1

plot(z12)

Estimate the second-order transfer function sys and return the initial conditions in ic.

np = 2;
nz = 1;
[sys,ic] = tfest(z12,np,nz);
ic

ic=1×2 object
 1x2 initialCondition array with properties:

 A
 X0
 C
 Ts

1 Functions

1-924

ic is an object array. Display the contents of each object.

ic(1,1)

ans =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [-0.7814 5.2530]
 Ts: 0

ic(1,2)

ans =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [-0.7814 5.2530]
 Ts: 0

Compare the A, X0, and C properties for each object.

A1 = ic(1,1).A

A1 = 2×2

 -3.4824 -5.5785
 4.0000 0

A2 = ic(1,2).A

A2 = 2×2

 -3.4824 -5.5785
 4.0000 0

C1 = ic(1,1).C

C1 = 1×2

 -0.7814 5.2530

C2 = ic(1,2).C

C2 = 1×2

 -0.7814 5.2530

X01 =ic(1,1).X0

X01 = 2×1

 initialCondition

1-925

 -0.6528
 -0.0067

X02 =ic(1,2).X0

X02 = 2×1

 0.3076
 -0.0715

The A and C matrices are identical. These matrices represent the state-space form of sys. The X0
vectors are different. This difference results from the different initial conditions for the two
experiments.

Construct initialCondition Object from State-Space Model

Estimate a state-space model and return the initial states. From the model and the initial state vector,
construct an initialCondition object that can be used with any linear model.

Load and plot the data.

load iddata1ic z1i
plot(z1i)

1 Functions

1-926

Estimate a state-space model and obtain the estimated initial conditions.

First, set the 'InitialState' name-value pair argument in ssestOptions to 'estimate', which
overrides the default setting of 'auto'. The 'estimate' setting always estimates the initial states.
The 'auto' setting uses the 'zero' setting if the effect of the initial states on the overall model
estimation error is relatively small, and can therefore result in an initial-state vector containing only
zeros.

opt = ssestOptions;
opt = ssestOptions('InitialState','estimate');

Estimate a second-order state-space model sys_ss. Specify the output argument x0 to return the
initial state vector. Specify the input argument opt to use your 'InitialState' setting. After
estimating, examine x0.

[sys_ss,x0] = ssest(z1i,2,opt);
x0

x0 = 2×1

 0.0631
 0.0329

x0 is a nonzero initial state vector.

Simulate the model using x0 and compare the output with the original output data.

To use x0 as the initial condition, specify the 'InitialCondition' name-value pair argument in
simOptions as x0.

opt = simOptions;
opt = simOptions('InitialCondition',x0);

Simulate the model using opt and store the response in xss.

xss = sim(sys_ss,z1i,opt);

Plot the model response with the original output data.

t = 0:0.1:19.9;
plot(t',[xss.y z1i.y])
legend('ss model','output data')
title('Simulated State-Space Model Using Estimated Initial States')

 initialCondition

1-927

The simulation starts at a point close to the starting point of the data.

With the A and C matrices, x0, and the sample time Ts from sys_ss, construct an
initialCondition object ic that you can use with a transfer function model.

A = sys_ss.A;
C = sys_ss.C;
Ts = sys_ss.Ts;
ic = initialCondition(A,x0,C,Ts)

ic =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [-61.3674 13.4811]
 Ts: 0

Estimate a transfer function model and simulate the model using ic as the initial condition. Store the
response in xtf.

sys_tf = tfest(z1i,2,1);
opt = simOptions('InitialCondition',ic);
xtf = sim(sys_tf,z1i,opt);

Plot the model responses xss and xtf together.

1 Functions

1-928

plot(t',[xss.y xtf.y])
legend('ss model','tf model')
title('Simulated SS and TF Models with Equivalent Initial Conditions')

The models track each other closely throughout the simulation.

Convert Free-Response Model to initialCondition Object

Obtain the initial conditions when estimating a transfer function model. Convert the
initialCondition into a free-response model, and the free-response model back into an
initialCondition object.

Load the data and estimate a transfer function model sys. Obtain the estimated initial conditions ic.

load iddata1ic.mat z1i
[sys,ic] = tfest(z1i,2,1);

Convert ic into the idtf free-response model g.

g = idtf(ic);

Plot the impulse response of g.

impulse(g)
title('Impulse Response of g')

 initialCondition

1-929

Convert g back into the initialCondition object ic1.

ic1 = initialCondition(g);

Plot the impulse response of ic1 by converting ic1 into an idss model.

impulse(idss(ic1))
title('Impulse Response of ic1 in idss form')

1 Functions

1-930

The impulse responses appear identical.

Compare ic and ic1.

ic.A

ans = 2×2

 -2.9841 -5.5848
 4.0000 0

ic1.A

ans = 2×2

 -2.9841 -5.5848
 4.0000 0

ic.X0

ans = 2×1

 -0.9019
 -0.6161

ic1.X0

 initialCondition

1-931

ans = 2×1

 4
 0

ic.C

ans = 1×2

 0.2957 5.2441

ic1.C

ans = 1×2

 -0.8745 -1.7215

The A matrices of ic and ic1 are identical. The C matrix and the X0 vector are different. There are
infinitely many state-space representations possible for a given linear model. The two objects are
equivalent, as illustrated by the impulse responses.

Version History
Introduced in R2020b

See Also
ssest | tfest | polyest | compare | predictOptions | predict | simOptions | sim | impulse

Topics
“Apply Initial Conditions When Simulating Identified Linear Models”
“Estimate Initial Conditions for Simulating Identified Models”

1 Functions

1-932

initialize
Initialize the state of the particle filter

Syntax
initialize(pf,numParticles,mean,covariance)
initialize(pf,numParticles,stateBounds)
initialize(___ ,Name,Value)

Description
initialize(pf,numParticles,mean,covariance) initializes a particle filter object with a
specified number of particles. The initial states of the particles in the state space are determined by
sampling from the multivariate normal distribution with the specified mean and covariance. The
number of state variables (NumStateVariables) is retrieved automatically based on the length of
the mean vector.

initialize(pf,numParticles,stateBounds) determines the initial location of numParticles
particles by sampling from the multivariate uniform distribution with the given stateBounds.

initialize(___ ,Name,Value) initializes the particles with additional options specified by one or
more Name,Value pair arguments.

Examples

Initialize Particle Filter Object for Online State Estimation

To create a particle filter object for estimating the states of your system, create appropriate state
transition function and measurement function for the system.

In this example, the functions vdpParticleFilterStateFcn and
vdpMeasurementLikelihoodFcn describe a discrete-approximation to van der Pol oscillator with
nonlinearity parameter, mu, equal to 1.

Create the particle filter object. Use function handles to provide the state transition and
measurement likelihood functions to the object.

myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);

Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.

initialize(myPF, 1000, [2;0], eye(2));
myPF

myPF =
 particleFilter with properties:

 NumStateVariables: 2
 NumParticles: 1000
 StateTransitionFcn: @vdpParticleFilterStateFcn

 initialize

1-933

 MeasurementLikelihoodFcn: @vdpMeasurementLikelihoodFcn
 IsStateVariableCircular: [0 0]
 ResamplingPolicy: [1x1 particleResamplingPolicy]
 ResamplingMethod: 'multinomial'
 StateEstimationMethod: 'mean'
 StateOrientation: 'column'
 Particles: [2x1000 double]
 Weights: [1.0000e-03 1.0000e-03 1.0000e-03 ...]
 State: 'Use the getStateEstimate function to see the value.'
 StateCovariance: 'Use the getStateEstimate function to see the value.'

To estimate the states and state estimation error covariance from the constructed object, use the
predict and correct commands.

Input Arguments
pf — Particle filter
particleFilter object

Particle filter, specified as a object. See particleFilter for more information.

numParticles — Number of particles used in the filter
scalar

Number of particles used in the filter, specified as a scalar.

Unless performance is an issue, do not use fewer than 1000 particles. A higher number of particles
can improve the estimate but sacrifices performance speed, because the algorithm has to process
more particles. Tuning the number of particles is the best way to improve the tracking of your
particle filter.

mean — Mean of particle distribution
vector

Mean of particle distribution, specified as a vector. The NumStateVariables property of pf is set
based on the length of this vector.

covariance — Covariance of particle distribution
N-by-N matrix

Covariance of particle distribution, specified as an N-by-N matrix, where N is the value of
NumStateVariables property from pf.

stateBounds — Bounds of state variables
n-by-2 matrix

Bounds of state variables, specified as an n-by-2 matrix. The NumStateVariables property of pf is
set based on the value of n. Each row corresponds to the lower and upper limit of the corresponding
state variable. The number of state variables (NumStateVariables) is retrieved automatically based
on the number of rows of the stateBounds array.

1 Functions

1-934

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ...'StateOrientation','row'

CircularVariables — Circular variables
logical vector

Circular variables, the comma-separated pair consisting of CircularVariables and specified as a
logical vector. Each state variable that uses circular or angular coordinates is indicated with a 1. The
length of the vector is equal to the NumStateVariables property of particleFilter.

StateOrientation — Orientation of states
'column' (default) | 'row'

Orientation of states, specified as the comma-separated pair consisting of StateOrientation as
one of these values: 'column' or 'row'. If it is 'column', State property and getStateEstimate
method of the object pf returns the states as a column vector, and the Particles property has
dimensions NumStateVariables-by-NumParticles. If it is 'row', the states have the row
orientation and Particles has dimensions NumParticles-by-NumStateVariables.

Version History
Introduced in R2017b

See Also
predict | correct | particleFilter | unscentedKalmanFilter | extendedKalmanFilter |
clone

Topics
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
“What Is Online Estimation?”
“Generate Code for Online State Estimation in MATLAB”

 initialize

1-935

interp
Interpolate FRD model

Syntax
isys = interp(sys,freqs)

Description
isys = interp(sys,freqs) interpolates the frequency response data contained in the FRD model
sys at the frequencies freqs. interp, which is an overloaded version of the MATLAB function
interp, uses linear interpolation and returns an FRD model isys containing the interpolated data at
the new frequencies freqs. If sys is an IDFRD model, the noise spectrum, if non-empty, is also
interpolated. The response and noise covariance data, if available, are also interpolated.

You should express the frequency values freqs in the same units as sys.frequency. The frequency
values must lie between the smallest and largest frequency points in sys (extrapolation is not
supported).

Version History
Introduced in R2012a

See Also
freqresp | frd | idfrd

1 Functions

1-936

iopzmap
Plot pole-zero map for I/O pairs of model

Syntax
iopzmap(sys)
iopzmap(sys1,sys2,...)

Description
iopzmap(sys) computes and plots the poles and zeros of each input/output pair of the dynamic
system model sys. The poles are plotted as x's and the zeros are plotted as o's.

iopzmap(sys1,sys2,...) shows the poles and zeros of multiple models sys1,sys2,... on a single
plot. You can specify distinctive colors for each model, as in
iopzmap(sys1,'r',sys2,'y',sys3,'g').

The functions sgrid or zgrid can be used to plot lines of constant damping ratio and natural
frequency in the s or z plane.

For model arrays, iopzmap plots the poles and zeros of each model in the array on the same diagram.

Examples

Pole-Zero Map for MIMO System

Create a one-input, two-output dynamic system.

H = [tf(-5 ,[1 -1]); tf([1 -5 6],[1 1 0])];

Plot a pole-zero map.

iopzmap(H)

 iopzmap

1-937

iopzmap generates a separate map for each I/O pair in the system.

Pole-Zero Map of Identified Model

View the poles and zeros of an over-parameterized state-space model estimated from input-output
data. (Requires System Identification Toolbox™).

load iddata1
sys = ssest(z1,6,ssestOptions('focus','simulation'));
iopzmap(sys)

1 Functions

1-938

The plot shows that there are two pole-zero pairs that almost overlap, which hints are their potential
redundancy.

Tips
For additional options for customizing the appearance of the pole-zero plot, use iopzplot.

Version History
Introduced in R2012a

See Also
pzmap | pole | zero | sgrid | zgrid | iopzplot

 iopzmap

1-939

iopzplot
Plot pole-zero map for I/O pairs with additional plot customization options

Syntax
h = iopzplot(sys)
h = iopzplot(sys1,sys2,...,sysN)
h = iopzplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = iopzplot(ax,...)
h = iopzplot(...,plotoptions)

Description
iopzplot lets you plot pole-zero maps for input/output pairs with a broader range of plot
customization options than iopzmap. You can use iopzplot to obtain the plot handle and use it to
customize the plot, such as modify the axes labels, limits and units. You can also use iopzplot to
draw a pole-zero plot on an existing set of axes represented by an axes handle. To customize an
existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox). To create pole-zero maps with default options or to extract pole-zero data, use iopzmap.

h = iopzplot(sys) plots the poles and zeros of each input/output pair of the dynamic system
model sys and returns the plot handle h to the plot. x and o indicates poles and zeros respectively.

h = iopzplot(sys1,sys2,...,sysN) displays the poles and transmission zeros of multiple
models on a single plot. You can specify distinct colors for each model individually.

h = iopzplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and
color for the plot of each system. All systems must have the same number of inputs and outputs to use
this syntax.

h = iopzplot(ax,...) plots into the axes specified by ax instead of the current axis gca.

h = iopzplot(...,plotoptions) plots the poles and transmission zeros with the options
specified in plotoptions. For more information on the ways to change properties of your plots, see
“Ways to Customize Plots” (Control System Toolbox).

Examples

Change I/O Grouping on Pole/Zero Map

Create a pole/zero map of a two-input, two-output dynamic system.

1 Functions

1-940

sys = rss(3,2,2);
h = iopzplot(sys);

By default, the plot displays the poles and zeros of each I/O pair on its own axis. Use the plot handle
to view all I/Os on a single axis.

setoptions(h,'IOGrouping','all')

 iopzplot

1-941

Use Pole-Zero Map to Examine Identified Model

View the poles and zeros of a sixth-order state-space model estimated from input-output data. Use the
plot handle to display the confidence intervals of the identified model's pole and zero locations.

load iddata1
sys = ssest(z1,6,ssestOptions('focus','simulation'));
h = iopzplot(sys);
showConfidence(h)

1 Functions

1-942

There is at least one pair of complex-conjugate poles whose locations overlap with those of a complex
zero, within the 1-σ confidence region. This suggests their redundancy. Hence, a lower (4th) order
model might be more robust for the given data.

sys2 = ssest(z1,4,ssestOptions('focus','simulation'));
h = iopzplot(sys,sys2);
showConfidence(h)
legend('6th-order','4th-order')
axis([-20, 10 -30 30])

 iopzplot

1-943

The fourth-order model sys2 shows less variability in the pole-zero locations.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO
dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time
numeric LTI models such as tf, zpk, or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, pzplot
returns the poles and transmission zeros of the current or nominal value of sys. If sys is an array of
models, pzplot plots the poles and zeros of each model in the array on the same diagram.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

1 Functions

1-944

Line Style Description
- Solid line
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Pentagram
'h' Hexagram

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ax — Axes handle
axes object

Axes handle, specified as an axes object. If you do not specify the axes object, then pzplot uses the
current axes gca to plot the poles and zeros of the system.

plotoptions — Pole-zero plot options
options object

 iopzplot

1-945

Pole-zero plot options, specified as an options object. See pzoptions for a list of available plot
options.

Output Arguments
h — Pole-zero plot options handle
scalar

Pole-zero plot options handle, returned as a scalar. Use h to query and modify properties of your pole-
zero plot. You can use this handle to customize the plot with the getoptions and setoptions
commands.

Tips
• Use sgrid or zgrid to plot lines of constant damping ratio and natural frequency in the s- or z-

plane.

Version History
Introduced in R2012a

See Also
getoptions | iopzmap | setoptions | showConfidence

Topics
“Ways to Customize Plots” (Control System Toolbox)

1 Functions

1-946

isct
Determine if dynamic system model is in continuous time

Syntax
bool = isct(sys)

Description
bool = isct(sys) returns a logical value of 1 (true) if the dynamic system model sys is a
continuous-time model. The function returns a logical value of 0 (false) otherwise.

Input Arguments
sys

Dynamic system model or array of such models.

Output Arguments
bool

Logical value indicating whether sys is a continuous-time model.

bool = 1 (true) if sys is a continuous-time model (sys.Ts = 0). If sys is a discrete-time model,
bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly set the sample time to a
nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are continuous.

Version History
Introduced in R2012a

See Also
isdt | isstable

 isct

1-947

isdt
Determine if dynamic system model is in discrete time

Syntax
bool = isdt(sys)

Description
bool = isdt(sys) returns a logical value of 1 (true) if the dynamic system model sys is a
discrete-time model. The function returns a logical value of 0 (false) otherwise.

Input Arguments
sys

Dynamic system model or array of such models.

Output Arguments
bool

Logical value indicating whether sys is a discrete-time model.

bool = 1 (true) if sys is a discrete-time model (sys.Ts ≠ 0). If sys is a continuous-time model,
bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly set the sample time to a
nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are discrete.

Version History
Introduced in R2012a

See Also
isct | isstable

1 Functions

1-948

isempty
Determine whether dynamic system model is empty

Syntax
isempty(sys)

Description
isempty(sys) returns a logical value of 1 (true) if the dynamic system model sys has no input or
no output, and a logical value of 0 (false) otherwise. Where sys is a frd model, isempty(sys)
returns 1 when the frequency vector is empty. Where sys is a model array, isempty(sys) returns 1
when the array has empty dimensions or when the LTI models in the array are empty.

Examples

Determine Whether Dynamic Model Is Empty

Create a continuous-time state-space model with 1 input and no outputs. In this example, specify the
A and B matrices as 1 and 2, respectively.

sys1 = ss(1,2,[],[]);

Determine whether sys1 is empty.

isempty(sys1)

ans = logical
 1

The isempty command returns 1 because the system does not have any outputs.

Similarly, isempty returns 1 for an empty transfer function.

isempty(tf)

ans = logical
 1

Now create a state-space model with 1 input and 1 output. In this example, specify the A, B, C, and D
matrices as 1, 2, 3, and 4, respectively.

sys2 = ss(1,2,3,4);

Determine whether sys2 is empty.

isempty(sys2)

 isempty

1-949

ans = logical
 0

The command returns 0 because the system has inputs and outputs.

Version History
Introduced before R2006a

See Also
issiso | size

1 Functions

1-950

isLocked
Locked status of online parameter estimation System object

Syntax
L = isLocked(obj)

Description
L = isLocked(obj) returns the locked status of online parameter estimation System object, obj.

Examples

Check Locked Status of Online Estimation System Object

Create a System object™ for online estimation of an ARMAX model with default properties.

obj = recursiveARMAX;

Check the locked status of the object.

L = isLocked(obj)

L = logical
 0

Estimate model parameters online using step and input-output data.

[A,B,C,EstimatedOutput] = step(obj,1,1);

Check the locked status of the object again.

L = isLocked(obj)

L = logical
 1

step puts the object in a locked state.

Input Arguments
obj — System object for online parameter estimation
recursiveAR object | recursiveARMA object | recursiveARX object | recursiveARMAX object |
recursiveOE object | recursiveBJ object | recursiveLS object

System object for online parameter estimation, created using one of the following commands:

 isLocked

1-951

• recursiveAR
• recursiveARMA
• recursiveARX
• recursiveARMAX
• recursiveOE
• recursiveBJ
• recursiveLS

Output Arguments
L — Locked status of online estimation System object
logical

Locked status of online estimation System object, returned as a logical value. L is true if obj is
locked.

Version History
Introduced in R2015b

See Also
step | release | reset | clone | recursiveAR | recursiveARX | recursiveARMA |
recursiveARMAX | recursiveBJ | recursiveOE | recursiveLS

Topics
“What Is Online Estimation?”

1 Functions

1-952

isnlarx
Detect nonlinearity in estimation data

Syntax
isnlarx(data,orders)
isnlarx(data,orders,Ky)
isnlarx(___ ,Name,Value)

NLHyp = isnlarx(___)
[NLHyp,NLValue,NLRegs,NoiseSigma,DetectRatio] = isnlarx(___)

Description
isnlarx(data,orders) detects nonlinearity in data by testing whether a nonlinear ARX model
with the indicated orders produces a better estimate of data than a linear ARX model. The
nonlinear model uses a default treepartition nonlinearity estimator.

The result of the test is printed to the Command Window and indicates whether a nonlinearity is
detected. Use the printed detection ratio to assess the reliability of the nonlinearity detection test:

• Larger values (>2) indicate that a significant nonlinearity was detected.
• Smaller values (<0.5) indicate that any error unexplained by the linear model is mostly noise.

That is, no significant nonlinearity was detected.
• Values close to 1 indicate that the nonlinearity detection test is not reliable and that a weak

nonlinearity may be present.

isnlarx(data,orders,Ky) restricts the nonlinearity test to output channel Ky for multi-output
data.

isnlarx(___ ,Name,Value) specifies additional nonlinear ARX model options using one or more
Name,Value pair arguments.

NLHyp = isnlarx(___) returns the result of the nonlinearity test and suppresses the command
window output.

[NLHyp,NLValue,NLRegs,NoiseSigma,DetectRatio] = isnlarx(___) additionally returns
the test quantities behind the evaluation.

Examples

Detect Nonlinearity in Estimation Data

Load the signal transmission data set.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','frictiondata'))

Construct an iddata object from the estimation data.

 isnlarx

1-953

z = iddata(f1,v,1);

Specify the model orders and delays.

orders = [1 1 0];

Run the test to detect nonlinearity.

% isnlarx(z,orders);

The large detection ratio indicates that the test was robust and a significant nonlinearity was
detected. Additionally, the estimated discrepancy of the linear model that was found, that is the data
explained by the nonlinearity, is significantly greater than the noise error, which can indicate a
significant nonlinearity.

Detect Nonlinearity in Estimation Data Output Channel

Load the CSTR data set.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','cstrdata'))

Construct an iddata object from the estimation data using a sample time of 0.1 seconds.

z = iddata(y1,u1,0.1);

Specify the model orders and delays.

orders = [3*ones(2,2),ones(2,3),2*ones(2,3)];

Run the test to detect nonlinearity on the second output channel.

% isnlarx(z,orders,2);

A detection ratio less than 1 indicates that no nonlinearity was detected. However, since this value is
near 0.5, there may be a weak nonlinearity that was not detected by the test.

Search for Best Regressors When Detecting Nonlinearity

Load the signal transmission data set.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','signaltransmissiondata'))

Construct an iddata object from the estimation data using a sample time of 0.1 seconds.

z = iddata(vout,vin,0.1);

Specify the model orders and delays.

orders = [3 0 2];

Display the model regressors for an idnlarx model with the given orders.

getreg(idnlarx(orders));

1 Functions

1-954

Detect nonlinearities in the data, and search for the best nonlinear regressor combination.

% isnlarx(z,orders,'NonlinearRegressors','search');

The regressor search found that using the first two regressors produces the best nonlinear estimation
of the given data.

A detection ratio greater than 1 but less than 2 means that a nonlinearity was detected, but the test
was not robust. This result may indicate that the detected nonlinearity is not significant. Additionally,
the data explained by the nonlinearity is smaller than the noise error, which can be an indication of a
weak nonlinearity.

Return Nonlinearity Detection Result

Load the estimation data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','cstrdata'))

Construct an iddata object using the estimation data.

z = iddata(y1,u1,0.1);

Specify the model orders and delays.

orders = [3*ones(2,2),ones(2,3),2*ones(2,3)];

Detect nonlinearities in the data, and determine the test quantities behind the evaluation.

% NLHyp = isnlarx(z,orders);

Return Nonlinearity Detection Test Quantities

Load the estimation data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','narendralidata'))

Construct an iddata object using the estimation data.

z = iddata(u,y1,1);

Specify the model orders and delays.

orders = [1 1 2];

Detect nonlinearities in the data, and determine the test quantities behind the evaluation.

% [NLHyp,NLValue,NLRegs,NoiseSigma,DetectRatio] = isnlarx(z,orders);

Input Arguments
data — Time-domain estimation data
iddata object | numeric matrix

 isnlarx

1-955

Time-domain estimation data, specified as an iddata object or a numeric matrix.

• If data is an iddata object, then data can have one or more output channels and zero or more
input channels.

• If data is a numeric matrix, then the number of columns of data must match the sum of the
number of inputs (nu) and the number of outputs (ny).

data must be uniformly sampled and cannot contain missing (NaN) samples.

orders — ARX model orders
nlarx orders [na nb nk]

ARX model order matrix [na nb nk]. na denotes the number of delayed outputs, nb denotes the
number of delayed inputs, and nk denotes the minimum input delay. The minimum output delay is
fixed to 1. For more information on how to construct the orders matrix, see arx.

When you specify orders, the software converts the order information into linear regressor form in
the idnlarx Regressors property. For an example, see “Create Nonlinear ARX Model Using ARX
Model Orders” on page 1-676

Ky — Output channel number in estimation data
positive integer in the range [0,ny]

Output channel number in estimation data, specified as a positive integer in the range [1,ny], where
ny is the number of output channels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NonlinearRegressors','output' specifies that only the regressors containing output
variables are used as inputs to the nonlinear block of the model.

TimeVariable — Independent variable name
't' (default) | character vector

Independent variable name, specified as the comma-separated pair consisting of 'TimeVariable'
and a character vector. For example, 't'.

CustomRegressors — Regressors constructed from combinations of inputs and outputs
{} (default) | cell array of character vectors | array of customreg objects

Regressors constructed from combinations of inputs and outputs, specified as the comma-separated
pair consisting of 'CustomRegressors' and one of the following for single-output systems:

• Cell array of character vectors. For example:

• {'y1(t-3)^3','y2(t-1)*u1(t-3)','sin(u3(t-2))'}

Each character vector must represent a valid formula for a regressor contributing towards the
prediction of the model output. The formula must be written using the input and output names
and the time variable name as variables.

1 Functions

1-956

• Array of custom regressor objects, created using customreg or polyreg.

For a model with ny outputs, specify an ny-by-1 cell array of customreg object arrays or character
arrays.

These regressors are in addition to the standard regressors based on Orders.
Example: 'CustomRegressors',{'y1(t-3)^3','y2(t-1)*u1(t-3)'}
Example: 'CustomRegressors',{'sin(u3(t-2))'}

NonlinearRegressors — Subset of regressors that enter as inputs to the nonlinear block of
the model
'all' (default) | 'output' | 'input' | 'standard' | 'custom' | 'search' | vector of positive
integers | [] | cell array

Subset of regressors that enter as inputs to the nonlinear block of the model, specified as the comma-
separated pair consisting of 'NonlinearRegressors' and one of the following values:

• 'all' — All regressors
• 'output' — Regressors containing output variables
• 'input' — Regressors containing input variables
• 'standard' — Standard regressors
• 'custom' — Custom regressors
• 'search' — The estimation algorithm performs a search for the best regressor subset. This is

useful when you want to reduce a large number of regressors entering the nonlinear function
block of the nonlinearity estimator. This option must be applied to all output models
simultaneously.

• [] — No regressors. This creates a linear-in-regressor model.
• Vector of regressor indices. To determine the number and order of regressors, use getreg.

For a model with multiple outputs, specify a cell array of ny elements, where ny is the number of
output channels. For each output, specify one of the preceding options. Alternatively, to apply the
same regressor subset to all model outputs, specify [] or any of the character vector options alone,
for example 'standard'.
Example: 'NonlinearRegressors','search' performs a best regressor search for the only
output of a single output model, or all of the outputs of a multiple output model.
Example: 'NonlinearReg','input' applies only input regressors to the inputs of the nonlinear
function.
Example: 'NonlinearRegressors',{'input','output'} applies input regressors to the first
output, and output regressors to the second output of a model with two outputs.

Output Arguments
NLHyp — Result of the nonlinearity test
0 | 1 | logical vector

Result of the nonlinearity test, returned as a logical vector with length equal to the number of output
channels. The elements of NLHyp are 1 if nonlinearities were detected for the corresponding output.
A value of 0 indicates that nonlinearities were not detected.

 isnlarx

1-957

NLValue — Estimated standard deviation of the data explained by the nonlinearity
vector of nonnegative scalars

Estimated standard deviation of the data explained by the nonlinearity, returned as a vector of
nonnegative scalars with length equal to the number of output channels. The elements of NLValue
are 0 if nonlinearities are not detected for the corresponding output.

NLRegs — Regressors that should enter nonlinearly in the model
vector of indices | [] | cell array

Regressors that should enter nonlinearly in the model, returned as a vector of indices for single
output models. For multi-output models, NLRegs is returned as a cell array, with elements
corresponding to each output channel. NLRegs is empty, [], if nonlinearities are not detected.

See the 'NonlinearRegressors' Name,Value argument for more information.

NoiseSigma — Estimated standard deviation of the unexplained error
vector of nonnegative scalars

Estimated standard deviation of the unexplained error, returned as a vector of nonnegative scalars
with length equal to the number of output channels. The elements of NoiseSigma are 0 if
nonlinearities are not detected for the corresponding output.

DetectRatio — Ratio of the test statistic and the detection threshold
vector

Ratio of the test statistic and the detection threshold, returned as a vector with length equal to the
number of output channels. Use the elements of DetectRatio to assess the reliability of the
nonlinearity detection test for the corresponding output:

• Larger values (>2) indicate that a significant nonlinearity was detected.
• Smaller values (<0.5) indicate that any error unexplained by the linear model is mostly noise.

That is, no significant nonlinearity was detected.
• Values close to 1 indicate that the nonlinearity detection test is not reliable and that a weak

nonlinearity may be present.

Algorithms
isnlarx estimates a nonlinear ARX model using the given data and a treepartition nonlinearity
estimator.

The estimation data can be described as Y(t) = L(t) + Fn(t) + E(t), where:

• L(t) is the portion of the data explained by the linear function of the nonlinear ARX model.
• Fn(t) is the portion of the data explained by the nonlinear function of the nonlinear ARX model.

The output argument NLValue is an estimate of the standard deviation of Fn(t). If the nonlinear
function explains a significant portion of the data beyond the data explained by the linear function,
a nonlinearity is detected.

• E(t) is the remaining error that is unexplained by the nonlinear ARX model and is typically white
noise. The output argument NoiseSigma is an estimate of the standard deviation of E(t).

1 Functions

1-958

Version History
Introduced in R2007a

See Also
nlarx | idnlarx | getreg | treepartition

Topics
“Structure of Nonlinear ARX Models”

 isnlarx

1-959

isproper
Determine if dynamic system model is proper

Syntax
B = isproper(sys)
B = isproper(sys,'elem')
[B,sysr] = isproper(sys)

Description
B = isproper(sys) returns a logical value of 1 (true) if the dynamic system model sys is proper
and a logical value of 0 (false) otherwise.

A proper model has relative degree ≤ 0 and is causal. SISO transfer functions and zero-pole-gain
models are proper if the degree of their numerator is less than or equal to the degree of their
denominator (in other words, if they have at least as many poles as zeroes). MIMO transfer functions
are proper if all their SISO entries are proper. Regular state-space models (state-space models having
no E matrix) are always proper. A descriptor state-space model that has an invertible E matrix is
always proper. A descriptor state-space model having a singular (non-invertible) E matrix is proper if
the model has at least as many poles as zeroes.

If sys is a model array, then B is 1 if all models in the array are proper.

B = isproper(sys,'elem') checks each model in a model array sys and returns a logical array
of the same size as sys. The logical array indicates which models in sys are proper.

[B,sysr] = isproper(sys) also returns an equivalent model sysr with fewer states (reduced
order) and a non-singular E matrix, if sys is a proper descriptor state-space model with a non-
invertible E matrix. If sys is not proper, sysr = sys.

Examples

Examine Whether Models are Proper

Create a SISO continuous-time transfer function, H1 = s

H1 = tf([1 0],1);

Check whether H1 is proper.

B1 = isproper(H1)

B1 = logical
 0

SISO transfer functions are proper if the degree of their numerator is less than or equal to the degree
of their denominator That is, if the transfer function has at least as many poles as zeroes. Since H1
has one zero and no poles, the isproper command returns 0.

1 Functions

1-960

Now create a transfer function with one pole and one zero, H2 = s/(s + 1)

H2 = tf([1 0],[1 1]);

Check whether H2 is proper.

B2 = isproper(H2)

B2 = logical
 1

Since H2 has equal number of poles and zeros, isproper returns 1.

Compute Equivalent Lower-Order Model

Combining state-space models sometimes yields results that include more states than necessary. Use
isproper to compute an equivalent lower-order model.

H1 = ss(tf([1 1],[1 2 5]));
H2 = ss(tf([1 7],[1]));
H = H1*H2;
size(H)

State-space model with 1 outputs, 1 inputs, and 4 states.

H is proper and reducible. isproper returns the reduced model.

[isprop,Hr] = isproper(H);
size(Hr)

State-space model with 1 outputs, 1 inputs, and 2 states.

H and Hr are equivalent, as a Bode plot demonstrates.

bodeplot(H,Hr,'r--')
legend('original','reduced')

 isproper

1-961

Version History
Introduced before R2006a

References
[1] Varga, Andràs. "Computation of irreducible generalized state-space realizations." Kybernetika

26.2 (1990): 89-106.

See Also
ss | dss

1 Functions

1-962

isreal
Determine whether model parameters or data values are real

Syntax
isreal(Data)
isreal(Model)

Description
isreal(Data) returns 1 if all signals of the data set are real. Data is an iddata object.

isreal(Model) returns 1 if all parameters of the model are real. Model is any linear identified
model.

Version History
Introduced before R2006a

See Also
realdata

 isreal

1-963

issiso
Determine if dynamic system model is single-input/single-output (SISO)

Syntax
issiso(sys)

Description
issiso(sys) returns a logical value of 1 (true) if the dynamic system model sys is SISO and a
logical value of 0 (false) otherwise.

Version History
Introduced in R2012a

See Also
isempty | size

1 Functions

1-964

isstable
Determine if dynamic system model is stable

Syntax
B = isstable(sys)
B = isstable(sys,'elem')

Description
B = isstable(sys) returns a logical value of 1 (true) if the dynamic system model (Control
System Toolbox) sys has stable dynamics, and a logical value of 0 (false) otherwise. If sys is a
model array, then the function returns 1 only if all the models in sys are stable.

isstable returns a logical value of 1 (true) for stability of a dynamic system if:

• In continuous-time systems, all the poles lie in the open left half of the complex plane.
• In discrete-time systems, all the poles lie inside the open unit disk.

isstable is supported only for analytical models with a finite number of poles.

B = isstable(sys,'elem') returns a logical array of the same dimensions as the model array
sys. The logical array indicates which models in sys are stable.

Examples

Determine Stability of Discrete-Time Transfer Function Model

Determine the stability of this discrete-time SISO transfer function model with a sample time of 0.1
seconds.

sys z = 2z
4z3 + 3z − 1

Create the discrete-time transfer function model.

sys = tf([2,0],[4,0,3,-1],0.1);

Examine the poles of the system.

P = abs(pole(sys))

P = 3×1

 0.9159
 0.9159
 0.2980

 isstable

1-965

All the poles of the transfer function model have a magnitude less than 1, so all the poles lie within
the open unit disk and the system is stable.

Confirm the stability of the model using isstable.

B = isstable(sys)

B = logical
 1

The system sys is stable.

Determine Stability of Continuous-Time Zero-Pole-Gain Model

Determine the stability of this continuous-time zero-pole-gain model.

sys s = 2
s + 2 + 3 j s + 2− 3 j s− 0 . 5

Create the model as a zpk model object by specifying the zeros, poles, and gain.

sys = zpk([],[-2-3*j,-2+3*j,0.5],2);

Because one pole of the model lies in the right half of the complex plane, the system is unstable.

Confirm the instability of the model using isstable.

B = isstable(sys)

B = logical
 0

The system sys is unstable.

Determine Stability of Models in Model Array

Determine the stability of an array of SISO transfer function models with poles varying from -2 to 2.

1
s + 2 , 1

s + 1 , 1
s , 1

s− 1 , 1
s− 2

To create the array, first initialize an array of dimension [length(a),1] with zero-valued SISO
transfer functions.

a = [-2:2];
sys = tf(zeros(1,1,length(a)));

Populate the array with transfer functions of the form 1/(s-a).

1 Functions

1-966

for j = 1:length(a)
 sys(1,1,j) = tf(1,[1 -a(j)]);
end

isstable can tell you whether all the models in model array are stable or each individual model is
stable.

Examine the stability of the model array.

B_all = isstable(sys)

B_all = logical
 0

By default, isstable returns a single logical value that is 1 (true) only if all models in the array are
stable. sys contains some models with nonnegative poles, which are not stable. Therefore, isstable
returns 0 (false) for the entire array.

Examine the stability of each model in the array by using 'elem' flag.

B_elem = isstable(sys,'elem')

B_elem = 5x1 logical array

 1
 1
 0
 0
 0

The function returns an array of logical values that indicate the stability of the corresponding entry in
the model array. For example, B_elem(2) is 1, which indicates that the second model in the array,
sys(1,1,2) is stable. This is because sys(1,1,2) has a pole at -1.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or an array of SISO or MIMO
dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time
numeric LTI models such as tf, zpk, or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, isstable
checks the stability of the current or nominal value of sys.

If sys is an array of models, isstable checks the stability of every model in the array.

• If you use B = isstable(sys), the output is 1 (true) only if all the models in the array are
stable.

• If you use B = isstable(sys,'elem'), the output is a logical array, the entries of which
indicate the stability of the corresponding entry in the model array.

For more information on model arrays, see “Model Arrays” (Control System Toolbox).

 isstable

1-967

Output Arguments
B — True or false result
1 | 0 | logical array

True or false result, returned as 1 for a stable model or 0 for an unstable model.

The 'elem' flag causes isstable to return an array of logical values with same dimensions as the
model array. The values in the array indicate the stability of the corresponding entry in the model
array.

Version History
Introduced in R2012a

See Also
isproper | issiso | pole

1 Functions

1-968

ivar
AR model estimation using instrumental variable method

Syntax
sys = ivar(data,na)
sys = ivar(data,na,nc)
sys = ivar(data,na,nc,max_size)

Description
sys = ivar(data,na) estimates an AR polynomial model, sys, using the instrumental variable
method and the time series data data. na specifies the order of the A polynomial.

An AR model is represented by the equation:

A(q)y(t) = e(t)

In the above model, e(t) is an arbitrary process, assumed to be a moving average process of order nc,
possibly time varying. nc is assumed to be equal to na. Instruments are chosen as appropriately
filtered outputs, delayed nc steps.

sys = ivar(data,na,nc) specifies the value of the moving average process order, nc, separately.

sys = ivar(data,na,nc,max_size) specifies the maximum size of matrices formed during
estimation.

Input Arguments
data

Estimation time series data.

data must be an iddata object with scalar output data only.

na

Order of the A polynomial

nc

Order of the moving average process representing e(t).

max_size

Maximum matrix size.

max_size specifies the maximum size of any matrix formed by the algorithm for estimation.

Specify max_size as a reasonably large positive integer.

 ivar

1-969

Default: 250000

Output Arguments
sys

Identified polynomial model.

sys is an AR idpoly model which encapsulates the identified polynomial model.

Examples
Compare spectra for sinusoids in noise, estimated by the IV method and by the forward-backward
least squares method.

y = iddata(sin([1:500]'*1.2) + sin([1:500]'*1.5) + ...
 0.2*randn(500,1),[]);
miv = ivar(y,4);
mls = ar(y,4);
spectrum(miv,mls)

Version History
Introduced before R2006a

References

[1] Stoica, P., et al. Optimal Instrumental Variable Estimates of the AR-parameters of an ARMA
Process, IEEE Trans. Autom. Control, Volume AC-30, 1985, pp. 1066–1074.

See Also
ar | arx | etfe | idpoly | polyest | spa | step | spectrum

1 Functions

1-970

ivstruc
Compute loss functions for sets of ARX model structures using instrumental variable method

Syntax
v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

Description
v = ivstruc(ze,zv,NN) computes the loss functions for sets of single-output ARX model
structures. NN is a matrix that defines a number of different structures of the ARX type. Each row of
NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy generation of typical NN
matrices.

ze and zv are iddata objects containing input-output data. Only time-domain data is supported.
Models for each model structure defined in NN are estimated using the instrumental variable (IV)
method on data set ze. The estimated models are simulated using the inputs from data set zv. The
normalized quadratic fit between the simulated output and the measured output in zv is formed and
returned in v. The rows below the first row in v are the transpose of NN, and the last row contains the
logarithms of the condition numbers of the IV matrix

∑ς(t)φT(t)

A large condition number indicates that the structure is of unnecessarily high order (see Ljung, L.
System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR, 1999, p. 498).

The information in v is best analyzed using selstruc.

The routine is for single-output systems only.

v = ivstruc(ze,zv,NN,p,maxsize) specifies the computation of condition numbers and the size
of largest matrix formed during computations. If p is equal to zero, the computation of condition
numbers is suppressed. maxsize affects the speed/memory trade-off.

Note The IV method used does not guarantee that the models obtained are stable. The output-error
fit calculated in v can then be misleading.

Examples

Generate Model-Order Combinations and Estimate ARX Model Using IV Method

Create estimation and validation data sets

 ivstruc

1-971

load iddata1;
ze = z1(1:150);
zv = z1(151:300);

Generate model-order combinations for estimation, specifying ranges for model orders and delays.

NN = struc(1:3,1:2,2:4);

Estimate ARX models using the instrumental variable method, and compute the loss function for each
model order combination.

V = ivstruc(ze,zv,NN);

Select the model order with the best fit to the validation data.

order = selstruc(V,0);

Estimate an ARX model of selected order.

M = iv4(ze,order);

Suppress Condition Number Computation When Determining ARX Loss Functions

Create estimation and validation data sets.

load iddata1;
ze = z1(1:150);
zv = z1(151:300);

Generate model-order combinations for estimation, specifying ranges for model orders and a delay of
2 for all model configurations.

NN = struc(2:3,1:2,2);

Compute the loss function for each model order combination. Suppress the computation of condition
numbers.

V = ivstruc(ze,zv,NN,0);

Algorithms
A maximum-order ARX model is computed using the least squares method. Instruments are
generated by filtering the input(s) through this model. The models are subsequently obtained by
operating on submatrices in the corresponding large IV matrix.

Version History
Introduced before R2006a

1 Functions

1-972

References
[1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR,

1999.

See Also
arxstruc | iv4 | selstruc | struc

 ivstruc

1-973

ivx
ARX model estimation using instrumental variable method with arbitrary instruments

Syntax
sys = ivx(data,[na nb nk],x)
sys = ivx(data,[na nb nk],x,max_size)

Description
sys = ivx(data,[na nb nk],x) estimates an ARX polynomial model, sys, using the
instrumental variable method with arbitrary instruments. The model is estimated for the time series
data data. [na nb nk] specifies the ARX structure orders of the A and B polynomials and the input
to output delay, expressed in the number of samples.

An ARX model is represented as:

A(q)y(t) = B(q)u(t − nk) + v(t)

sys = ivx(data,[na nb nk],x,max_size) specifies the maximum size of matrices formed
during estimation.

Input Arguments
data

Estimation data. The data can be:

• Time- or frequency-domain input-output data
• Time-series data
• Frequency-response data

data must be an iddata, idfrd, or frd object.

When using frequency-domain data, the number of outputs must be 1.

[na nb nk]

ARX model orders.

For more details on the ARX model structure, see arx.

x

Instrument variable matrix.

x is a matrix containing the arbitrary instruments for use in the instrumental variable method.

x must be of the same size as the output data, data.y. For multi-experiment data, specify x as a cell
array with one entry for each experiment.

1 Functions

1-974

The instruments used are analogous to the regression vector, with y replaced by x.

max_size

Maximum matrix size.

max_size specifies the maximum size of any matrix formed by the algorithm for estimation.

Specify max_size as a reasonably large positive integer.

Default: 250000

Output Arguments
sys

ARX model that fits the estimation data, returned as a discrete-time idpoly object. This model is
created using the specified model orders, delays, and estimation options. ivx does not return any
estimated covariance information for sys.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent estimation

parameters.
• 'backcast' — The initial conditions were estimated using the best least squares
fit.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option set is 'auto'.

 ivx

1-975

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See arxOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

1 Functions

1-976

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

Tips
• Use iv4 first for IV estimation to identify ARX polynomial models where the instruments x are

chosen automatically. Use ivx for nonstandard situations. For example, when there is feedback
present in the data, or, when other instruments need to be tried. You can also use iv to
automatically generate instruments from certain custom defined filters.

Version History
Introduced before R2006a

References
[1] Ljung, L. System Identification: Theory for the User, page 222, Upper Saddle River, NJ, Prentice-

Hall PTR, 1999.

See Also
arx | arxstruc | idpoly | iv4 | ivar | polyest

 ivx

1-977

iv4
ARX model estimation using four-stage instrumental variable method

Syntax
sys = iv4(data,[na nb nk])
sys = iv4(data,'na',na,'nb',nb,'nk',nk)
sys = iv4(___ ,Name,Value)
sys = iv4(___ ,opt)

Description
sys = iv4(data,[na nb nk]) estimates an ARX polynomial model, sys, using the four-stage
instrumental variable method, for the data object data. [na nb nk] specifies the ARX structure
orders of the A and B polynomials and the input to output delay. The estimation algorithm is
insensitive to the color of the noise term.

sys is an ARX model:

A(q)y(t) = B(q)u(t − nk) + v(t)

sys = iv4(data,'na',na,'nb',nb,'nk',nk) alternatively specify the ARX model orders
separately.

sys = iv4(___ ,Name,Value) estimates an ARX polynomial with additional options specified by
one or more Name,Value pair arguments.

sys = iv4(___ ,opt) uses the option set, opt, to configure the estimation behavior.

Input Arguments
data

Estimation data. The data can be:

• Time- or frequency-domain input-output data
• Time-series data
• Frequency-response data

data must be an iddata, idfrd, or frd object.

data must be discrete-time (Ts>0) for frequency domain.

[na nb nk]

ARX polynomial orders.

For multi-output model, [na nb nk] contains one row for every output. In particular, specify na as
an Ny-by-Ny matrix, where each entry is the polynomial order relating the corresponding output pair.

1 Functions

1-978

Here, Ny is the number of outputs. Specify nb and nk as Ny-by-Nu matrices, where Nu is the number
of inputs. For more details on the ARX model structure, see arx.

opt

Estimation options.

opt is an options set that configures the estimation options. These options include:

• estimation focus
• handling of initial conditions
• handling of data offsets

Use iv4Options to create the options set.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time
systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sample time Ts. For example, InputDelay =
3 means a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

IODelay

Transport delays. IODelay is a numeric array specifying a separate transport delay for each input/
output pair.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify transport delays in integer multiples of the sample time,
Ts.

For a MIMO system with Ny outputs and Nu inputs, set IODelay to a Ny-by-Nu array. Each entry of
this array is a numerical value that represents the transport delay for the corresponding input/output
pair. You can also set IODelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

IntegrateNoise

Specify integrators in the noise channels.

 iv4

1-979

Adding an integrator creates an ARIX model represented by:

A(q)y(t) = B(q)u(t − nk) + 1
1− q−1e(t)

where, 1
1− q−1 is the integrator in the noise channel, e(t).

IntegrateNoise is a logical vector of length Ny, where Ny is the number of outputs.

Default: false(Ny,1), where Ny is the number of outputs

Output Arguments
sys

ARX model that fits the estimation data, returned as a discrete-time idpoly object. This model is
created using the specified model orders, delays, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent estimation

parameters.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option set is 'auto'.

1 Functions

1-980

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See iv4Options for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

 iv4

1-981

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

Examples

Estimate ARX Model Using Four-Stage Instrumental Variable Method

Load estimation data.

load iddata7;

This data has two inputs, u1 and u2, and one output, y1.

Specify the ARX model orders, using the same orders for both inputs.

na = 2;
nb = [2 2];

Specify a delay of 2 samples for input u2 and no delay for input u1.

nk = [0 2];

Estimate an ARX model using the four-stage instrumental variable method.

m = iv4(z7,[na nb nk]);

1 Functions

1-982

Algorithms
Estimation is performed in 4 stages. The first stage uses the arx function. The resulting model
generates the instruments for a second-stage IV estimate. The residuals obtained from this model are
modeled as a high-order AR model. At the fourth stage, the input-output data is filtered through this
AR model and then subjected to the IV function with the same instrument filters as in the second
stage.

For the multiple-output case, optimal instruments are obtained only if the noise sources at the
different outputs have the same color. The estimates obtained with the routine are reasonably
accurate, however, even in other cases.

Version History
Introduced before R2006a

References
[1] Ljung, L. System Identification: Theory for the User, equations (15.21) through (15.26), Upper

Saddle River, NJ, Prentice-Hall PTR, 1999.

See Also
iv4Options | arx | armax | bj | idpoly | ivx | n4sid | oe | polyest

 iv4

1-983

iv4Options
Option set for iv4

Syntax
opt = iv4Options
opt = iv4Options(Name,Value)

Description
opt = iv4Options creates the default options set for iv4.

opt = iv4Options(Name,Value) creates an option set with the options specified by one or more
Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate'

Handling of initial conditions during estimation, specified as one of the following values:

• 'zero' — The initial condition is set to zero.
• 'estimate' — The initial condition is treated as an independent estimation parameter.
• 'auto' — The software chooses the initial condition handling method based on the estimation

data.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

1 Functions

1-984

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

• Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

 iv4Options

1-985

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

• MaxSize — Specifies the maximum number of elements in a segment when input-output data is
split into segments.

MaxSize must be a positive integer.

Default: 250000
• StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

• s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0
• z — Specifies the maximum distance of all poles from the origin to test stability of discrete-

time models. A model is considered stable if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

1 Functions

1-986

Output Arguments
opt — Options set for iv4
iv4Options option set

Option set for iv4, returned as an iv4Options option set.

Examples

Create Default Options Set for ARX Model Estimation Using 4-Stage Instrument Variable
Method

opt = iv4Options;

Specify Options for ARX Model Estimation Using 4-Stage Instrument Variable Method

Create an options set for iv4 using the 'backcast' algorithm to initialize the state. Set Display to
'on'.

opt = iv4Options('InitialCondition','backcast','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = iv4Options;
opt.InitialCondition = 'backcast';
opt.Display = 'on';

Version History
Introduced in R2012a

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

See Also
iv4

Topics
“Loss Function and Model Quality Metrics”

 iv4Options

1-987

linapp
Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input

Syntax
lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)

Description
lm = linapp(nlmodel,u) computes a linear approximation of a nonlinear ARX or Hammerstein-
Wiener model by simulating the model output for the input signal u, and estimating a linear model lm
from u and the simulated output signal. lm is an idpoly model.

lm = linapp(nlmodel,umin,umax,nsample) computes a linear approximation of a nonlinear
ARX or Hammerstein-Wiener model by first generating the input signal as a uniformly distributed
white noise from the magnitude range umin and umax and (optionally) the number of samples.

Input Arguments
nlmodel

Name of the idnlarx or idnlhw model object you want to linearize.
u

Input signal as an iddata object or a real matrix.

Dimensions of u must match the number of inputs in nlmodel.
[umin,umax]

Minimum and maximum input values for generating white-noise input with a magnitude in this
rectangular range. The sample length of this signal is nsample.

nsample
Optional argument when you specify [umin,umax]. Specifies the length of the white-noise input.

Default: 1024.

Version History
Introduced in R2007a

See Also
idnlarx | idnlhw | idnlarx/findop | idnlhw/findop | idnlhw/linearize | idnlarx/
linearize

Topics
“Linear Approximation of Nonlinear Black-Box Models”

1 Functions

1-988

idNeuralStateSpace/linearize
Linearize a neural state-space model around an operating point

Syntax
sys = linearize(nss,x0)
sys = linearize(nss,x0,u0)
sys = linearize(nss,t0,x0,u0)

Description
sys = linearize(nss,x0) linearizes the time-invariant autonomous (that is with no input) neural
state-space model nss about the operating point specified by x0.

sys = linearize(nss,x0,u0) linearizes the time-invariant neural state-space model nss about
the operating point specified by both x0 and u0.

sys = linearize(nss,t0,x0,u0) linearizes the time-varying neural state-space model nss about
the operating point specified by both x0 and u0 at the time specified by t0.

Examples

Linearize Neural State-Space System

Use idNeuralStateSpace to create a time-invariant continuous-time neural state-space system
with four states, three inputs and two outputs with direct feedthrough between input and output. The
state and output networks are initialized randomly.

nss = idNeuralStateSpace(4, ...
 NumInputs=3, ...
 NumOutputs=4+2, ...
 HasFeedthrough=true);

Define a random operating point.

x0 = randn(4,1);
u0 = randn(3,1);

Linearize nss around the operating point.

sys = linearize(nss,x0,u0)

sys =

 A =
 x1 x2 x3 x4
 x1 0.151 -0.2278 0.1158 0.1099
 x2 0.08884 0.1399 -0.2044 0.2675
 x3 -0.007885 -0.02822 0.09201 0.05594
 x4 0.1636 -0.08727 -0.1423 0.215

 idNeuralStateSpace/linearize

1-989

 B =
 u1 u2 u3
 x1 0.06339 -0.08697 -0.1408
 x2 0.01672 0.09515 0.09784
 x3 0.08283 0.05558 0.05497
 x4 0.1125 0.3448 -0.05313

 C =
 x1 x2 x3 x4
 y1 1 0 0 0
 y2 0 1 0 0
 y3 0 0 1 0
 y4 0 0 0 1
 y5 0.0434 0.262 0.02895 0.2251
 y6 0.1057 -0.2593 0.03562 0.0264

 D =
 u1 u2 u3
 y1 0 0 0
 y2 0 0 0
 y3 0 0 0
 y4 0 0 0
 y5 -0.2282 -0.02673 0.2128
 y6 0.1513 -0.01861 -0.1221

Continuous-time state-space model.

Since the first output elements are the four states of nss, the first four rows of C matrix form an
identity matrix, and the first four rows of D are zero.

You can now apply linear control analysis and synthesis methods on the linear state-space system
sys.

Input Arguments
nss — Neural state-space system
idNeuralStateSpace object

Neural state-space system, specified as an idNeuralStateSpace object.
Example: myNrlSS

t0 — Value of the time variable at the operating point
scalar

Value of the time variable at the operating point, specified as a scalar, for time-varying
idNeuralStateSpace systems.
Example: 5.75

x0 — Value of the state at the operating point
column vector

Value of the state at the operating point, specified as a vector.
Example: [-0.2 0.3]'

1 Functions

1-990

u0 — Value of the input at the operating point
column vector

Value of the input at the operating point, specified as a vector, for non-autonomous
idNeuralStateSpace systems.
Example: 2.4

Output Arguments
sys — Linearized model
ss (default) | idss

Linearized model, returned as an ss object, when Control System Toolbox is installed, or as an idss
object otherwise. For more information on linearization, see “Linearize Nonlinear Models” (Simulink
Control Design).

Note The first output elements are all the states of nss. Therefore, their corresponding entries in the
C matrix form an identity matrix, and their corresponding entries in the D matrix are zero.

Version History
Introduced in R2022b

See Also
Objects
idNeuralStateSpace | nssTrainingADAM | nssTrainingSGDM | idss | idnlgrey

Functions
idNeuralStateSpace/evaluate | createMLPNetwork | nssTrainingOptions | nlssest |
generateMATLABFunction | sim

Blocks
Neural State-Space Model

Topics
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

 idNeuralStateSpace/linearize

1-991

idnlarx/linearize
Linearize nonlinear ARX model

Syntax
SYS = linearize(NLSYS,U0,X0)

Description
SYS = linearize(NLSYS,U0,X0) linearizes a nonlinear ARX model about the specified operating
point U0 and X0. The linearization is based on tangent linearization. For more information about the
definition of states for idnlarx models, see “Definition of idnlarx States” on page 1-685.

Input Arguments
• NLSYS: idnlarx model.
• U0: Matrix containing the constant input values for the model.
• X0: Model state values. The states of a nonlinear ARX model are defined by the time-delayed

samples of input and output variables. For more information about the states of nonlinear ARX
models, see the getDelayInfo reference page.

Note To estimate U0 and X0 from operating point specifications, use the findop command.

Output Arguments
• SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an LTI object.

Examples

Linearize Nonlinear ARX Model at Simulation Snapshot

Linearize a nonlinear ARX model around an operating point corresponding to a simulation snapshot
at a specific time.

Load sample data.

load iddata2

Estimate nonlinear ARX model from sample data.

nlsys = nlarx(z2,[4 3 10],idTreePartition,'custom',...
 {'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
 'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

Plot the response of the model for a step input.

1 Functions

1-992

step(nlsys, 20)

The step response is a steady-state value of 0.8383 at T = 20 seconds.

Compute the operating point corresponding to T = 20.

stepinput = iddata([],[zeros(10,1);ones(200,1)],nlsys.Ts);
[x,u] = findop(nlsys,'snapshot',20,stepinput);

Linearize the model about the operating point corresponding to the model snapshot at T = 20.

sys = linearize(nlsys,u,x);

Validate the linear model.

Apply a small perturbation delta_u to the steady-state input of the nonlinear model nlsys. If the
linear approximation is accurate, the following should match:

• The response of the nonlinear model y_nl to an input that is the sum of the equilibrium level and
the perturbation delta_u .

• The sum of the response of the linear model to a perturbation input delta_u and the output
equilibrium level.

Generate a 200-sample perturbation step signal with amplitude 0.1.

delta_u = [zeros(10,1); 0.1*ones(190,1)];

 idnlarx/linearize

1-993

For a nonlinear system with a steady-state input of 1 and a steady-state output of 0.8383, compute
the steady-state response y_nl to the perturbed input u_nl . Use equilibrium state values x
computed previously as initial conditions.

u_nl = 1 + delta_u;
y_nl = sim(nlsys,u_nl,x);

Compute response of linear model to perturbation input and add it to the output equilibrium level.

y_lin = 0.8383 + lsim(sys,delta_u);

Compare the response of nonlinear and linear models.

time = (0:0.1:19.9)';
plot(time,y_nl,time,y_lin)
legend('Nonlinear response','Linear response about op. pt.')
title('Nonlinear and linear model response for small step input')

Algorithms
The following equations govern the dynamics of an idnlarx model:

X(t + 1) = AX(t) + Bu(t)
y(t) = f (X, u)

1 Functions

1-994

where X(t) is a state vector, u(t) is the input, and y(t) is the output. A and B are constant matrices. u(t)
is [y(t), u(t)]T.

The output at the operating point is given by

y* = f(X*, u*)

where X* and u* are the state vector and input at the operating point.

The linear approximation of the model response is as follows:

ΔX(t + 1) = (A + B1f X)ΔX(t) + (B1fu + B2)Δu(t)
Δy(t) = f XΔX(t) + fuΔu(t)

where

• ΔX(t) = X(t)− X*(t)
• Δu(t) = u(t)− u*(t)
• Δy(t) = y(t)− y*(t)
•

BU = [B1, B2]
Y
U

= B1Y + B2U

• f X = ∂
∂X f (X, U)

X * , U *

• fU = ∂
∂U f (X, U)

X * , U *

Note For linear approximations over larger input ranges, use linapp.

Version History
Introduced in R2014b

See Also
idnlarx/findop | getDelayInfo | idnlarx | linapp

Topics
“Linear Approximation of Nonlinear Black-Box Models”

 idnlarx/linearize

1-995

idnlhw/linearize
Linearize Hammerstein-Wiener model

Syntax
SYS = linearize(NLSYS,U0)
SYS = linearize(NLSYS,U0,X0)

Description
SYS = linearize(NLSYS,U0) linearizes a Hammerstein-Wiener model around the equilibrium
operating point. When using this syntax, equilibrium state values for the linearization are calculated
automatically using U0.

SYS = linearize(NLSYS,U0,X0) linearizes the idnlhw model NLSYS around the operating point
specified by the input U0 and state values X0. In this usage, X0 need not contain equilibrium state
values. For more information about the definition of states for idnlhw models, see “Definition of
idnlhw States” on page 1-715.

The output is a linear model that is the best linear approximation for inputs that vary in a small
neighborhood of a constant input u(t) = U. The linearization is based on tangent linearization.

Input Arguments
• NLSYS: idnlhw model.
• U0: Matrix containing the constant input values for the model.
• X0: Operating point state values for the model.

Note To estimate U0 and X0 from operating point specifications, use the findop command.

Output Arguments
• SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an LTI object.

Algorithms
The idnlhw model structure represents a nonlinear system using a linear system connected in series
with one or two static nonlinear systems. For example, you can use a static nonlinearity to simulate
saturation or dead-zone behavior. The following figure shows the nonlinear system as a linear system
that is modified by static input and output nonlinearities, where function f represents the input
nonlinearity, g represents the output nonlinearity, and [A,B,C,D] represents a state-space
parameterization of the linear model.

1 Functions

1-996

The following equations govern the dynamics of an idnlhw model:

v(t) = f(u(t))

X(t+1) = AX(t)+Bv(t)

w(t) = CX(t)+Dv(t)

y(t) = g(w(t))

where

• u is the input signal
• v and w are intermediate signals (outputs of the input nonlinearity and linear model respectively)
• y is the model output

The linear approximation of the Hammerstein-Wiener model around an operating point (X*, u*) is as
follows:

ΔX(t + 1) = AΔX(t) + BfuΔu(t)
Δy(t) ≈ gwCΔX(t) + gwDfuΔu(t)

where

• ΔX(t) = X(t)− X*(t)
• Δu(t) = u(t)− u*(t)
• Δy(t) = y(t)− y*(t)
• fu = ∂

∂u f (u)
u = u *

• gw = ∂
∂w g(w)

w = w *

where y* is the output of the model corresponding to input u* and state vector X*, v* = f(u*), and w*
is the response of the linear model for input v* and state X*.

Note For linear approximations over larger input ranges, use linapp. For more information, see the
linapp reference page.

Version History
Introduced in R2014b

See Also
idnlhw/findop | idnlhw | linapp

Topics
“Linear Approximation of Nonlinear Black-Box Models”

 idnlhw/linearize

1-997

linearRegressor
Specify linear regressor for nonlinear ARX model

Description
A linear regressor is a lagged output or input variable, such as y(t-1) or u(t-2). Here, the y term has a
lag of 1 sample and the u term has a lag of 2 samples. A linearRegressor object encapsulates a set
of linear regressors. Use linearRegressor objects when you create nonlinear ARX models using
idnlarx or nlarx. linearRegressor generalizes the concept of orders in ARX models, or in other
words, the [na nb nk] matrix, to allow absolute values and noncontiguous lags. Using
linearRegressor objects also lets you combine linear regressors with polynomialRegressor,
periodicRegressor, and customRegressor objects in a single regressor set.

Creation

Syntax
lReg = linearRegressor(Variables,Lags)
lreg = linearRegressor(Variables,Lags,useAbsolute)

Description

lReg = linearRegressor(Variables,Lags) creates a linearRegressor object that contains
output and input names in Variables and the corresponding lags in Lags.

lreg = linearRegressor(Variables,Lags,useAbsolute) specifies in UseAbsolute whether
to use the absolute values of the variables to create the regressors.

Properties
Variables — Output and input variable names
cell array of strings | iddata object properties

Output and input variable names, specified as a cell array of strings or a cell array that references the
OutputName and InputName properties of an iddata object. Each entry must be a string with no
special characters other than white space. For an example of using this property, see “Estimate
Nonlinear ARX Model Using Linear Regressor Set” on page 1-999.
Example: {'y1','u1'}
Example: [z.OutputName; z.InputName]'

Lags — Lags in each variable
cell array of non-negative integers

Lags in each variable, specified as a 1-by-nv cell array of non-negative integer row vectors, where nv
is the total number of regressor variables. Each row vector contains nr integers that specify the nr

1 Functions

1-998

regressor lags for the corresponding variable. For instance, suppose that you want the following
regressors:

• Output variable y1: y1(t–1) and y1(t–2)
• Input variable u1: u1(t–3)

To obtain these lags, set Lags to {[1 2],3}.

If a lag corresponds to an output variable of an idnlarx model, the minimum lag must be greater
than or equal to 1.

For an example of using this property, see “Estimate Nonlinear ARX Model Using Linear Regressor
Set” on page 1-999.
Example: {1 1}
Example: {[1 2],[1,3,4]}

UseAbsolute — Absolute value indicator
false (default) | logical vector

Absolute value indicator that determines whether to use the absolute value of a regressor variable
instead of the signed value, specified as a logical vector with a length equal to the number of
variables. For an example of setting this property, see “Use Absolute Value in Linear Regressor Set”
on page 1-1001.
Example: [true,false]

TimeVariable — Name of time variable
't' (default) | character array | string

Name of the time variable, specified as a valid MATLAB variable name that is distinct from values in
Variables.
Example: 'ClockTime'

Examples

Estimate Nonlinear ARX Model Using Linear Regressor Set

Specify a linear regressor that is equivalent to an ARX model order matrix of [4 4 1].

An order matrix of [4 4 1] specifies that both input and output regressor sets contain four
regressors with lags ranging from 1 to 4. For example, u1 t − 2 represents the second input
regressor.

Specify the output and input names.

output_name = 'y1';
input_name = 'u1';
names = {output_name,input_name};

Specify the output and input lags.

 linearRegressor

1-999

output_lag = [1 2 3 4];
input_lag = [1 2 3 4];
lags = {output_lag,input_lag};

Create the linear regressor object.

lreg = linearRegressor(names,lags)

lreg =
Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1 2 3 4] [1 2 3 4]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

 Regressors described by this set

Load the estimation data and create an iddata object.

load twotankdata
z = iddata(y,u,0.2);

Estimate the nonlinear ARX model.

sys = nlarx(z,lreg)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Wavelet network with 11 units
Sample time: 0.2 seconds

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 96.84% (prediction focus)
FPE: 3.482e-05, MSE: 3.431e-05
More information in model's "Report" property.

View the regressors

getreg(sys)

ans = 8x1 cell
 {'y1(t-1)'}
 {'y1(t-2)'}
 {'y1(t-3)'}
 {'y1(t-4)'}
 {'u1(t-1)'}
 {'u1(t-2)'}
 {'u1(t-3)'}
 {'u1(t-4)'}

Compare the model output to the estimation data.

1 Functions

1-1000

compare(z,sys)

Use Absolute Value in Linear Regressor Set

Create a linear regressor set that uses lags of 3, 10, and 100 in variable y1 and lags of 0 and 4 in
variable u1.

vars = {'y1','u1'};
lags = {[3 10 100],[0,4]};

Specify that the y1 regressor use the absolute value of y1.

UseAbs = [true,false];

Create the linear regressor.

reg = linearRegressor(vars,lags,UseAbs)

reg =
Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[3 10 100] [0 4]}
 UseAbsolute: [1 0]
 TimeVariable: 't'

 Regressors described by this set

 linearRegressor

1-1001

Specify Linear, Polynomial, and Custom Regressors

Load the estimation data z1, which has one input and one output, and obtain the output and input
names.

load iddata1 z1;
names = [z1.OutputName z1.InputName]

names = 1x2 cell
 {'y1'} {'u1'}

Specify L as the set of linear regressors that represents y1 t − 1 , u1 t − 2 , and u1 t − 5 .

L = linearRegressor(names,{1,[2 5]});

Specify P as the polynomial regressor y1 t − 1 2.

P = polynomialRegressor(names(1),1,2);

Specify C as the custom regressor y1 t − 2 u1 t − 3 . Use an anonymous function handle to define this
function.

C = customRegressor(names,{2 3},@(x,y)x.*y)

C =
Custom regressor: y1(t-2).*u1(t-3)
 VariablesToRegressorFcn: @(x,y)x.*y
 Variables: {'y1' 'u1'}
 Lags: {[2] [3]}
 Vectorized: 1
 TimeVariable: 't'

 Regressors described by this set

Combine the regressors in the column vector R.

R = [L;P;C]

R =
[3 1] array of linearRegressor, polynomialRegressor, customRegressor objects.

1. Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1] [2 5]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

2. Order 2 regressors in variables y1
 Order: 2
 Variables: {'y1'}
 Lags: {[1]}
 UseAbsolute: 0
 AllowVariableMix: 0

1 Functions

1-1002

 AllowLagMix: 0
 TimeVariable: 't'

3. Custom regressor: y1(t-2).*u1(t-3)
 VariablesToRegressorFcn: @(x,y)x.*y
 Variables: {'y1' 'u1'}
 Lags: {[2] [3]}
 Vectorized: 1
 TimeVariable: 't'

Regressors described by this set

Estimate a nonlinear ARX model with R.

sys = nlarx(z1,R)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 1. Linear regressors in variables y1, u1
 2. Order 2 regressors in variables y1
 3. Custom regressor: y1(t-2).*u1(t-3)

Output function: Wavelet network with 1 units
Sample time: 0.1 seconds

Status:
Estimated using NLARX on time domain data "z1".
Fit to estimation data: 59.73% (prediction focus)
FPE: 3.356, MSE: 3.147
More information in model's "Report" property.

View the full regressor set.

getreg(sys)

ans = 5x1 cell
 {'y1(t-1)' }
 {'u1(t-2)' }
 {'u1(t-5)' }
 {'y1(t-1)^2' }
 {'y1(t-2).*u1(t-3)'}

Version History
Introduced in R2021a

 linearRegressor

1-1003

See Also
idnlarx | nlarx | getreg | polynomialRegressor | periodicRegressor | customRegressor

1 Functions

1-1004

lsim
Plot simulated time response of dynamic system to arbitrary inputs; simulated response data

Syntax
lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,method)
lsim(sys1,sys2,...,sysN,u,t, ___)
lsim(sys1,LineSpec1,...,sysN,LineSpecN, ___)

y = lsim(sys,u,t)
y = lsim(sys,u,t,x0)
y = lsim(sys,u,t,x0,method)
[y,tOut,x] = lsim(___)

lsim(sys)

Description
Response Plots

lsim(sys,u,t) plots the simulated time response of the dynamic system model sys to the input
history (t,u). The vector t specifies the time samples for the simulation. For single-input systems, the
input signal u is a vector of the same length as t. For multi-input systems, u is an array with as many
rows as there are time samples (length(t)) and as many columns as there are inputs to sys.

lsim(sys,u,t,x0) further specifies a vector x0 of initial state values, when sys is a state-space
model.

lsim(sys,u,t,x0,method) specifies how lsim interpolates the input values between samples,
when sys is a continuous-time model.

lsim(sys1,sys2,...,sysN,u,t, ___) simulates the responses of several dynamic system models
to the same input history and plots these responses on a single figure. All systems must have the
same number of inputs and outputs. You can also use the x0 and method input arguments when
computing the responses of multiple models.

lsim(sys1,LineSpec1,...,sysN,LineSpecN, ___) specifies a color, line style, and marker for
each system in the plot. When you need additional plot customization options, use lsimplot instead.

Response Data

y = lsim(sys,u,t) returns the system response y, sampled at the same times t as the input. For
single-output systems, y is a vector of the same length as t. For multi-output systems, y is an array
having as many rows as there are time samples (length(t)) and as many columns as there are
outputs in sys. This syntax does not generate a plot.

y = lsim(sys,u,t,x0) further specifies a vector x0 of initial state values, when sys is a state-
space model.

 lsim

1-1005

y = lsim(sys,u,t,x0,method) specifies how lsim interpolates the input values between
samples, when sys is a continuous-time model.

[y,tOut,x] = lsim(___) returns the state trajectories x, when sys is a state-space model. x is
an array with as many rows as there are time samples and as many columns as there are states in
sys. This syntax also returns the time samples used for the simulation in tOut.

Linear Simulation Tool

lsim(sys) opens the Linear Simulation Tool. For more information about using this tool for linear
analysis, see Working with the Linear Simulation Tool (Control System Toolbox).

Examples

Simulated Response to Arbitrary Input Signal

Consider the following transfer function.

sys = tf(3,[1 2 3])

sys =

 3

 s^2 + 2 s + 3

Continuous-time transfer function.

To compute the response of this system to an arbitrary input signal, provide lsim with a vector of the
times t at which you want to compute the response and a vector u containing the corresponding
signal values. For instance, plot the system response to a ramping step signal that starts at 0 at time
t = 0, ramps from 0 at t = 1 to 1 at t = 2, and then holds steady at 1. Define t and compute the
values of u.

t = 0:0.04:8; % 201 points
u = max(0,min(t-1,1));

Use lsim without an output argument to plot the system response to the signal.

lsim(sys,u,t)
grid on

1 Functions

1-1006

The plot shows the applied input (u,t) in gray and the system response in blue.

Use lsim with an output argument to obtain the simulated response data.

y = lsim(sys,u,t);
size(y)

ans = 1×2

 201 1

The vector y contains the simulated response at the corresponding times in t.

Response to Periodic Signal

Use gensig (Control System Toolbox) to create periodic input signals such as sine waves and square
waves for use with lsim. Simulate the response to a square wave of the following SISO state-space
model.

A = [-3 -1.5; 5 0];
B = [1; 0];
C = [0.5 1.5];
D = 0;
sys = ss(A,B,C,D);

 lsim

1-1007

For this example, create a square wave with a period of 10 s and a duration of 20 s.

[u,t] = gensig("square",10,20);

gensig returns the vector t of time steps and the vector u containing the corresponding values of
the input signal. (If you do not specify a sample time for t, then gensig generates 64 samples per
period.) Use these with lsim and plot the system response.

lsim(sys,u,t)
grid on

The plot shows the applied square wave in gray and the system response in blue. Call lsim with an
output argument to obtain the response values at each point in t.

[y,~] = lsim(sys,u,t);

Response of Discrete-Time System

When you simulate the response of a discrete-time system, the time vector t must be of the form
Ti:dT:Tf, where dT is the sample time of the model. Simulate the response of the following
discrete-time transfer function to a ramp step input.

sys = tf([0.06 0.05],[1 -1.56 0.67],0.05);

1 Functions

1-1008

This transfer function has a sample time of 0.05 s. Use the same sample time to generate the time
vector t and a ramped step signal u.

t = 0:0.05:4;
u = max(0,min(t-1,1));

Plot the system response.

lsim(sys,u,t)

To simulate the response of a discrete-time system to a periodic input signal, use the same sample
time with gensig to generate the input. For instance, simulate the system response to a sine wave
with period of 1 s and a duration of 4 s.

[u,t] = gensig("sine",1,4,0.05);

Plot the system response.

lsim(sys,u,t)

 lsim

1-1009

Plot Response of Multiple Systems to Same Input

lsim allows you to plot the simulated responses of multiple dynamic systems on the same axis. For
instance, compare the closed-loop response of a system with a PI controller and a PID controller.
Create a transfer function of the system and tune the controllers.

H = tf(4,[1 10 25]);
C1 = pidtune(H,'PI');
C2 = pidtune(H,'PID');

Form the closed-loop systems.

sys1 = feedback(H*C1,1);
sys2 = feedback(H*C2,1);

Plot the responses of both systems to a square wave with a period of 4 s.

[u,t] = gensig("square",4,12);
lsim(sys1,sys2,u,t)
grid on
legend("PI","PID")

1 Functions

1-1010

By default, lsim chooses distinct colors for each system that you plot. You can specify colors and line
styles using the LineSpec input argument.

 lsim(sys1,"r--",sys2,"b",u,t)
 grid on
 legend("PI","PID")

 lsim

1-1011

The first LineSpec "r--" specifies a dashed red line for the response with the PI controller. The
second LineSpec "b" specifies a solid blue line for the response with the PID controller. The legend
reflects the specified colors and line styles. For more plot customization options, use lsimplot.

Plot Simulated Response of MIMO System

In a MIMO system, at each time step t, the input u(t) is a vector whose length is the number of
inputs. To use lsim, you specify u as a matrix with dimensions Nt-by-Nu, where Nu is the number of
system inputs and Nt is the length of t. In other words, each column of u is the input signal applied
to the corresponding system input. For instance, to simulate a system with four inputs for 201 time
steps, provide u as a matrix of four columns and 201 rows, where each row u(i,:) is the vector of
input values at the ith time step; each column u(:,j) is the signal applied at the jth input.

Similarly, the output y(t) computed by lsim is a matrix whose columns represent the signal at each
system output. When you use lsim to plot the simulated response, lsim provides separate axes for
each output, representing the system response in each output channel to the input u(t) applied at
all inputs.

Consider the two-input, three-output state-space model with the following state-space matrices.

A = [-1.5 -0.2 1.0;
 -0.2 -1.7 0.6;
 1.0 0.6 -1.4];

1 Functions

1-1012

B = [1.5 0.6;
 -1.8 1.0;
 0 0];

C = [0 -0.5 -0.1;
 0.35 -0.1 -0.15
 0.65 0 0.6];

D = [0.5 0;
 0.05 0.75
 0 0];

sys = ss(A,B,C,D);

Plot the response of sys to a square wave of period 4 s, applied to the first input sys and a pulse
applied to the second input every 3 s. To do so, create column vectors representing the square wave
and the pulsed signal using gensig. Then stack the columns into an input matrix. To ensure the two
signals have the same number of samples, specify the same end time and sample time.

Tf = 10;
Ts = 0.1;
[uSq,t] = gensig("square",4,Tf,Ts);
[uP,~] = gensig("pulse",3,Tf,Ts);
u = [uSq uP];
lsim(sys,u,t)

 lsim

1-1013

Each axis shows the response of one of the three system outputs to the signals u applied at all inputs.
Each plot also shows all input signals in gray.

Plot System Evolution from Initial Condition

By default, lsim simulates the model assuming all states are zero at the start of the simulation. When
simulating the response of a state-space model, use the optional x0 input argument to specify
nonzero initial state values. Consider the following two-state SISO state-space model.

A = [-1.5 -3;
 3 -1];
B = [1.3; 0];
C = [1.15 2.3];
D = 0;

sys = ss(A,B,C,D);

Suppose that you want to allow the system to evolve from a known set of initial states with no input
for 2 s, and then apply a unit step change. Specify the vector x0 of initial state values, and create the
input vector.

x0 = [-0.2 0.3];
t = 0:0.05:8;
u = zeros(length(t),1);
u(t>=2) = 1;
lsim(sys,u,t,x0)
grid on

1 Functions

1-1014

The first half of the plot shows the free evolution of the system from the initial state values [-0.2
0.3]. At t = 2 there is a step change to the input, and the plot shows the system response to this
new signal beginning from the state values at that time.

Extract Simulated Response Data

When you use lsim with output arguments, it returns the simulated response data in an array. For a
SISO system, the response data is returned as a column vector of the same length as t. For instance,
extract the response of a SISO system to a square wave. Create the square wave using gensig.

sys = tf([2 5 1],[1 2 3]);
[u,t] = gensig("square",4,10,0.05);
[y,t] = lsim(sys,u,t);
size(y)

ans = 1×2

 201 1

The vector y contains the simulated response at each time step in t. (lsim returns the time vector t
as a convenience.)

 lsim

1-1015

For a MIMO system, the response data is returned in an array of dimensions N-by-Ny-by-Nu, where
Ny and Nu are the number of outputs and inputs of the dynamic system. For instance, consider the
following state-space model, representing a three-state system with two inputs and three outputs.

A = [-1.5 -0.2 1.0;
 -0.2 -1.7 0.6;
 1.0 0.6 -1.4];

B = [1.5 0.6;
 -1.8 1.0;
 0 0];

C = [0 -0.1 -0.2;
 0.7 -0.2 -0.3
 -0.65 0 -0.6];

D = [0.1 0;
 0.1 1.5
 0 0];

sys = ss(A,B,C,D);

Extract the responses of the three output channels to the square wave applied at both inputs.

uM = [u u];
[y,t] = lsim(sys,uM,t);
size(y)

ans = 1×2

 201 3

y(:,j) is a column vector containing response at the jth output to the square wave applied to both
inputs. That is, y(i,:) is a vector of three values, the output values at the ith time step.

Because sys is a state-space model, you can extract the time evolution of the state values in response
to the input signal.

[y,t,x] = lsim(sys,uM,t);
size(x)

ans = 1×2

 201 3

Each row of x contains the state values [x1,x2,x3] at the corresponding time in t. In other words,
x(i,:) is the state vector at the ith time step. Plot the state values.

plot(t,x)

1 Functions

1-1016

Response of Systems in Model Array

The example Plot Response of Multiple Systems to Same Input shows how to plot responses of several
individual systems on a single axis. When you have multiple dynamic systems arranged in a model
array, lsim plots all their responses at once.

Create a model array. For this example, use a one-dimensional array of second-order transfer
functions having different natural frequencies. First, preallocate memory for the model array. The
following command creates a 1-by-5 row of zero-gain SISO transfer functions. The first two
dimensions represent the model outputs and inputs. The remaining dimensions are the array
dimensions. (For more information about model arrays and how to create them, see “Model Arrays”
(Control System Toolbox).)

sys = tf(zeros(1,1,1,5));

Populate the array.

w0 = 1.5:1:5.5; % natural frequencies
zeta = 0.5; % damping constant
for i = 1:length(w0)
 sys(:,:,1,i) = tf(w0(i)^2,[1 2*zeta*w0(i) w0(i)^2]);
end

Plot the responses of all models in the array to a square wave input.

 lsim

1-1017

[u,t] = gensig("square",5,15);
lsim(sys,u,t)

lsim uses the same line style for the responses of all entries in the array. One way to distinguish
among entries is to use the SamplingGrid property of dynamic system models to associate each
entry in the array with the corresponding w0 value.

sys.SamplingGrid = struct('frequency',w0);

Now, when you plot the responses in a MATLAB figure window, you can click a trace to see which
frequency value it corresponds to.

Simulate Response of Identified Model

Load estimation data to estimate a model.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor');

z is an iddata object that stores the one-input two-output estimation data with a sample time of 0.1
s.

Estimate a state-space model of order 4 using estimation data z.

[sys,x0] = n4sid(z,4);

1 Functions

1-1018

sys is the estimated model and x0 is the estimated initial states.

Simulate the response of sys using the same input data as the one used for estimation and the initial
states returned by the estimation command.

[y,t,x] = lsim(sys,z.InputData,[],x0);

Here, y is the system response, t is the time vector used for simulation, and x is the state trajectory.

Compare the simulated response y to the measured response z.OutputData for both outputs.

subplot(211), plot(t,z.OutputData(:,1),'k',t,y(:,1),'r')
legend('Measured','Simulated')
subplot(212), plot(t,z.OutputData(:,2),'k',t,y(:,2),'r')
legend('Measured','Simulated')

Effect of Sample Time on Simulation

The choice of sample time can drastically affect simulation results. To illustrate why, consider the
following second-order model.

sys(s) = ω2

s2 + 2s + ω2 , ω = 62.83 .

Simulate the response of this model to a square wave with period 1 s, using a sample time of 0.1 s.

 lsim

1-1019

w2 = 62.83^2;
sys = tf(w2,[1 2 w2]);

tau = 1;
Tf = 5;
Ts = 0.1;
[u,t] = gensig("square",tau,Tf,Ts);
lsim(sys,u,t)

lsim simulates the model using the specified input signal, but it issues a warning that the input
signal is undersampled. lsim recommends a sample time that generates at least 64 samples per
period of the input u. To see why this recommendation matters, simulate sys again using a sample
time smaller than the recommended maximum.

figure
Ts2 = 0.01;
[u2,t2] = gensig("square",tau,Tf,Ts2);
lsim(sys,u2,t2)

1 Functions

1-1020

This response exhibits strong oscillatory behavior that is hidden in the undersampled version.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems whose responses you can simulate include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value for
both plotting and returning response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model. When you use output arguments, the function returns response data for the
nominal model only.

• Sparse state-space models such as sparss and mechss models.
• Identified LTI models, such as idtf, idss, or idproc models. For identified models, you can also

use the sim command, which can compute the standard deviation of the simulated response and
state trajectories. sim can also simulate all types of models with nonzero initial conditions, and
can simulate nonlinear identified models.

 lsim

1-1021

lsim does not support frequency-response data models such as frd, genfrd, or idfrd models.

If sys is an array of models, the function plots the responses of all models in the array on the same
axes. See “Response of Systems in Model Array” (Control System Toolbox).

u — Input signal
vector | array

Input signal for simulation, specified as a vector for single-input systems, and an array for multi-input
systems.

• For single-input systems, u is a vector of the same length as t.
• For multi-input systems, u is an array with as many rows as there are time samples (length(t))

and as many columns as there are inputs to sys. In other words, each row u(i,:) represents the
values applied at the inputs of sys at time t(i). Each column u(:,j) is the signal applied to the
jth input of sys.

t — Time samples
vector

Time samples at which to compute the response, specified as a vector of the form 0:dT:Tf. The lsim
command interprets t as having the units specified in the TimeUnit property of the model sys.

For continuous-time sys, the lsim command uses the time step dT to discretize the model. If dT is
too large relative to the system dynamics (undersampling), lsim issues a warning recommending a
faster sampling time. For further discussion of the impact of sampling time on simulation, see “Effect
of Sample Time on Simulation” (Control System Toolbox).

For discrete-time sys, the time step dT must equal the sample time of sys. Alternatively, you can
omit t or set it to []. In that case, lsim sets t to a vector of the same length as u that begins at 0
with a time step equal to sys.Ts.

x0 — Initial state values
vector of zeros (default) | vector

Initial state values for simulating a state-space model, specified as a vector having one entry for each
state in sys. If you omit this argument, then lsim sets all states to zero at t = 0.

method — Discretization method
'zoh | 'foh'

Discretization method for sampling continuous-time models, specified as one of the following.

• 'zoh' — Zero-order hold
• 'foh' — First-order hold

When sys is a continuous-time model, lsim computes the time response by discretizing the model
using a sample time equal to the time step dT = t(2)-t(1) of t. If you do not specify a
discretization method, then lsim selects the method automatically based on the smoothness of the
signal u. For more information about these two discretization methods, see “Continuous-Discrete
Conversion Methods” (Control System Toolbox).

LineSpec — Line style, marker, and color
character vector | string

1 Functions

1-1022

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

Output Arguments
y — Simulated response data
array

Simulated response data, returned as an array.

• For single-input systems, y is a column vector of the same length as t.
• For multi-output systems, y is an array with as many rows as there are time samples (length(t))

and as many columns as there are outputs in sys. Thus, the jth column of y, or y(:,j), contains
the response at the jth output to u applied at all inputs.

tOut — Time vector
vector

Time vector used for simulation, returned as a column vector. When you specify an input time vector
t of the form 0:dT:Tf, then tOut = t. If t is nearly equisampled, lsim adjusts the sample times for
simulation and returns the result in tOut. For discrete-time sys, you can omit t or set it to []. In
that case, lsim sets t to a vector of the same length as u that begins at 0 with a time step equal to
sys.Ts, and returns the result in tOut.

x — State trajectories
array

State trajectories, returned as an array. When sys is a state-space model, x contains the evolution of
the states of sys in response to the input. x is an array with as many rows as there are time samples
(length(t)) and as many columns as there are states in sys.

Tips
• When you need additional plot customization options, use lsimplot instead.

Algorithms
For a discrete-time transfer function,

sys z−1 =
a0 + a1z−1 + … + anz−n

1 + b1z−1 + … + bnz−n ,

lsim filters the input based on the recursion associated with this transfer function:

y k = a0u k + … + anu k− n − b1y k− 1 −…− bn k− n .

 lsim

1-1023

For discrete-time zpk models, lsim filters the input through a series of first-order or second-order
sections. This approach avoids forming the numerator and denominator polynomials, which can cause
numerical instability for higher-order models.

For discrete-time state-space models, lsim propagates the discrete-time state-space equations,

x n + 1 = Ax n + Bu n ,
y n = Cx n + Du n .

For continuous-time systems, lsim first discretizes the system using c2d, and then propagates the
resulting discrete-time state-space equations. Unless you specify otherwise with the method input
argument, lsim uses the first-order-hold discretization method when the input signal is smooth, and
zero-order hold when the input signal is discontinuous, such as for pulses or square waves. The
sample time for discretization is the spacing dT between the time samples you supply in t.

Version History
Introduced in R2012a

See Also
Functions
gensig | impulse | initial | step | sim | lsiminfo | lsimplot

Apps
Linear System Analyzer

1 Functions

1-1024

lsiminfo
Compute linear response characteristics

Syntax
S = lsiminfo(y,t)
S = lsiminfo(y,t,yfinal)
S = lsiminfo(y,t,yfinal,yinit)

S = lsiminfo(___ ,'SettlingTimeThreshold',ST)

Description
lsiminfo lets you compute linear response characteristics from an array of response data [y,t].
For a linear response y(t), lsiminfo computes characteristics relative to yinit and yfinal, where yinit is
the initial offset, that is, the value before the input is applied, and yfinal is the steady-state value of the
response.

lsiminfo uses yinit = 0 and yfinal = last sample value of y(t) unless you explicitly specify these values.

The function returns the characteristics in a structure containing the fields:

• TransientTime — The first time T such that the error |y(t) – yfinal| ≤ SettlingTimeThreshold ×
emax for t ≥ T, where emax is the maximum error |y(t) – yfinal| for t ≥ 0.

By default, SettlingTimeThreshold = 0.02 (2% of the peak error). Transient time measures how
quickly the transient dynamics die off.

• SettlingTime — The first time T such that |y(t) – yfinal| ≤ SettlingTimeThreshold × |yfinal – yinit| for
t ≥ T.

By default, settling time measures the time it takes for the error to stay below 2% of |yfinal – yinit|.
• Min — Minimum value of y(t).
• MinTime — Time the response takes to reach the minimum value.
• Max — Maximum value of y(t).
• MaxTime — Time the response takes to reach the maximum value.

S = lsiminfo(y,t) computes linear response characteristics from an array of response data y and
corresponding time vector t. This syntax uses yinit = 0 and the last value in y (or the last value in each
channel's corresponding response data) as yfinal to compute characteristics that depend on these
values.

For SISO system responses, y is a vector with the same number of entries as t. For MIMO response
data, y is an array containing the responses of each I/O channel.

S = lsiminfo(y,t,yfinal) computes linear response characteristics relative to the steady-state
value yfinal. This syntax is useful when you know that the expected steady-state system response
differs from the last value in y for reasons such as measurement noise. This syntax uses yinit = 0.

 lsiminfo

1-1025

For SISO responses, t and y are vectors with the same length NS. For systems with NY outputs, you
can specify y as an NS-by-NY array and yfinal as an NY-by-1 array. lsiminfo then returns a NY-by-1
structure array S of response characteristics corresponding to each output channel.

S = lsiminfo(y,t,yfinal,yinit) computes response characteristics relative to the response
initial value yinit. This syntax is useful when your y data has an initial offset, that is, y is nonzero
before the input is applied.

For SISO responses, t and y are vectors with the same length NS. For systems with NY outputs, you
can specify y as an NS-by-NY array and yfinal and yinit as an NY-by-1 arrays. lsiminfo then
returns a NY-by-1 structure array S of response characteristics corresponding to each output channel.

S = lsiminfo(___ ,'SettlingTimeThreshold',ST) lets you specify the threshold ST used in
definition of settling and transient times. The default value is ST = 0.02 (2%). You can use this
syntax with any of the previous input-argument combinations.

Examples

Compute Response Characteristics of Transfer Function

Create the following continuous-time transfer function:

H(s) = s− 1
s3 + 2s2 + 3s + 4

sys = tf([1 -1],[1 2 3 4]);

Calculate the impulse response.

[y,t] = impulse(sys);

impulse returns the output response y and the time vector t used for simulation.

Compute the response characteristics using a final response value of 0.

s = lsiminfo(y,t,0)

s = struct with fields:
 TransientTime: 22.8700
 SettlingTime: NaN
 Min: -0.4268
 MinTime: 2.0088
 Max: 0.2847
 MaxTime: 4.0733

You can plot the impulse response and verify these response characteristics. For example, the time at
which the minimum response value (MinTime) is reached is approximately 2 seconds.

impulse(sys)

1 Functions

1-1026

Input Arguments
y — Response data
vector | array

Response data, specified as one of the following:

• For SISO response data, a vector of length Ns, where Ns is the number of samples in the response
data.

• For MIMO response data, an Ns-by-Ny array, where Ny is the number of system outputs.

t — Time vector
vector

Time vector corresponding to the response data in y, specified as a vector of length Ns.

yfinal — Steady-state value
scalar | array

Response steady-state value, specified as a scalar or an array.

• For SISO response data, specify a scalar value.
• For MIMO response data, specify an Ny-by-1 array, where each entry provides the steady-state

response value for the corresponding system channel.

 lsiminfo

1-1027

If you do not provide yfinal, then lsiminfo uses the last value in the corresponding channel of y
as the steady-state response value.

yinit — Response initial value
scalar | array

Value of y before the input is applied, specified as a scalar or an array.

• For SISO response data, specify a scalar value.
• For MIMO response data, specify an Ny-by-1 array, where each entry provides the response initial

value for the corresponding system channel.

If you do not provide yinit, then lsiminfo uses zero as the response initial value.

ST — Settling time threshold
0.02 (default) | scalar between 0 and 1

Threshold for defining settling and transient times, specified as a scalar value between 0 and 1. To
change the default settling and transient time definitions (see “Description” on page 1-1025), set ST
to a different value. For instance, to measure when the error falls below 5%, set ST to 0.05.

Output Arguments
S — Response characteristics
structure

Linear response characteristics, returned as a structure containing the fields:

• TransientTime
• SettlingTime
• Min
• MinTime
• Max
• MaxTime

For more information on how lsiminfo defines these characteristics, see “Description” on page 1-
1025.

For MIMO models or responses data, S is a structure array in which each entry contains the step-
response characteristics of the corresponding I/O channel. For instance, if you provide a 3-input, 3-
output model or array of response data, then S(2,3) contains the characteristics of the response
from the third input to the second output.

Version History
Introduced in R2012a

Settling time computation changed
Behavior changed in R2021b

1 Functions

1-1028

The settling time calculation is now based on the time it takes for the error to stay below 2% of |yfinal –
yinit|. The following table summarizes the changes to the fields of the structure returned by
lsiminfo.

Before R2021b R2021b
SettlingTime — The first time T such that the
error |y(t) – yfinal| ≤ SettlingTimeThreshold × emax
for t ≥ T, where emax is the maximum error |y(t) –
yfinal| for t ≥ 0.

By default, SettlingTimeThreshold = 0.02 (2% of
the peak error). SettlingTime measures the
time for the error to fall below 2% of the peak
value of the error.

SettlingTime — The first time T such that the
error |y(t) – yfinal| ≤ SettlingTimeThreshold × |yfinal
– yinit| for t ≥ T.

By default, SettlingTime measures the time it
takes for the error to stay below 2% of |yfinal –
yinit|.

Additionally, the output structure S now contains a TransientTime field. This characteristic
contains the peak-error-based settling time calculation used in releases before R2021b. Transient
time is used to measure how quickly the transient dynamics die off.

See Also
impulse | lsim | stepinfo

 lsiminfo

1-1029

lsimplot
Plot simulated time response of dynamic system to arbitrary inputs with additional plot customization
options

Syntax
h = lsimplot(sys)
h = lsimplot(sys,u,t)
h = lsimplot(sys1,sys2,...,sysN,u,t)
h = lsimplot(sys1,LineSpec1,...,sysN,LineSpecN,u,t)
h = lsimplot(___ ,x0)
h = lsimplot(___ ,method)
h = lsimplot(AX, ___)
h = lsimplot(___ ,plotoptions)

Description
lsimplot lets you plot simulated time response of dynamic system to arbitrary inputs with a broader
range of plot customization options than lsim. You can use lsimplot to obtain the plot handle and
use it to customize the plot, such as modify the axes labels, limits and units. You can also use
lsimplot to draw a simulated time response plot on an existing set of axes represented by an axes
handle. To customize an existing simulated time response plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox). To create simulated time response plots with default options or to extract simulated
response data, use lsim.

h = lsimplot(sys) opens the Linear Simulation Tool for the dynamic system model sys, where
you can interactively specify the driving input(s), the time vector, and initial state. It also returns the
plot handle h. You can use this handle h to customize the plot with the getoptions and setoptions
commands.

For more information about using the Linear Simulation Tool for linear analysis, see Working with the
Linear Simulation Tool (Control System Toolbox).

h = lsimplot(sys,u,t) plots the simulated time response of the model sys to the input signal u
and the corresponding time vector t. For MIMO systems, u is a matrix with as many columns as the
number of inputs and whose ith row specifies the input value at time t(i). For SISO systems, the
input u can be specified either as a row or column vector.

h = lsimplot(sys1,sys2,...,sysN,u,t) plots the simulated response of multiple dynamic
systems sys1,sys2,…,sysN using the input u and time vector t on the same plot. All systems must
have the same number of inputs and outputs to use this syntax.

1 Functions

1-1030

h = lsimplot(sys1,LineSpec1,...,sysN,LineSpecN,u,t) sets the line style, marker type,
and color for the simulated time response of each system. All systems must have the same number of
inputs and outputs to use this syntax.

h = lsimplot(___ ,x0) further specifies a vector x0 of initial state values, when sys is a state-
space model.

h = lsimplot(___ ,method) specifies how lsimplot interpolates the input values between
samples, when sys is a continuous-time model.

h = lsimplot(AX, ___) plots the simulated response on the Axes object in the current figure with
the handle AX.

h = lsimplot(___ ,plotoptions) plots the simulated response with the options set specified in
plotoptions. You can use these options to customize the plot appearance using the command line.
Settings you specify in plotoptions overrides the preference settings in the MATLAB session in
which you run lsimplot. Therefore, this syntax is useful when you want to write a script to generate
multiple plots that look the same regardless of the local preferences.

Examples

Customized Plot of Simulated Response to Arbitrary Input Signal

For this example, change time units to minutes and turn the grid on for the simulated response plot.
Consider the following transfer function.

sys = tf(3,[1 2 3]);

To compute the response of this system to an arbitrary input signal, provide lsimplot with a vector
of the times t at which you want to compute the response and a vector u containing the
corresponding signal values. For instance, plot the system response to a ramping step signal that
starts at 0 at time t = 0, ramps from 0 at t = 1 to 1 at t = 2, and then holds steady at 1. Define t
and compute the values of u.

t = 0:0.04:8;
u = max(0,min(t-1,1));

Use lsimplot plot the system response to the signal with a plot handle h.

h = lsimplot(sys,u,t);

 lsimplot

1-1031

The plot shows the applied input (u,t) in gray and the system response in blue.

Use the plot handle to change the time units to minutes and to turn the grid on. To do so, edit
properties of the plot handle, h using setoptions.

setoptions(h,'TimeUnits','minutes','Grid','on')

1 Functions

1-1032

The plot automatically updates when you call setoptions.

Alternatively, you can also use the timeoptions command to specify the required plot options. First,
create an options set based on the toolbox preferences.

plotoptions = timeoptions('cstprefs');

Change properties of the options set by setting the time units to minutes and enabling the grid.

plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
lsimplot(sys,u,t,plotoptions);

 lsimplot

1-1033

Customized Plot Response of Multiple Systems to Same Input

lsimplot allows you to plot the simulated responses of multiple dynamic systems on the same axis.
For instance, compare the closed-loop response of a system with a PI controller and a PID controller.
Then, customize the plot by enabling normalization and turning the grid on.

First, create a transfer function of the system and tune the controllers.

H = tf(4,[1 10 25]);
C1 = pidtune(H,'PI');
C2 = pidtune(H,'PID');

Form the closed-loop systems.

sys1 = feedback(H*C1,1);
sys2 = feedback(H*C2,1);

Plot the responses of both systems to a square wave with a period of 4 s.

[u,t] = gensig("square",4,12);
h1 = lsimplot(sys1,sys2,u,t);
legend("PI","PID")

1 Functions

1-1034

Use setoptions to enable normalization and to turn on the grid.

setoptions(h1,'Normalize','on','Grid','on')

 lsimplot

1-1035

The plot automatically updates when you call setoptions.

By default, lsimplot chooses distinct colors for each system that you plot. You can specify colors
and line styles using the LineSpec input argument.

h2 = lsimplot(sys1,"r--",sys2,"b",u,t);
legend("PI","PID")
setoptions(h2,'Normalize','on','Grid','on')

1 Functions

1-1036

The first LineSpec "r--" specifies a dashed red line for the response with the PI controller. The
second LineSpec "b" specifies a solid blue line for the response with the PID controller. The legend
reflects the specified colors and line styles.

Custom Plot of System Evolution from Initial Condition

By default, lsimplot simulates the model assuming all states are zero at the start of the simulation.
When simulating the response of a state-space model, use the optional x0 input argument to specify
nonzero initial state values. Consider the following two-state SISO state-space model.

A = [-1.5 -3;
 3 -1];
B = [1.3; 0];
C = [1.15 2.3];
D = 0;
sys = ss(A,B,C,D);

Suppose that you want to allow the system to evolve from a known set of initial states with no input
for 2 s, and then apply a unit step change. Specify the vector x0 of initial state values, and create the
input vector.

x0 = [-0.2 0.3];
t = 0:0.05:8;
u = zeros(length(t),1);
u(t>=2) = 1;

 lsimplot

1-1037

First, create a default options set using timeoptions.

plotoptions = timeoptions;

Next change the required properties of the options set plotoptions and plot the simulated
response with the zero order hold option.

plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];
plotoptions.Grid = 'on';
h = lsimplot(sys,u,t,x0,plotoptions,'zoh');
hold on
title('Simulated Time Response with Initial Conditions')

The first half of the plot shows the free evolution of the system from the initial state values [-0.2
0.3]. At t = 2 there is a step change to the input, and the plot shows the system response to this
new signal beginning from the state values at that time. Because plotoptions begins with a fixed
set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

1 Functions

1-1038

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Sparse state-space models, such as sparss or mechss models. Final time tFinal must be
specified when using sparse models.

• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models
requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value to plot
the simulated response.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model.

• Identified LTI models, such as idtf, idss, or idproc models. For identified models, you can also
use the sim command, which can compute the standard deviation of the simulated response and
state trajectories. sim can also simulate all types of models with nonzero initial conditions, and
can simulate nonlinear identified models.

lsimplot does not support frequency-response data models such as frd, genfrd, or idfrd models.

If sys is an array of models, the function plots the responses of all models in the array on the same
axes.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
's' Square
'd' Diamond

 lsimplot

1-1039

Marker Description
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Pentagram
'h' Hexagram

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

u — Input signal for simulation
vector | array

Input signal for simulation, specified as a vector for single-input systems, and an array for multi-input
systems.

• For single-input systems, u is a vector of the same length as t.
• For multi-input systems, u is an array with as many rows as there are time samples (length(t))

and as many columns as there are inputs to sys. In other words, each row u(i,:) represents the
values applied at the inputs of sys at time t(i). Each column u(:,j) is the signal applied to the
jth input of sys.

t — Time samples
vector

Time samples at which to compute the response, specified as a vector of the form 0:dT:Tf. The
lsimplot command interprets t as having the units specified in the TimeUnit property of the
model sys. The time vector must be real, finite, and must contain monotonically increasing and
evenly spaced time samples.

For continuous-time systems, the lsimplot command uses the time step dT to discretize the model.
If dT is too large relative to the system dynamics (undersampling), lsimplot issues a warning
recommending a faster sampling time.

For discrete-time systems, the time step dT must equal the sample time of sys. Alternatively, you can
omit t or set it to []. In that case, lsimplot sets t to a vector of the same length as u that begins at
0 with a time step equal to sys.Ts.

method — Discretization method
'zoh | 'foh'

1 Functions

1-1040

Discretization method for sampling continuous-time models, specified as one of the following.

• 'zoh' — Zero-order hold
• 'foh' — First-order hold

When sys is a continuous-time model, lsimplot computes the time response by discretizing the
model using a sample time equal to the time step dT = t(2)-t(1) of t. If you do not specify a
discretization method, then lsimplot selects the method automatically based on the smoothness of
the signal u. For more information about these two discretization methods, see “Continuous-Discrete
Conversion Methods” (Control System Toolbox).

x0 — Initial state values
vector of zeros (default) | vector

Initial state values for simulating a state-space model, specified as a vector having one entry for each
state in sys. If you omit this argument, then lsim sets all states to zero at t = 0.

AX — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are
Cartesian axes, then stepplot plots on the current axes. Use AX to plot into specific axes when
creating a step plot.

plotoptions — Step plot options set
TimePlotOptions object

Step plot options set, specified as a TimePlotOptions object. You can use this option set to
customize the step plot appearance. Use timeoptions to create the option set. Settings you specify
in plotoptions overrides the preference settings in the MATLAB session in which you run
stepplot. Therefore, plotoptions is useful when you want to write a script to generate multiple
plots that look the same regardless of the local preferences.

For the list of available options, see timeoptions.

Output Arguments
h — Plot handle
handle object

Plot handle, returned as a handle object. Use the handle h to get and set the properties of the
simulated response plot using getoptions and setoptions. For the list of available options, see
the Properties and Values Reference section in “Customizing Response Plots from the Command
Line” (Control System Toolbox).

Version History
Introduced in R2012a

See Also
getoptions | setoptions | lsim | timeoptions

 lsimplot

1-1041

Topics
“Customizing Response Plots from the Command Line” (Control System Toolbox)
“Working with the Linear Simulation Tool” (Control System Toolbox)
“Continuous-Discrete Conversion Methods” (Control System Toolbox)

1 Functions

1-1042

mag2db
Convert magnitude to decibels (dB)

Syntax
ydb = mag2db(y)

Description
ydb = mag2db(y) expresses in decibels (dB) the magnitude measurements specified in y. The
relationship between magnitude and decibels is ydb = 20 ∗ log10(y)

Examples

Display Gain Margins in Decibels

For this example, consider the following SISO feedback loop where the system contains multiple gain
crossover or phase crossover frequencies, which leads to multiple gain or phase margin values:

Create the transfer function.

G = tf(20,[1 7]) * tf([1 3.2 7.2],[1 -1.2 0.8]) * tf([1 -8 400],[1 33 700]);

Use the allmargin command to compute all stability margins.

m = allmargin(G)

m = struct with fields:
 GainMargin: [0.3408 3.3920]
 GMFrequency: [1.9421 16.4807]
 PhaseMargin: 68.1140
 PMFrequency: 7.0776
 DelayMargin: 0.1680
 DMFrequency: 7.0776
 Stable: 1

Note that gain margins are expressed as gain ratios and not in decibels (dB). Use mag2db to convert
the values to dB.

 mag2db

1-1043

GainMargins_dB = mag2db(m.GainMargin)

GainMargins_dB = 1×2

 -9.3510 10.6091

Input Arguments
y — Input array
scalar | vector | matrix | array

Input array, specified as a scalar, vector, matrix, or an array. When y is nonscalar, mag2db is an
element-wise operation.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
ydb — Magnitude measurements in decibels
scalar | vector | matrix | array

Magnitude measurements in decibels, returned as a scalar, vector, matrix, or an array of the same
size as y.

Version History
Introduced in R2008a

See Also
db2mag

1 Functions

1-1044

merge (iddata)
Merge data sets into iddata object

Syntax
dat = merge(dat1,dat2,....,datN)

Description
dat collects the data sets in dat1, ...,datN into one iddata object, with several experiments.
The number of experiments in dat will be the sum of the number of experiments in datk. For the
merging to be allowed, a number of conditions must be satisfied:

• All of datk must have the same number of input channels, and the InputNames must be the
same.

• All of datk must have the same number of output channels, and the OutputNames must be the
same. If some input or output channel is lacking in one experiment, it can be replaced by a vector
of NaNs to conform with these rules.

• If the ExperimentNames of datk have been specified as something other than the default
'Exp1', 'Exp2', etc., they must all be unique. If default names overlap, they are modified so that
dat will have a list of unique ExperimentNames.

The sampling intervals, the number of observations, and the input properties (Period,
InterSample) might be different in the different experiments.

You can retrieve the individual experiments by using the command getexp. You can also retrieve
them by subreferencing with a fourth index.

dat1 = dat(:,:,:,ExperimentNumber)

or

dat1 = dat(:,:,:,ExperimentName)

Storing multiple experiments as one iddata object can be very useful for handling experimental data
that has been collected on different occasions, or when a data set has been split up to remove “bad”
portions of the data. All the toolbox routines accept multiple-experiment data.

Examples

Merge Multiple Data Sets

Remove bad portions of data to estimate models without the bad data destroying the estimate.

load iddemo8;
plot(dat);

 merge (iddata)

1-1045

Bad portions of data are detected around sample 250 to 280 and between samples 600 to 650. Cut
out these bad portions to form a multiple-experiment data set and merge the data.

dat = merge(dat(1:250),dat(281:600),dat(651:1000));

You can use the first two experiments to estimate a model and the third experiment to validate the
model.

dat_est = getexp(dat,[1,2]);
m = ssest(dat_est,2);
dat_val = getexp(dat,3);

Version History
Introduced before R2006a

See Also
iddata | getexp | merge

Topics
“Dealing with Multi-Experiment Data and Merging Models”
“Create Multiexperiment Data at the Command Line”

1 Functions

1-1046

merge
Merge estimated models

Syntax
m = merge(m1,m2,....,mN)
[m,tv] = merge(m1,m2)

Description
m = merge(m1,m2,....,mN) merges estimated models. The models m1,m2,...,mN must all be of
the same structure, just differing in parameter values and covariance matrices. Then m is the merged
model, where the parameter vector is a statistically weighted mean (using the covariance matrices to
determine the weights) of the parameters of mk.

[m,tv] = merge(m1,m2) returns a test variable tv. When two models are merged,

[m, tv] = merge(m1,m2)

tv is χ2 distributed with n degrees of freedom, if the parameters of m1 and m2 have the same means.
Here n is the length of the parameter vector. A large value of tv thus indicates that it might be
questionable to merge the models.

For idfrd models, merge is a statistical average of two responses in the individual models, weighted
using inverse variances. You can only merge two idfrd models with responses at the same
frequencies and nonzero covariances.

Merging models is an alternative to merging data sets and estimating a model for the merged data.

load iddata1 z1;
load iddata2 z2;
m1 = arx(z1,[2 3 4]);
m2 = arx(z2,[2 3 4]);
ma = merge(m1,m2);

and

mb = arx(merge(z1,z2),[2 3 4]);

result in models ma and mb that are related and should be close. The difference is that merging the
data sets assumes that the signal-to-noise ratios are about the same in the two experiments. Merging
the models allows one model to be much more uncertain, for example, due to more disturbances in
that experiment. If the conditions are about the same, we recommend that you merge data rather
than models, since this is more efficient and typically involves better conditioned calculations.

Version History
Introduced in R2007a

 merge

1-1047

See Also
append

1 Functions

1-1048

midprefs
Specify location for file containing System Identification app startup information

Syntax
midprefs
midprefs(path)

Description
The System Identification app allows a large number of variables for customized choices. These
include the window layout, the default choices of plot options, and names and directories of the four
most recent sessions with the System Identification app. This information is stored in the file
idprefs.mat, which should be placed on the user's MATLABPATH. The default, automatic location
for this file is in the same folder as the user's startup.m file.

midprefs is used to select or change the folder where you store idprefs.mat. Either type
midprefs and follow the instructions, or give the folder name as the argument. Include all folder
delimiters, as in the PC case:

midprefs('c:\matlab\toolbox\local\')

or in the UNIX® case”

midprefs('/home/ljung/matlab/')

Version History
Introduced before R2006a

See Also
Apps
System Identification

 midprefs

1-1049

misdata
Reconstruct missing input and output data

Syntax
Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,MaxIterations,Tol)

Description
Datae = misdata(Data) reconstructs missing input and output data. Data is time-domain input-
output data in the iddata object format. Missing data samples (both in inputs and in outputs) are
entered as NaNs. Datae is an iddata object where the missing data has been replaced by reasonable
estimates.

Datae = misdata(Data,Model) specifies a model used for the reconstruction of missing data.
Model is any linear identified model (idtf, idproc, idgrey, idpoly, idss). If no suitable model is
known, it is estimated in an iterative fashion using default order state-space models.

Datae = misdata(Data,MaxIterations,Tol) specifies maximum number of iterations and
tolerance. MaxIterations is the maximum number of iterations carried out (the default is 10). The
iterations are terminated when the difference between two consecutive data estimates differs by less
than Tol%. The default value of Tol is 1.

Examples

Reconstruct Missing Data Using Specified Model

Load data with missing data points.

load('missing_data.mat')

missing_data is an iddata object containing input-output data.

Plot the data.

plot(missing_data)

1 Functions

1-1050

The output data contains missing data between indices 10 and 100.

To reconstruct missing data using a specified model, estimate the model using measured data that
has no missing samples. In this example, estimate a transfer function model with 2 poles.

data2 = missing_data(101:end);
model = tfest(data2,2);

Reconstruct the missing data.

datae = misdata(missing_data,model);

Plot the original and reconstructed data.

plot(missing_data,'b',datae,'--r')

 misdata

1-1051

If you do not specify a model for reconstructing the data, the software alternates between estimating
missing data and estimating models, based on the current data reconstruction.

Algorithms
For a given model, the missing data is estimated as parameters so as to minimize the output
prediction errors obtained from the reconstructed data. See Section 14.2 in Ljung (1999). Treating
missing outputs as parameters is not the best approach from a statistical point of view, but is a good
approximation in many cases.

When no model is given, the algorithm alternates between estimating missing data and estimating
models, based on the current reconstruction.

Version History
Introduced before R2006a

See Also
arx | advice | pexcit | tfest

1 Functions

1-1052

n4sid
Estimate state-space model using subspace method with time-domain or frequency-domain data

Syntax
sys = n4sid(tt,nx)
sys = n4sid(u,y,nx,'Ts',Ts)
sys = n4sid(data,nx)

sys = n4sid(___ ,Name,Value)
sys = n4sid(___ ,opt)

[sys,x0] = n4sid(___)

Description
Estimate State-Space Model

sys = n4sid(tt,nx) estimates a discrete-time state-space model sys of order nx using all the
input and output signals in the timetable tt.

sys is a model of the following form:

ẋ(t) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)

A, B, C, D, and K are state-space matrices. u(t) is the input, y(t) is the output, e(t) is the disturbance,
and x(t) is the vector of nx states.

All entries of A, B, C, and K are free estimable parameters by default. For dynamic systems, D is fixed
to zero by default, meaning that the system has no feedthrough. For static systems (nx = 0), D is an
estimable parameter by default.

You can use this syntax for SISO and MISO systems. The function assumes that the last variable in
the timetable is the single output signal. You can also use this syntax to estimate a time-series model
if tt contains a single variable that represents the sole output.

For MIMO systems and for timetables that contain more variables than you plan to use for estimation,
you must also use name-value arguments to specify the names of the input and output channels you
want. For more information, see tt.

To estimate a continuous-time model, set 'Ts' to 0 using name-value syntax.

sys = n4sid(u,y,nx,'Ts',Ts) uses the time-domain input and output signals in the comma-
separated matrices u,y and the sample time Ts. You can use this syntax for SISO, MISO, and MIMO
systems.

Estimating continuous-time models from matrix-based data is not recommended.

sys = n4sid(data,nx) uses the time-domain or frequency-domain data in the data object data.
Use this syntax especially when you want to estimate a state-space model using frequency-domain or

 n4sid

1-1053

frequency-response data, or when you want to take advantage of the additional information, such as
data sample time or experiment labeling, that data objects provide.

Specify Additional Options

sys = n4sid(___ ,Name,Value) incorporates additional options specified by one or more name-
value pair arguments. For example, to estimate a continuous-time model, specify the sample time
'Ts' as 0. Use the 'Form', 'Feedthrough', and 'DisturbanceModel' name-value pair
arguments to modify the default behavior of the A, B, C, D, and K matrices.

You can use this syntax with any of the previous input-argument com

sys = n4sid(___ ,opt) specifies the estimation options opt. These options can include the initial
states, estimation objective, and subspace algorithm related choices to be used for estimation.
Specify opt after any of the previous input-argument combinations.

Return Estimated Initial States

[sys,x0] = n4sid(___) returns the value of initial states computed during estimation. You can
use this syntax with any of the previous input-argument combinations.

Examples

State-Space Model

Estimate a state-space model and compare its response with the measured output.

Load the input-output data tt1, which is stored in a timetable.

load sdata1.mat tt1

Estimate a fourth-order state-space model.

nx = 4;
sys = n4sid(tt1,nx)

sys =
 Discrete-time identified state-space model:
 x(t+Ts) = A x(t) + B u(t) + K e(t)
 y(t) = C x(t) + D u(t) + e(t)

 A =
 x1 x2 x3 x4
 x1 0.8392 -0.3129 0.02105 0.03743
 x2 0.4768 0.6671 0.1428 0.003757
 x3 -0.01951 0.08374 -0.09761 1.046
 x4 -0.003885 -0.02914 -0.8796 -0.03171

 B =
 u
 x1 0.02635
 x2 -0.03301
 x3 7.256e-05
 x4 0.0005861

 C =

1 Functions

1-1054

 x1 x2 x3 x4
 y 69.08 26.64 -2.237 -0.5601

 D =
 u
 y 0

 K =
 y
 x1 0.003282
 x2 0.009339
 x3 -0.003232
 x4 0.003809

Sample time: 0.1 seconds

Parameterization:
 FREE form (all coefficients in A, B, C free).
 Feedthrough: none
 Disturbance component: estimate
 Number of free coefficients: 28
 Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using N4SID on time domain data "tt1".
Fit to estimation data: 76.33% (prediction focus)
FPE: 1.21, MSE: 1.087

Compare the simulated model response with the measured output.

compare(tt1,sys)

 n4sid

1-1055

The plot shows that the fit percentage between the simulated model and the estimation data is
greater than 70%.

You can view more information about the estimation by exploring the idss property sys.Report.

sys.Report

ans =
 Status: 'Estimated using N4SID with prediction focus'
 Method: 'N4SID'
 InitialState: 'estimate'
 N4Weight: 'CVA'
 N4Horizon: [6 10 10]
 Fit: [1x1 struct]
 Parameters: [1x1 struct]
 OptionsUsed: [1x1 idoptions.n4sid]
 RandState: [1x1 struct]
 DataUsed: [1x1 struct]

For example, find out more information about the estimated initial state.

sys.Report.Parameters.X0

ans = 4×1

 -0.0085
 0.0052

1 Functions

1-1056

 -0.0193
 0.0282

Determine Optimal Estimated Model Order

Load the input-output data z1, which is stored in an iddata object.

load iddata1 z1

Determine the optimal model order by specifying argument nx as a range from 1 to 10.

nx = 1:10;
sys = n4sid(z1,nx);

An automatically generated plot shows the Hankel singular values for models of the orders specified
by nx.

States with relatively small Hankel singular values can be safely discarded. The suggested default
order choice is 2.

Select the model order in the Chosen Order list and click Apply.

Specify Estimation Options

Load estimation data.

load iddata2 z2

Specify estimation options. Set the weighting scheme 'N4Weight' to 'SSARX' and estimation-status
display option 'Display' to 'on'.

 n4sid

1-1057

opt = n4sidOptions('N4Weight','SSARX','Display','on')

Option set for the n4sid command:

 InitialState: 'estimate'
 N4Weight: 'SSARX'
 N4Horizon: 'auto'
 Display: 'on'
 InputInterSample: 'auto'
 InputOffset: []
 OutputOffset: []
 EstimateCovariance: 1
 OutputWeight: []
 Focus: 'prediction'
 WeightingFilter: []
 EnforceStability: 0
 Advanced: [1x1 struct]

Estimate a third-order state-space model using the updated option set.

nx = 3;
sys = n4sid(z2,nx,opt);

Modify Form, Feedthrough, and Disturbance-Model Matrices

Modify the canonical form of the A, B, and C matrices, include a feedthrough term in the D matrix,
and eliminate disturbance-model estimation in the K matrix.

Load input-output data and estimate a fourth-order system using the n4sid default options.

load iddata1 z1
sys1 = n4sid(z1,4);

Specify the modal form and compare the A matrix with the default A matrix.

sys2 = n4sid(z1,4,'Form','modal');
A1 = sys1.A

A1 = 4×4

 0.8392 -0.3129 0.0211 0.0374
 0.4768 0.6671 0.1428 0.0038
 -0.0195 0.0837 -0.0976 1.0462
 -0.0039 -0.0291 -0.8796 -0.0317

A2 = sys2.A

A2 = 4×4

 0.7554 0.3779 0 0
 -0.3779 0.7554 0 0
 0 0 -0.0669 0.9542
 0 0 -0.9542 -0.0669

Include a feedthrough term and compare the D matrices.

1 Functions

1-1058

sys3 = n4sid(z1,4,'Feedthrough',1);
D1 = sys1.D

D1 = 0

D3 = sys3.D

D3 = 0.0487

Eliminate disturbance modeling and compare the K matrices.

sys4 = n4sid(z1,4,'DisturbanceModel','none');
K1 = sys1.K

K1 = 4×1

 0.0033
 0.0093
 -0.0032
 0.0038

K4 = sys4.K

K4 = 4×1

 0
 0
 0
 0

Continuous-Time Canonical-Form Model

Estimate a continuous-time canonical-form model.

Load estimation data.

load iddata1 z1

Estimate the model. Set Ts to 0 to specify a continuous model.

nx = 2;
sys = n4sid(z1,nx,'Ts',0,'Form','canonical');

sys is a second-order continuous-time state-space model in the canonical form.

Estimate State-Space Model from Closed-Loop Data

Estimate a state-space model from closed-loop data using the subspace algorithm SSARX. This
algorithm is better at capturing feedback effects than other weighting algorithms.

Generate closed-loop estimation data for a second-order system corrupted by white noise.

 n4sid

1-1059

N = 1000;
K = 0.5;
rng('default');
w = randn(N,1);
z = zeros(N,1);
u = zeros(N,1);
y = zeros(N,1);
e = randn(N,1);
v = filter([1 0.5],[1 1.5 0.7],e);
for k = 3:N
 u(k-1) = -K*y(k-2) + w(k);
 u(k-1) = -K*y(k-1) + w(k);
 z(k) = 1.5*z(k-1) - 0.7*z(k-2) + u(k-1) + 0.5*u(k-2);
 y(k) = z(k) + 0.8*v(k);
end
dat = iddata(y, u, 1);

Specify the weighting scheme 'N4weight' used by the N4SID algorithm. Create two option sets. For
one option set, set 'N4weight' to 'CVA'. For the other option set, set the 'N4weight' to 'SSARX'.

optCVA = n4sidOptions('N4weight','CVA');
optSSARX = n4sidOptions('N4weight','SSARX');

Estimate state-space models using the option sets.

sysCVA = n4sid(dat,2,optCVA);
sysSSARX = n4sid(dat,2,optSSARX);

Compare the fit of the two models with the estimation data.

compare(dat,sysCVA,sysSSARX);

1 Functions

1-1060

As the plot shows, the model estimated using the SSARX algorithm produces a better fit than the
model estimated using the CVA algorithm.

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables.

Estimation data, specified as a uniformly sampled timetable that contains variables representing
input and output channels or, for multiexperiment data, a cell array of timetables.

Use Entire Timetable

If you want to use all the variables in tt as input or output channels, and the variables are organized
so that the set of input channel variables is followed by the set of output channel variables, then:

• For SISO systems, specify tt as an Ns-by-2 timetable, where Ns is the number of samples and the
two timetable variables represent the measured input channel and output channel respectively.

• For MIMO systems, specify tt as an Ns-by-(Nu+Ny) timetable, where Nu is the number of inputs
and Ny is the number of outputs. The first Nu variables must contain the input channels and the
remaining Ny variables must contain the output channels.

When you are estimating state space or transfer function models, you must also explicitly specify
the input and output channels, as the following section describes.

 n4sid

1-1061

• For multiexperiment data, specify data as an Ne-by-1 cell array of timetables, where Ne is the
number of experiments. The sample times of all the experiments must match.

Use Selected Variables from Timetable

If you want to explicitly identify the input and output channels, such as when you want to use only a
subset of the available channels, when the input and output channel variables are intermixed, or
when you are estimating a MIMO state-space or transfer function model, use the 'InputName' and
'OutputName' name-value arguments to specify which variables to use as inputs and outputs.

For example, suppose that tt contains six channel variables: "u1", "u2", "u3", and "y1", "y2",
"y3". For estimation, you want to use the variables "u1" and "u2" as the inputs and the variables
"y1" and "y3" as the outputs. Use the following command to perform the estimation:

sys = n4sid(tt,__,'InputName',["u1" "u2"],'OutputName',["y1" "y3"])

Use Timetable to Estimate Time Series Models

If you want to estimate a time series model rather than an input/output model, use only output
variables from tt. You can either specify tt to contain only the output variables that you want, or
extract the output variables from tt if tt also contains input variables. The specification approach is
similar to that for input/output model estimation.

• For a single-output system, specify tt as an Ns-by-1 timetable.
• For a multivariate system, specify tt as an Ns-by-(Ny) timetable. Even if you plan to use all the

variables in tt, you must specify all of them using the 'OutputName' name-value argument so
that the software does not interpret them as input variables.

For a timetable tt that has variables beyond what you want to use, such as input variables or
additional output variables, specify both the output variables you want to use and, in 'InputName',
an empty array.

For example, suppose that tt contains six variables: "u1", "u2", "u3", and "y1", "y2", "y3". For
time series estimation, you want to use the output variables "y1" and "y3". Use the following
command to perform the estimation:

sys = n4sid(tt,__,'OutputName',["y1" "y3"],'InputName',[])

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

1 Functions

1-1062

For time series data, which contains only outputs and no inputs, specify y only.

Limitations

• Matrix-based data does not support estimation from frequency-domain data. You must use a data
object such as an iddata object or idfrd object (see data).

• Using matrices for estimation data is not recommended for continuous-time estimation because
the data does not provide the sample time. The software assumes that the data is sampled at 1 Hz.
For continuous-time estimation, it is recommended that you convert each matrix to a timetable.
For example, to convert the matrices um and ym to a timetable tt with a sample time of 0.5
minutes, use the following command.

tt = timetable(um,ym,'rowtimes',minutes(0.5*(1:size(u,1))))

For a more detailed example of converting matrix-based SISO data to a timetable, see “Convert
SISO Matrix Data to Timetable”. For an example of converting a MIMO matrix pair to a timetable,
see “Convert MIMO Matrix Data to Timetable for Continuous-Time Model Estimation”.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data
iddata object | frd object | idfrd object

Estimation data, specified as an iddata object, an frd object, or an idfrd object.

For time-domain estimation, data must be an iddata object containing the input and output signal
values.

For frequency-domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)
• iddata object with properties specified as follows.

• InputData — Fourier transform of the input signal
• OutputData — Fourier transform of the output signal
• Domain — 'Frequency'

Estimation data must be uniformly sampled. By default, the software sets the sample time of the
model to the sample time of the estimation data.

For multiexperiment data, the sample times and intersample behavior of all the experiments must
match.

The domain of your data determines the type of model you can estimate.

• Time-domain or discrete-time frequency-domain data — Continuous-time and discrete-time models
• Continuous-time frequency-domain data — Continuous-time models only

nx — Order of estimated model
1:10 (default) | positive integer scalar | positive integer vector | best | 0

Order of the estimated model, specified as a nonnegative integer or as a vector containing a range of
positive integers.

 n4sid

1-1063

• If you already know what order you want your estimated model to have, specify nx as a scalar.
• If you want to compare a range of potential orders to choose the most effective order for your

estimated model, specify that range for nx. n4sid creates a Hankel singular-value plot that shows
the relative energy contributions of each state in the system. States with relatively small Hankel
singular values contribute little to the accuracy of the model and can be discarded with little
impact. The index of the highest state you retain is the model order. The plot window includes a
suggestion for the order to use. You can accept this suggestion or enter a different order. For an
example, see “Determine Optimal Estimated Model Order” on page 1-1057.

If you do not specify nx, or if you specify nx as best, the software automatically chooses nx from
the range 1:10.

• If you are identifying a static system, set nx to 0.

opt — Estimation options
n4sidOptions option set

Estimation options, specified as an n4sidOptions option set. Options specified by opt include:

• Estimation objective
• Handling of initial conditions
• Subspace algorithm-related choices

For examples showing how to specify options, see “Specify Estimation Options” on page 1-1057 and
“Continuous-Time Canonical-Form Model” on page 1-1059.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: sys = n4sid(data,nx,'Form','modal')

Ts — Sample time of estimated model
sample time of data (data.Ts) (default) | 0 | positive scalar

Sample time of the estimated model, specified as the comma-separated pair consisting of 'Ts' and
either 0 or a positive scalar.

• For continuous-time models, specify 'Ts' as 0. In the frequency domain, using continuous-time
frequency-domain data results in a continuous-time model.

• For discrete-time models, the software sets 'Ts' to the sample time of the data in the units stored
in the TimeUnit property.

InputDelay — Input delays
0 (default) | scalar | vector

Input delay for each input channel, specified as the comma-separated pair consisting of
'InputDelay' and a numeric vector.

• For continuous-time models, specify 'InputDelay' in the time units stored in the TimeUnit
property.

1 Functions

1-1064

• For discrete-time models, specify 'InputDelay' in integer multiples of the sample time Ts. For
example, setting 'InputDelay' to 3 specifies a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

To apply the same delay to all channels, specify 'InputDelay' as a scalar.

Form — Type of canonical form
'free' (default) | 'modal' | 'companion' | 'canonical'

Type of canonical form of sys, specified as the comma-separated pair consisting of 'Form' and one
of the following values:

• 'free' — Treat all entries of the matrices A, B, C, D, and K as free.
• 'modal' — Obtain sys in modal form.
• 'companion' — Obtain sys in companion form.
• 'canonical' — Obtain sys in the observability canonical form.

For definitions of the canonical forms, see “State-Space Realizations”.

For more information about using these forms for identification, see “Estimate State-Space Models
with Canonical Parameterization”.

For an example, see “Modify Form, Feedthrough, and Disturbance-Model Matrices” on page 1-1058.

Feedthrough — Direct feedthrough from input to output
0 (default) | 1 | logical vector

Direct feedthrough from input to output, specified as the comma-separated pair consisting of
'Feedthrough' and a logical vector of length Nu, where Nu is the number of inputs. If you specify
'Feedthrough' as a logical scalar, that value is applied to all the inputs. For static systems, the
software always assumes 'Feedthrough' is 1.

For an example, see “Modify Form, Feedthrough, and Disturbance-Model Matrices” on page 1-1058.

DisturbanceModel — Option to estimate time-domain noise component parameters
'estimate' | 'none'

Option to estimate time-domain noise component parameters in the K matrix, specified as the comma-
separated pair consisting of 'DisturbanceModel' and one of the following values:

• 'estimate' — Estimate the noise component. The K matrix is treated as a free parameter. For
time-domain data, 'estimate' is the default.

• 'none' — Do not estimate the noise component. The elements of the K matrix are fixed at zero.
For frequency-domain data, 'none' is the default and the only acceptable value.

For an example, see “Modify Form, Feedthrough, and Disturbance-Model Matrices” on page 1-1058.

Output Arguments
sys — Identified state-space model
idss model

 n4sid

1-1065

Identified state-space model, returned as an idss model. This model is created using the specified
model orders, delays, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialSt
ate

How initial states were handled during estimation, returned as one of the following
values:

• 'zero' — The initial state is set to zero.
• 'estimate' — The initial state is treated as an independent estimation parameter.

This field is especially useful when the 'InitialState' option in the estimation
option set is 'auto'.

N4Weight Weighting scheme used for singular-value decomposition by the N4SID algorithm,
returned as one of the following values:

• 'MOESP' — Uses the MOESP algorithm.
• 'CVA' — Uses the Canonical Variate Algorithm.
• 'SSARX' — A subspace identification method that uses an ARX estimation-based

algorithm to compute the weighting.

This option is especially useful when the N4Weight option in the estimation option set
is 'auto'.

N4Horizon Forward and backward prediction horizons used by the N4SID algorithm, returned as a
row vector with three elements [r sy su], where r is the maximum forward
prediction horizon, sy is the number of past outputs, and su is the number of past
inputs that are used for the predictions.

1 Functions

1-1066

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If you did not configure any custom options,
OptionsUsed is the set of default options. See n4sidOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

 n4sid

1-1067

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

x0 — Initial states computed during estimation
column vector | matrix

Initial states computed during the estimation, returned as an array containing a column vector
corresponding to each experiment.

This array is also stored in the Parameters field of the model Report property.

Version History
Introduced before R2006a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

References
[1] Ljung, L. System Identification: Theory for the User, Appendix 4A, Second Edition, pp. 132–134.

Upper Saddle River, NJ: Prentice Hall PTR, 1999.

1 Functions

1-1068

[2] van Overschee, P., and B. De Moor. Subspace Identification of Linear Systems: Theory,
Implementation, Applications. Springer Publishing: 1996.

[3] Verhaegen, M. "Identification of the deterministic part of MIMO state space models." Automatica,
1994, Vol. 30, pp. 61–74.

[4] Larimore, W.E. "Canonical variate analysis in identification, filtering and adaptive control."
Proceedings of the 29th IEEE Conference on Decision and Control, 1990, pp. 596–604.

[5] McKelvey, T., H. Akcay, and L. Ljung. "Subspace-based multivariable system identification from
frequency response data." IEEE Transactions on Automatic Control, 1996, Vol. 41, pp. 960–
979.

See Also
n4sidOptions | idss | ssest | tfest | procest | polyest | iddata | idfrd | idgrey | canon |
pem

Topics
“What Are State-Space Models?”
“Estimate State-Space Models at the Command Line”
“State-Space Model Estimation Methods”
“Estimate State-Space Models with Canonical Parameterization”

 n4sid

1-1069

n4sidOptions
Option set for n4sid

Syntax
opt = n4sidOptions
opt = n4sidOptions(Name,Value)

Description
opt = n4sidOptions creates the default options set for n4sid.

opt = n4sidOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialState — Handling of initial states
'estimate' (default) | 'zero'

Handling of initial states during estimation, specified as one of the following values:

• 'zero' — The initial state is set to zero.
• 'estimate' — The initial state is treated as an independent estimation parameter.

N4Weight — Weighting scheme used for singular-value decomposition by the N4SID
algorithm
'auto' (default) | 'MOESP' | 'CVA' | 'SSARX'

Weighting scheme used for singular-value decomposition by the N4SID algorithm, specified as one of
the following values:

• 'MOESP' — Uses the MOESP algorithm by Verhaegen [2].
• 'CVA' — Uses the Canonical Variate Algorithm by Larimore [1].

Estimation using frequency-domain data always uses 'CVA'.
• 'SSARX' — A subspace identification method that uses an ARX estimation based algorithm to

compute the weighting.

Specifying this option allows unbiased estimates when using data that is collected in closed-loop
operation. For more information about the algorithm, see [4].

1 Functions

1-1070

• 'auto' — The estimating function chooses between the MOESP, CVA and SSARX algorithms.

N4Horizon — Forward- and backward-prediction horizons used by the N4SID algorithm
'auto' (default) | vector [r sy su] | k-by-3 matrix

Forward- and backward-prediction horizons used by the N4SID algorithm, specified as one of the
following values:

• A row vector with three elements — [r sy su], where r is the maximum forward prediction
horizon, using up to r step-ahead predictors. sy is the number of past outputs, and su is the
number of past inputs that are used for the predictions. See pages 209 and 210 in [3] for more
information. These numbers can have a substantial influence on the quality of the resulting model,
and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix means
that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to data is
selected. k is the number of guesses of [r sy su] combinations. If you specify N4Horizon as a
single column, r = sy = su is used.

• 'auto' — The software uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

 n4sidOptions

1-1071

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

• Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputInterSample — Input-channel intersample behavior
'auto' | 'zoh' | 'foh' | 'bl'

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata

1 Functions

1-1072

object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weighting of prediction errors in multi-output estimations
[] (default) | 'noise' | positive semidefinite symmetric matrix

Weighting of prediction errors in multi-output estimations, specified as one of the following values:

• 'noise' — Minimize det(E′ * E/N), where E represents the prediction error and N is the number
of data samples. This choice is optimal in a statistical sense and leads to the maximum likelihood
estimates in case no data is available about the variance of the noise. This option uses the inverse
of the estimated noise variance as the weighting function.

• Positive semidefinite symmetric matrix (W) — Minimize the trace of the weighted prediction error
matrix trace(E'*E*W/N) where:

• E is the matrix of prediction errors, with one column for each output. W is the positive
semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-output models, or the reliability of corresponding
data.

• N is the number of data samples.
• [] — The software chooses between the 'noise' or using the identity matrix for W.

This option is relevant only for multi-output models.

Advanced — Additional advanced options
structure

 n4sidOptions

1-1073

Additional advanced options, specified as a structure with the field MaxSize. MaxSize specifies the
maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

Output Arguments
opt — Option set for n4sid
n4sidOptions option set

Option set for n4sid, returned as an n4sidOptions option set.

Examples

Create Default Options Set for State-Space Estimation Using Subspace Method

opt = n4sidOptions;

Specify Options for State-Space Estimation Using Subspace Method

Create an options set for n4sid using the 'zero' option to initialize the state. Set the Display to
'on'.

opt = n4sidOptions('InitialState','zero','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = n4sidOptions;
opt.InitialState = 'zero';
opt.Display = 'on';

Version History
Introduced in R2012a

InputInterSample option allows intersample behavior specification for continuous models
estimated from timetables or matrices.

iddata objects contain an InterSample property that describes the behavior of the signal between
sample points. The InputInterSample option implements a version of that property in
n4sidOptions so that intersample behavior can be specified also when estimation data is stored in
timetables or matrices.

Renaming of Estimation and Analysis Options

1 Functions

1-1074

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References
[1] Larimore, W.E. “Canonical variate analysis in identification, filtering and adaptive control.”

Proceedings of the 29th IEEE Conference on Decision and Control, pp. 596–604, 1990.

[2] Verhaegen, M. “Identification of the deterministic part of MIMO state space models.” Automatica,
Vol. 30, 1994, pp. 61–74.

[3] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

[4] Jansson, M. “Subspace identification and ARX modeling.” 13th IFAC Symposium on System
Identification, Rotterdam, The Netherlands, 2003.

See Also
n4sid | idpar | idfilt

Topics
“Loss Function and Model Quality Metrics”

 n4sidOptions

1-1075

ndims
Query number of dimensions of dynamic system model or model array

Syntax
n = ndims(sys)

Description
n = ndims(sys) is the number of dimensions of a dynamic system model or a model array sys. A
single model has two dimensions (one for outputs, and one for inputs). A model array has 2 + p
dimensions, where p ≥ 2 is the number of array dimensions. For example, a 2-by-3-by-4 array of
models has 2 + 3 = 5 dimensions.

ndims(sys) = length(size(sys))

Examples

Determine Dimensions of Model Array

Create a 3-by-1 array of random state-space models, each with 4 states, 1 input, and 1 output.

sys = rss(4,1,1,3);

Compute the number of dimensions of the model array.

ndims(sys)

ans = 4

The number of dimensions is 2+p, where p is the number of array dimensions. In this example, p is 2
because sys is 3-by-1.

Version History
Introduced in R2012a

See Also
size

1 Functions

1-1076

nkshift
Shift data sequences

Syntax
Datas = nkshift(Data,nk)

Description
Data contains input-output data in the iddata format.

nk is a row vector with the same length as the number of input channels in Data.

Datas is an iddata object where the input channels in Data have been shifted according to nk. A
positive value of nk(ku) means that input channel number ku is delayed nk(ku) samples.

nkshift supports both frequency- and time-domain data. For frequency-domain data it multiplies
with einkωT to obtain the same effect as shifting in the time domain. For continuous-time frequency-
domain data (Ts = 0), nk should be interpreted as the shift in seconds.

nkshift lives in symbiosis with the InputDelay property of linear identified models:

m1 = ssest(dat,4,'InputDelay',nk)

is related to

m2 = ssest(nkshift(dat,nk),4);

such that m1 and m2 are the same models, but m1 stores the delay information and uses this
information when computing the frequency response, for example. When using m2, the delay value
must be accounted for separately when computing time and frequency responses.

Version History
Introduced before R2006a

See Also
idpoly | absorbDelay | delayest | idss

 nkshift

1-1077

nlarx
Estimate parameters of nonlinear ARX model

Syntax
sys = nlarx(data,orders)
sys = nlarx(data,regressors)
sys = nlarx(___ ,output_fcn)

sys = nlarx(data,linmodel)
sys = nlarx(data,linmodel,output_fcn)

sys = nlarx(data,sys0)

sys = nlarx(___ ,Options)

Description
Specify Regressors

sys = nlarx(data,orders) estimates a nonlinear ARX model to fit the given estimation data
using the specified ARX model orders and the default wavelet network output function. data can be
in the form of a timetable, a comma-separated pair of numeric matrices, a single numeric matrix,
or a data object. Use this syntax when you extend an ARX linear model, or when you use only
regressors that are linear with consecutive lags.

sys = nlarx(data,regressors) estimates a nonlinear ARX model using the specified regressor
set regressors. Use this syntax when you have linear regressors that have non-consecutive lags, or
when you also have any combination of polynomial regressors, periodic regressors, and custom
regressors.

sys = nlarx(___ ,output_fcn) specifies the output function that maps the regressors to the
model output. You can use this syntax with any of the previous input argument combinations.

Specify Linear Model

sys = nlarx(data,linmodel) uses a linear ARX model linmodel to specify the model orders
and the initial values of the linear coefficients of the model. Use this syntax when you want to create
a nonlinear ARX model as an extension of, or an improvement upon, an existing linear model. When
you use this syntax, the software initializes the offset value to 0. In some cases, you can improve the
estimation results by overriding this initialization with the command
sys.OutputFcn.Offset.Value = NaN.

sys = nlarx(data,linmodel,output_fcn) specifies the output function to use for model
estimation.

Refine Existing Model

sys = nlarx(data,sys0) estimates or refines the parameters of the nonlinear ARX model sys0.

Use this syntax to:

1 Functions

1-1078

• Estimate the parameters of a model previously created using the idnlarx constructor. Prior to
estimation, you can configure the model properties using dot notation.

• Update the parameters of a previously estimated model to improve the fit to the estimation data.
In this case, the estimation algorithm uses the parameters of sys0 as initial guesses.

Specify Options

sys = nlarx(___ ,Options) specifies additional configuration options for the model estimation.

Examples

Estimate Nonlinear ARX Model

Load the estimation data.

load twotankdata;

Create an iddata object from the estimation data with a sample time of 0.2 seconds.

Ts = 0.2;
z = iddata(y,u,Ts);

Estimate the nonlinear ARX model using ARX model orders to specify the regressors.

sysNL = nlarx(z,[4 4 1])

sysNL =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Wavelet network with 11 units
Sample time: 0.2 seconds

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 96.84% (prediction focus)
FPE: 3.482e-05, MSE: 3.431e-05
More information in model's "Report" property.

sys uses the default idWaveletNetwork function as the output function.

For comparison, compute a linear ARX model with the same model orders.

sysL = arx(z,[4 4 1]);

Compare the model outputs with the original data.

compare(z,sysNL,sysL)

 nlarx

1-1079

The nonlinear model has a much better fit to the data than the linear model.

Estimate Nonlinear ARX Model Using Linear Regressor Set

Specify a linear regressor that is equivalent to an ARX model order matrix of [4 4 1].

An order matrix of [4 4 1] specifies that both input and output regressor sets contain four
regressors with lags ranging from 1 to 4. For example, u1 t − 2 represents the second input
regressor.

Specify the output and input names.

output_name = 'y1';
input_name = 'u1';
names = {output_name,input_name};

Specify the output and input lags.

output_lag = [1 2 3 4];
input_lag = [1 2 3 4];
lags = {output_lag,input_lag};

Create the linear regressor object.

lreg = linearRegressor(names,lags)

1 Functions

1-1080

lreg =
Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1 2 3 4] [1 2 3 4]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

 Regressors described by this set

Load the estimation data and create an iddata object.

load twotankdata
z = iddata(y,u,0.2);

Estimate the nonlinear ARX model.

sys = nlarx(z,lreg)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Wavelet network with 11 units
Sample time: 0.2 seconds

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 96.84% (prediction focus)
FPE: 3.482e-05, MSE: 3.431e-05
More information in model's "Report" property.

View the regressors

getreg(sys)

ans = 8x1 cell
 {'y1(t-1)'}
 {'y1(t-2)'}
 {'y1(t-3)'}
 {'y1(t-4)'}
 {'u1(t-1)'}
 {'u1(t-2)'}
 {'u1(t-3)'}
 {'u1(t-4)'}

Compare the model output to the estimation data.

compare(z,sys)

 nlarx

1-1081

Estimate Nonlinear ARX Model from Time Series Data

Create time and data arrays.

dt = 0.01;
t = 0:dt:10;
y = 10*sin(2*pi*t)+rand(size(t));

Create an iddata object with no input signal specified.

z = iddata(y',[],dt);

Estimate the nonlinear ARX model.

sys = nlarx(z,2)

sys =

Nonlinear time series model
 Outputs: y1

Regressors:
 Linear regressors in variables y1

Output function: Wavelet network with 8 units

1 Functions

1-1082

Sample time: 0.01 seconds

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 92.92% (prediction focus)
FPE: 0.2568, MSE: 0.2507
More information in model's "Report" property.

Specify and Customize Output Function

Estimate a nonlinear ARX model that uses the mapping function idSigmoidNetwork as its output
function.

Load the data and divide it into the estimation and validation data sets ze and zv.

load twotankdata.mat u y
z = iddata(y,u,'Ts',0.2);
ze = z(1:1500);
zv = z(1501:end);

Configure the idSigmoidNetwork mapping function. Fix the offset to 0.2 and the number of units to
15.

s = idSigmoidNetwork;
s.Offset.Value = 0.2;
s. NonlinearFcn.NumberOfUnits = 15;

Create a linear model regressor specification that contains four output regressors and five input
regressors.

reg1 = linearRegressor({'y1','u1'},{1:4,0:4});

Create a polynomial model regressor specification that contains the squares of two output terms and
three input terms.

reg2 = polynomialRegressor({'y1','u1'},{1:2,0:2},2);

Set estimation options for the search method and maximum number of iterations.

opt = nlarxOptions('SearchMethod','fmincon')';
opt.SearchOptions.MaxIterations = 40;

Estimate the nonlinear ARX model.

sys = nlarx(ze,[reg1;reg2],s,opt);

Validate sys by comparing the simulated model response to the validation data set.

compare(zv,sys)

 nlarx

1-1083

Add Output Function to Extend and Improve Linear Model

Estimate a linear model and improve the model by adding an idTreePartition output function.

Load the estimation data.

load throttledata ThrottleData

Estimate a linear ARX model linsys with orders [2 2 1].

linsys = arx(ThrottleData,[2 2 1]);

Create an idnlarx template model that uses linsys and specifies idTreePartition as the output
function.

sys0 = idnlarx(linsys,idTreePartition);

Fix the linear component of sys0 so that during estimation, the linear portion of sys0 remains
identical to linsys. Set the offset component value to NaN.

sys0.OutputFcn.LinearFcn.Free = false;
sys0.OutputFcn.Offset.Value = NaN;

Estimate the free parameters of sys0, which are the nonlinear-function parameters and the offset.

1 Functions

1-1084

sys = nlarx(ThrottleData,sys0);

Compare the fit accuracies for the linear and nonlinear models.

compare(ThrottleData,linsys,sys)

Estimate Nonlinear ARX Model Using Custom Network Mapping Object

Generating a custom network mapping object requires the definition of a user-defined unit function.

Define the unit function and save it as gaussunit.m.

function [f,g,a] = gaussunit(x)
% Custom unit function nonlinearity.
%
% Copyright 2015 The MathWorks, Inc.
f = exp(-x.*x);
if nargout>1
 g = -2*x.*f;
 a = 0.2;
end

Create a custom network mapping object using a handle to the gaussunit function.

 nlarx

1-1085

H = @gaussunit;
CNet = idCustomNetwork(H);

Load the estimation data.

load iddata1

Estimate a nonlinear ARX model using the custom network.

sys = nlarx(z1,[1 2 1],CNet)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Custom Network with 10 units and "gaussunit" unit function
Sample time: 0.1 seconds

Status:
Termination condition: Maximum number of iterations reached..
Number of iterations: 20, Number of function evaluations: 613

Estimated using NLARX on time domain data "z1".
Fit to estimation data: 64.35% (prediction focus)
FPE: 3.58, MSE: 2.465
More information in model's "Report" property.

Estimate MIMO Nonlinear ARX Model

Load the estimation data.

load motorizedcamera;

Create an iddata object.

z = iddata(y,u,0.02,'Name','Motorized Camera','TimeUnit','s');

z is an iddata object with six inputs and two outputs.

Specify the model orders.

Orders = [ones(2,2),2*ones(2,6),ones(2,6)];

Specify different mapping functions for each output channel.

NL = [idWaveletNetwork(2),idLinear];

Estimate the nonlinear ARX model.

sys = nlarx(z,Orders,NL)

1 Functions

1-1086

sys =

Nonlinear ARX model with 2 outputs and 6 inputs
 Inputs: u1, u2, u3, u4, u5, u6
 Outputs: y1, y2

Regressors:
 Linear regressors in variables y1, y2, u1, u2, u3, u4, u5, u6

Output functions:
 Output 1: Wavelet network with 2 units
 Output 2: Linear with offset

Sample time: 0.02 seconds

Status:
Termination condition: Maximum number of iterations reached..
Number of iterations: 20, Number of function evaluations: 710

Estimated using NLARX on time domain data "Motorized Camera".
Fit to estimation data: [98.82;98.77]% (prediction focus)
FPE: 0.4839, MSE: 0.9762
More information in model's "Report" property.

Estimate MIMO Nonlinear ARX Model with Same Mapping Function for All Outputs

Load the estimation data and create an iddata object z. z contains two output channels and six
input channels.

load motorizedcamera;
z = iddata(y,u,0.02);

Specify a set of linear regressors that uses the output and input names from z and contains:

• 2 output regressors with 1 lag.
• 6 input regressor pairs with 1 and 2 lags.

names = [z.OutputName; z.InputName];
lags = {1,1,[1,2],[1,2],[1,2],[1,2],[1,2],[1,2]};
reg = linearRegressor(names,lags);

Estimate a nonlinear ARX model using an idSigmoidNetwork mapping function with four units for
all output channels.

sys = nlarx(z,reg,idSigmoidNetwork(4))

sys =

Nonlinear ARX model with 2 outputs and 6 inputs
 Inputs: u1, u2, u3, u4, u5, u6
 Outputs: y1, y2

Regressors:
 Linear regressors in variables y1, y2, u1, u2, u3, u4, u5, u6

 nlarx

1-1087

Output functions:
 Output 1: Sigmoid network with 4 units
 Output 2: Sigmoid network with 4 units

Sample time: 0.02 seconds

Status:
Termination condition: Maximum number of iterations reached..
Number of iterations: 20, Number of function evaluations: 177

Estimated using NLARX on time domain data "z".
Fit to estimation data: [98.86;98.79]% (prediction focus)
FPE: 2.641, MSE: 0.9233
More information in model's "Report" property.

Specify Linear, Polynomial, and Custom Regressors

Load the estimation data z1, which has one input and one output, and obtain the output and input
names.

load iddata1 z1;
names = [z1.OutputName z1.InputName]

names = 1x2 cell
 {'y1'} {'u1'}

Specify L as the set of linear regressors that represents y1 t − 1 , u1 t − 2 , and u1 t − 5 .

L = linearRegressor(names,{1,[2 5]});

Specify P as the polynomial regressor y1 t − 1 2.

P = polynomialRegressor(names(1),1,2);

Specify C as the custom regressor y1 t − 2 u1 t − 3 . Use an anonymous function handle to define this
function.

C = customRegressor(names,{2 3},@(x,y)x.*y)

C =
Custom regressor: y1(t-2).*u1(t-3)
 VariablesToRegressorFcn: @(x,y)x.*y
 Variables: {'y1' 'u1'}
 Lags: {[2] [3]}
 Vectorized: 1
 TimeVariable: 't'

 Regressors described by this set

Combine the regressors in the column vector R.

R = [L;P;C]

R =
[3 1] array of linearRegressor, polynomialRegressor, customRegressor objects.

1 Functions

1-1088

1. Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1] [2 5]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

2. Order 2 regressors in variables y1
 Order: 2
 Variables: {'y1'}
 Lags: {[1]}
 UseAbsolute: 0
 AllowVariableMix: 0
 AllowLagMix: 0
 TimeVariable: 't'

3. Custom regressor: y1(t-2).*u1(t-3)
 VariablesToRegressorFcn: @(x,y)x.*y
 Variables: {'y1' 'u1'}
 Lags: {[2] [3]}
 Vectorized: 1
 TimeVariable: 't'

Regressors described by this set

Estimate a nonlinear ARX model with R.

sys = nlarx(z1,R)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 1. Linear regressors in variables y1, u1
 2. Order 2 regressors in variables y1
 3. Custom regressor: y1(t-2).*u1(t-3)

Output function: Wavelet network with 1 units
Sample time: 0.1 seconds

Status:
Estimated using NLARX on time domain data "z1".
Fit to estimation data: 59.73% (prediction focus)
FPE: 3.356, MSE: 3.147
More information in model's "Report" property.

View the full regressor set.

getreg(sys)

ans = 5x1 cell
 {'y1(t-1)' }
 {'u1(t-2)' }

 nlarx

1-1089

 {'u1(t-5)' }
 {'y1(t-1)^2' }
 {'y1(t-2).*u1(t-3)'}

Estimate Nonlinear ARX Model with No Linear Term in Output Function

Load the estimation data.

load iddata1;

Create a sigmoid network mapping object with 10 units and no linear term.

SN = idSigmoidNetwork(10,false);

Estimate the nonlinear ARX model. Confirm that the model does not use the linear function.

sys = nlarx(z1,[2 2 1],SN);
sys.OutputFcn.LinearFcn.Use

ans = logical
 0

Specify Nonlinear ARX Orders and Linear Parameters Using Linear ARX Model

Load the estimation data.

load throttledata;

Detrend the data.

Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData,Tr);

Estimate the linear ARX model.

LinearModel = arx(DetrendedData,[2 1 1]);

Estimate the nonlinear ARX model using the linear model. The model orders, delays, and linear
parameters of NonlinearModel are derived from LinearModel.

NonlinearModel = nlarx(ThrottleData,LinearModel)

NonlinearModel =

Nonlinear ARX model with 1 output and 1 input
 Inputs: Step Command
 Outputs: Throttle Valve Position

Regressors:
 Linear regressors in variables Throttle Valve Position, Step Command

1 Functions

1-1090

Output function: Wavelet network with 7 units
Sample time: 0.01 seconds

Status:
Estimated using NLARX on time domain data "ThrottleData".
Fit to estimation data: 99.03% (prediction focus)
FPE: 0.1127, MSE: 0.1039
More information in model's "Report" property.

Estimate Nonlinear ARX Model Using Constructed idnlarx Object

Load the estimation data.

load iddata1;

Create an idnlarx model.

sys = idnlarx([2 2 1]);

Configure the model using dot notation to:

• Use a sigmoid network mapping object.
• Assign a name.

sys.Nonlinearity = 'idSigmoidNetwork';
sys.Name = 'Model 1';

Estimate a nonlinear ARX model with the structure and properties specified in the idnlarx object.

sys = nlarx(z1,sys)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Sigmoid network with 10 units
Name: Model 1
Sample time: 0.1 seconds

Status:
Termination condition: Maximum number of iterations reached..
Number of iterations: 20, Number of function evaluations: 353

Estimated using NLARX on time domain data "z1".
Fit to estimation data: 69.03% (prediction focus)
FPE: 2.918, MSE: 1.86
More information in model's "Report" property.

 nlarx

1-1091

Estimate Nonlinear ARX Model and Avoid Local Minima

If an estimation stops at a local minimum, you can perturb the model using init and re-estimate the
model.

Load the estimation data.

load iddata1;

Estimate the initial nonlinear model.

sys1 = nlarx(z1,[4 2 1],'idSigmoidNetwork');

Randomly perturb the model parameters to avoid local minima.

sys2 = init(sys1);

Estimate the new nonlinear model with the perturbed values.

sys2 = nlarx(z1,sys1);

Estimate Nonlinear ARX Model Using Specific Options

Load the estimation data.

load twotankdata;

Create an iddata object from the estimation data.

z = iddata(y,u,0.2);

Create an nlarxOptions option set specifying a simulation error minimization objective and a
maximum of 10 estimation iterations.

opt = nlarxOptions;
opt.Focus = 'simulation';
opt.SearchOptions.MaxIterations = 10;

Estimate the nonlinear ARX model.

sys = nlarx(z,[4 4 1],idSigmoidNetwork(3),opt)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Linear regressors in variables y1, u1

Output function: Sigmoid network with 3 units
Sample time: 0.2 seconds

Status:
Termination condition: Maximum number of iterations reached..

1 Functions

1-1092

Number of iterations: 10, Number of function evaluations: 114

Estimated using NLARX on time domain data "z".
Fit to estimation data: 85.86% (simulation focus)
FPE: 3.791e-05, MSE: 0.0006853
More information in model's "Report" property.

Estimate Regularized Nonlinear ARX Model with Large Number of Units

Load the regularization example data.

load regularizationExampleData.mat nldata;

Create an idSigmoidnetwork mapping object with 30 units and specify the model orders.

MO = idSigmoidNetwork(30);
Orders = [1 2 1];

Create an estimation option set and set the estimation search method to lm.

opt = nlarxOptions('SearchMethod','lm');

Estimate an unregularized model.

sys = nlarx(nldata,Orders,MO,opt);

Configure the regularization Lambda parameter.

opt.Regularization.Lambda = 1e-8;

Estimate a regularized model.

sysR = nlarx(nldata,Orders,MO,opt);

Compare the two models.

compare(nldata,sys,sysR)

 nlarx

1-1093

The large negative fit result for the unregularized model indicates a poor fit to the data. Estimating a
regularized model produces a significantly better result.

Estimate Nonlinear ARX Model Using Optimal Subset of Regressors

Load the estimation data.

load twotankdata y u

Create an iddata object from the data. Use the first 1000 samples for estimation and the remaining
samples for validation.

Ts = 0.2;
z = iddata(y,u,Ts);
ze = z(1:1000);
zv = z(1001:end);

Create an nlarxOptions option set. Specify a simulation error minimization objective, 'lm' least
squares search, and a maximum of 10 estimation iterations. Display progress during estimation.

opt = nlarxOptions('Focus','simulation','SearchMethod','lm','Display','on');
opt.SearchOptions.MaxIterations = 10;

1 Functions

1-1094

Estimate a nonlinear ARX model, using ARX model orders to specify the regressors and an
idSigmoidNetwork mapping function. The model uses all candidate regressors. To view regressor
usage information, at the MATLAB® command prompt, enter sys.RegressorUsage.

orders = [8 8 1];
outputFcn = idSigmoidNetwork;
sys = nlarx(ze,orders,outputFcn,opt);
allRegressors = getreg(sys);

Sparsify the model (reduce the regressors in use) by using the "log-sum" measure.

opt.SearchOptions.MaxIterations = 20;
opt.SparsifyRegressors = true;
opt.SparsificationOptions.MaxIterations = 10;
opt.SparsificationOptions.Lambda = 2;
sysr1 = nlarx(ze,sys,opt);
T = sysr1.RegressorUsage;
inUse = any(T{:,:},2);
fprintf('Regressors in use: %s\n', strjoin(allRegressors(inUse),', '))

Regressors in use: y1(t-1), y1(t-5), u1(t-2), u1(t-3), u1(t-4), u1(t-7), u1(t-8)

Sparsify the model again using the "l1" measure.

opt.SparsificationOptions.SparsityMeasure = 'l1';
opt.SparsificationOptions.Lambda = 2.2;
sysr2 = nlarx(ze,sys,opt);
T = sysr2.RegressorUsage;
inUse = any(T{:,:},2);
fprintf('Regressors in use: %s\n', strjoin(allRegressors(inUse),', '))

Regressors in use: y1(t-1), y1(t-5), u1(t-2), u1(t-3), u1(t-4), u1(t-6), u1(t-7), u1(t-8)

Sparsify the model again using the "l0" measure.

opt.SparsificationOptions.SparsityMeasure = 'l0';
opt.SparsificationOptions.Lambda = 2.2;
sysr3 = nlarx(ze,sys,opt);
T = sysr3.RegressorUsage;
InUse = any(T{:,:},2);
fprintf('Regressors in use: %s\n', strjoin(allRegressors(inUse),', '))

Regressors in use: y1(t-1), y1(t-5), u1(t-2), u1(t-3), u1(t-4), u1(t-6), u1(t-7), u1(t-8)

Compare the full regressor model and three sparse regressor models against the validation data.

compare(zv,sys,sysr1,sysr2,sysr3)

 nlarx

1-1095

Input Arguments
data — Estimation data
timetable | numeric matrix pair | numeric matrix | iddata object

Uniformly sampled estimation data, specified as described in the following sections.

Timetable

Specify data as a timetable that uses a regularly spaced time vector. tt contains variables
representing input and output channels. For multiexperiment data, tt is a cell array of timetables of
length Ne, where Ne is the number of experiments.

When you use a syntax that specifies orders or linmodel, the software determines the number of
input and output channels to use for estimation.

• If 'InputName' and 'OutputName' are not specified, then the software uses the first Nu
variables of tt as inputs and the next Ny variables of tt as outputs.

• If 'InputName' and 'OutputName' are specified, then the software uses the specified variables.
The number of specified input and output names must be consistent with Nu and Ny.

• For functions that can estimate a time series model, where there are no inputs, 'InputName'
does not need to be specified.

1 Functions

1-1096

When you use a syntax that specifies regressors, by default, the software interprets the last
variable in the timetable as the sole output channel and the other variables as input channels. To
change the input/output channel selection in this case, specify 'InputName' and 'OutputName'.

Comma-Separated Matrix Pair

Specify data as a comma-separated pair of real-valued matrices that contain input and output time-
domain signal values. When you specify matrix-based data, the software assumes a sample time of 1
second. You can change the sample time after estimation by setting the property sys.Ts.

• For SISO systems, specify data as a pair of Ns-by-1 real-valued matrices that contain uniformly
sampled input and output time-domain signal values. Here, Ns is the number of samples.

• For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

Single Matrix

Specify data as a single real-valued matrix with Ny+Nu columns that contain the output signal values
followed by the input signal values. Note that this order is the opposite of the order used for the
comma-separated matrix pair form of data. When you specify matrix-based data, the software
assumes a sample time of 1 second. You can change the sample time after estimation by setting the
property sys.Ts.

Data Object

An estimation data object, specified as a time-domain iddata object that contains uniformly sampled
input and output values. The data object can have one or more output channels and zero or more
input channels. By default, the software sets the sample time of the model to the sample time of the
estimation data.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

orders — ARX model orders
nlarx orders [na nb nk]

ARX model orders, specified as the matrix [na nb nk]. na denotes the number of delayed outputs,
nb denotes the number of delayed inputs, and nk denotes the minimum input delay. The minimum
output delay is fixed to 1. For more information on how to construct the orders matrix, see arx.

When you specify orders, the software converts the order information into linear regressor form in
the idnlarx Regressors property. For an example, see “Create Nonlinear ARX Model Using ARX
Model Orders” on page 1-676.

regressors — Regressor specification
linearRegressor object | polynomialRegressor object | periodicRegressor |
customRegressor object | column array of regressor specification objects

Regressor specification, specified as a column vector containing one or more regressor specification
objects, which are the linearRegressor objects, polynomialRegressor objects,
periodicRegressor objects, and customRegressor objects. Each object specifies a formula for
generating regressors from lagged variables. For example:

 nlarx

1-1097

• L = linearRegressor({'y1','u1'},{1,[2 5]}) generates the regressors y1(t–1), u1(t–2),
and u2(t–5).

• P = polynomialRegressor('y2',4:7,2) generates the regressors y2(t–4)2, y2(t–5)2,y2(t–6)2,
and y2(t–7)2.

• SC = periodicRegressor({'y1','u1'},{1,2}) generates the regressors y1(t-1)),
cos(y1(t-1)), sin(u1(t-2)), and cos(u1(t-2)).

• C = customRegressor({'y1','u1','u2'},{1 2 2},@(x,y,z)sin(x.*y+z)) generates
the single regressor sin(y1(t–1)u1(t–2)+u2(t–2)

.

When you create a regressor set to support estimation with an iddata object, you can use the input
and output names of the object rather than create the names for the regressor function. For instance,
suppose you create a linear regressor for a model, plan to use the iddata object z to estimate the
model. You can use the following command to create the linear regressor.

L = linearRegressor([z.outputName;z.inputName],{1,[2 5]})

For an example of creating and using a SISO linear regressor set, see “Estimate Nonlinear ARX
Model Using Linear Regressor Set” on page 1-1080. For an example of creating a MIMO linear
regressor set that obtains variable names from the estimation data set, see “Estimate MIMO
Nonlinear ARX Model with Same Mapping Function for All Outputs” on page 1-1087.

output_fcn — Output function
'idWaveletNetwork' (default) | 'idLinear' | [] | 'idSigmoidNetwork' |
'idTreePartition' | 'idTreePartition' | 'idGaussianProcess' | 'idTreeEnsemble' |
'idSupportVectorMachine' | mapping object | array of mapping objects

Output function that maps the regressors of the idnlarx model into the model output, specified as a
column array containing zero or more of the following strings or objects:

'idWaveletNetwork' or idWaveletNetwork object Wavelet network
'linear' or '' or [] or idLinear object Linear function
'idSigmoidNetwork' or idSigmoidNetwork object Sigmoid network
'idTreePartition' or idTreePartition object Binary tree partition regression model
'idGaussianProcess' or idGaussianProcess object Gaussian process regression model (requires

Statistics and Machine Learning Toolbox)
'idTreeEnsemble' or idTreeEnsemble Regression tree ensemble model requires

(Statistics and Machine Learning Toolbox)
'idSupportVectorMachine' or
idSupportVectorMachine

Kernel-based Support Vector Machine (SVM)
regression model with constraints (requires
Statistics and Machine Learning Toolbox)

idFeedforwardNetwork object Neural network — Feedforward network of
Deep Learning Toolbox.

idCustomNetwork object Custom network — Similar to
idSigmoidNetwork, but with a user-defined
replacement for the sigmoid function.

1 Functions

1-1098

Use a string, such as 'idSigmoidNetwork', to use the default properties of the mapping function
object. Use the object itself, such as idSigmoidNetwork, when you want to configure the properties
of the mapping object.

The idWaveletNetwork, idSigmoidNetwork, idTreePartition, and idCustomNetwork objects
contain both linear and nonlinear components. You can remove (not use) the linear components of
idWaveletNetwork, idSigmoidNetwork, and idCustomNetwork by setting the LinearFcn.Use
value to false.

The idFeedforwardNetwork function has only a nonlinear component, which is the network object
of Deep Learning Toolbox. The idLinear object, as the name implies, has only a linear component.

output_fcn is static in that it depends only upon the data values at a specific time, but not directly
on time itself. For example, if the output function y(t) is equal to y0 + a1 y(t–1) + a2 y(t–2) + … b1 u(t–
1) + b2 u(t–2) + …, then output_fcn is a linear function that the linear mapping object represents.

Specifying a character vector, for example 'idSigmoidNetwork', creates a mapping object with
default settings. Alternatively, you can specify mapping object properties in two ways:

• Create the mapping object using arguments to modify default properties.

MO = idSigmoidNetwork(15);
• Create a default mapping object first and then use dot notation to modify properties.

MO = idSigmoidNetwork;
MO.NumberOfUnits = 15;

For ny output channels, you can specify mapping objects individually for each channel by setting
output_fcn to an array of ny mapping objects. For example, the following code specifies OutputFcn
using dot notation for a system with two input channels and two output channels.

sys = idnlarx({'y1','y2'},{'u1','u2'});
sys.OutputFcn = [idWaveletNetwork; idSigmoidNetwork];

To specify the same mapping for all outputs, specify OutputFcn as a character vector or a single
mapping object.

output_fcn represents a static mapping function that transforms the regressors of the nonlinear
ARX model into the model output. output_fcn is static because it does not depend on time. For
example, if y(t) = y0 + a1y(t − 1) + a2y(t − 2) + … + b1u(t − 1) + b2u(t − 2) + …, then output_fcn is a
linear function represented by the idLinear object.

For an example of specifying the output function, see “Specify and Customize Output Function” on
page 1-1083.

linmodel — Discrete-time linear model
idpoly object | idss object | idtf object | idproc object

Discrete-time identified input/output linear model, specified as any linear model created using an
estimator such as arx, armax, tfest, or ssest. For example, to create a state-space idss model,
estimate the model using ssest.

sys0 — Nonlinear ARX model
idnlarx model

Nonlinear ARX model, specified as an idnlarx model. sys0 can be:

 nlarx

1-1099

• A model previously estimated using nlarx. The estimation algorithm uses the parameters of sys0
as initial guesses. In this case, use init to slightly perturb the model properties to avoid trapping
the model in local minima.

sys = init(sys);
sys = nlarx(data,sys);

• A model previously created using the idnlarx constructor and with properties set using dot
notation. For example, use the following to create an idnlarx object, set its properties, and
estimate the model.

sys1 = idnlarx('y1','u1',Regressors);
sys1.OutputFcn = 'idTreePartition';
sys1.Ts = 0.02;
sys1.TimeUnit = 'Minutes';
sys1.InputName = 'My Data';
sys2 = nlarx(data,sys1);

The preceding code is equivalent to the following nlarx command.

sys2 = nlarx(data,Regressors,'idTreePartition','Ts',0.02,'TimeUnit','Minutes', ...
'InputName','My Data');

Options — Estimation options
nlarxOptions option set

Estimation options for nonlinear ARX model identification, specified as an nlarxOptions option set.
Available options include:

• Minimization objective
• Normalization options
• Regularization options

Output Arguments
sys — Nonlinear ARX model
idnlarx object

Nonlinear ARX model that fits the given estimation data, returned as an idnlarx object. This model
is created using the specified model orders, nonlinearity estimator, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. The contents of Report depend upon the choice of nonlinearity and estimation focus you
specified for nlarx. Report has the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.

1 Functions

1-1100

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See nlarxOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

 nlarx

1-1101

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information on using Report, see “Estimation Report”.

1 Functions

1-1102

Algorithms
Nonlinear ARX Model Structure

A nonlinear ARX model consists of model regressors and an output function. The output function
contains one or more mapping objects, one for each model output. Each mapping object can include a
linear and a nonlinear function that act on the model regressors to give the model output and a fixed
offset for that output. This block diagram represents the structure of a single-output nonlinear ARX
model in a simulation scenario.

The software computes the nonlinear ARX model output y in two stages:

1 It computes regressor values from the current and past input values and the past output data.

In the simplest case, regressors are delayed inputs and outputs, such as u(t–1) and y(t–3). These
kind of regressors are called linear regressors. You specify linear regressors using the
linearRegressor object. You can also specify linear regressors by using linear ARX model
orders as an input argument. For more information, see “Nonlinear ARX Model Orders and
Delay”. However, this second approach constrains your regressor set to linear regressors with
consecutive delays. To create polynomial regressors, use the polynomialRegressor object. To
create periodic regressors that contain the sine and cosine functions of delayed input and output
variables , use the periodicRegressor object. You can also specify custom regressors, which
are nonlinear functions of delayed inputs and outputs. For example, u(t–1)y(t–3) is a custom
regressor that multiplies instances of input and output together. Specify custom regressors using
the customRegressor object.

You can assign any of the regressors as inputs to the linear function block of the output function,
the nonlinear function block, or both.

2 It maps the regressors to the model output using an output function block. The output function
block can include multiple mapping objectslinear, nonlinear, and offset blocks in parallel. For
example, consider the following equation:

F(x) = LT(x− r) + g Q(x− r) + d

Here, x is a vector of the regressors, and r is the mean of x. F(x) = LT(x− r) + y0 is the output of
the linear function block. g Q(x− r) + y0 represents the output of the nonlinear function block. Q
is a projection matrix that makes the calculations well-conditioned. d is a scalar offset that is

 nlarx

1-1103

added to the combined outputs of the linear and nonlinear blocks. The exact form of F(x) depends
on your choice of output function. You can select from the available mapping objects, such as
tree-partition networks, wavelet networks, and multilayer neural networks. You can also exclude
either the linear or the nonlinear function block from the output function.

When estimating a nonlinear ARX model, the software computes the model parameter values,
such as L, r, d, Q, and other parameters specifying g.

The resulting nonlinear ARX models are idnlarx objects that store all model data, including model
regressors and parameters of the output function. For more information about these objects, see
“Nonlinear Model Structures”.

Version History
Introduced in R2007a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear

1 Functions

1-1104

Pre-R2021b Name R2021b Name
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
idnlarx | nlarxOptions | isnlarx | goodnessOfFit | aic | fpe | polynomialRegressor |
periodicRegressor | linearRegressor | customRegressor

Topics
“Estimate Nonlinear ARX Models at the Command Line”
“Estimate Nonlinear ARX Models Initialized Using Linear ARX Models”
“Identifying Nonlinear ARX Models”
“Validate Nonlinear ARX Models”
“Using Nonlinear ARX Models”
“Loss Function and Model Quality Metrics”
“Regularized Estimates of Model Parameters”
“Estimation Report”

 nlarx

1-1105

nlarxOptions
Option set for nlarx

Syntax
opt = nlarxOptions
opt = nlarxOptions(Name,Value)

Description
opt = nlarxOptions creates the default option set for nlarx. Use dot notation to modify this
option set for your specific application. Any options that you do not modify retain their default values.

opt = nlarxOptions(Name,Value) creates an option set with options specified by one or more
Name,Value pair arguments.

Examples

Create Default Option Set for Nonlinear ARX Estimation

opt = nlarxOptions;

Create and Modify Default Nonlinear ARX Option Set

Create a default option set for nlarx, and use dot notation to modify specific options.

opt = nlarxOptions;

Turn on the estimation progress display.

opt.Display = 'on';

Minimize the norm of the simulation error.

opt.Focus = 'simulation';

Use a subspace Gauss-Newton least squares search with a maximum of 25 iterations.

opt.SearchMethod = 'gn';
opt.SearchOptions.MaxIterations = 25;

Specify Options for Nonlinear ARX Estimation

Create an option set for nlarx specifying the following options:

1 Functions

1-1106

• Turn off iterative estimation for the default wavelet network estimation.
• Turn on the estimation progress-viewer display.

opt = nlarxOptions('IterativeWavenet','off','Display','on');

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Focus','simulation','SearchMethod','grad' specifies that the norm of the
simulation error is minimized using a steepest descent least squares search.

Focus — Minimization objective
'prediction' (default) | 'simulation'

Minimization objective, specified as the comma-separated pair consisting of 'Focus' and one of the
following:

• 'prediction' — Minimize the norm of the prediction error, which is defined as the difference
between the measured output and the one-step ahead predicted response of the model.

• 'simulation' — Minimize the norm of the simulation error, which is defined as the difference
between the measured output and simulated response of the model.

Display — Estimation progress display setting
'off' (default) | 'on'

Estimation progress display setting, specified as the comma-separated pair consisting of 'Display'
and one of the following:

• 'off' — No progress or results information is displayed.
• 'on' — Information on model structure and estimation results are displayed in a progress-viewer

window.

OutputWeight — Weighting of prediction error in multi-output estimations
'noise' (default) | positive semidefinite matrix

Weighting of prediction error in multi-output model estimations, specified as the comma-separated
pair consisting of 'OutputWeight' and one of the following:

• 'noise' — Optimal weighting is automatically computed as the inverse of the estimated noise
variance. This weighting minimizes det(E'*E), where E is the matrix of prediction errors. This
option is not available when using 'lsqnonlin' as a 'SearchMethod'.

• A positive semidefinite matrix, W, of size equal to the number of outputs. This weighting minimizes
trace(E'*E*W/N), where E is the matrix of prediction errors and N is the number of data
samples.

 nlarxOptions

1-1107

Normalize — Option to normalize estimation data
true (default) | false

Option to normalize estimation data, specified as true or false. If Normalize is true, then the
algorithm uses the method specified in NormalizationOptions to normalize the data.

NormalizationOptions — Option set for configuring normalization
option set

Option set for configuring normalization, specified as the options shown in the following table. The
first option, NormalizationMethod, determines which method the algorithm uses. The default
option is 'auto'. For idnlarx models, a setting of 'auto' is equivalent to a setting of 'center'.
Except for 'medianiqr', each specific method in NormalizationMethod has an associated
configuration option, such as CenterMethodType when you specify the 'center' method. For more
information about these methods, see the MATLAB function normalize.

Method or Method
Option

Value Description Default

NormalizationMetho
d

'auto' Set method
automatically.

'auto'

(equivalent to
'center')'center' Center data to have

mean 0.
'zscore' z-score with mean 0 and

standard deviation 1.
'norm' 2-norm.
'scale' Scale by standard

deviation.
'range' Rescale range of data to

[min,max].
'medianiqr' Center and scale data to

have median 0 and
interquartile scale of 1.

CenterMethodType
(applies to
'center')

'mean' Center to have mean 0. 'mean'
'median' Center to have median

0.
ZScoreType
(applies to
'zscore')

'std' Center and scale to
have mean 0 and
standard deviation 1.

'std'

'robust' Center and scale to
have median 0 and
median absolute
deviation 1.

ScaleMethodType
(applies to
'scale')

'std' Scale by standard
deviation.

'std'

'mad' Scale by median
absolute deviation.

1 Functions

1-1108

Method or Method
Option

Value Description Default

'iqr' Scale by interquartile
range.

'first' Scale by first element of
data.

NormValue (applies
to 'norm')

Positive real value p-norm, where p is a
positive integer.

2

Range (applies to
'range')

2-element row vector Rescale range of data to
an interval of the form
[a b], where a < b.

[0 1]

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search

 nlarxOptions

1-1109

SearchMethod Description
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as the comma-separated pair consisting of
'SearchOptions' and a search option set with fields that depend on the value of SearchMethod:

1 Functions

1-1110

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

1e-5

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

 nlarxOptions

1-1111

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields:

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for SearchMethod
'lm' (Levenberg-Marquardt method).

2

1 Functions

1-1112

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

 nlarxOptions

1-1113

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

1 Functions

1-1114

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

To specify field values in SearchOptions, create a default nlarxOptions set and modify the fields
using dot notation. Any fields that you do not modify retain their default values.

opt = nlarxOptions;
opt.SearchOptions.MaxIter = 15;
opt.SearchOptions.Advanced.RelImprovement = 0.5;

SparsifyRegressors — Option to remove sparse regressors
0 or false (default) | 1 or true

Option to remove sparse regressors from the nonlinear ARX model, specified as logical 0 (false) or
logical 1 (true).

Set this option to true to use a sparsification algorithm in the nlarx function to identify sparse
regressors. The function removes these regressors from the nonlinear mapping function of the output
idnlarx model, leaving only the optimal subset of regressors. To see which regressors are removed,
enter sys.RegressorUsage at the command line, where sys is the idnlarx model.

To configure the sparsification algorithm, use the option SparsificationOptions.

The sparsification algorithm, also known as structured pruning, is similar to the lasso (least absolute
shrinkage and selection operator) technique.

SparsificationOptions — Option set for configuring sparsification
option set

Option set for configuring sparsification, specified as one or more of the options shown in this table.

 nlarxOptions

1-1115

Option Description Default
SparsityMeasure Form of the sparsification penalty added

to the prediction error minimization
objective, specified as one of these
values:

• "l1" — L1 norm of the parameters
that multiply the regressors

• "l0" — L0 pseudonorm of the
parameters that multiply the
regressors

• "log-sum" — Sum of the log of the
absolute values of the parameters that
multiply the regressors

If several parameters multiply a certain
regressor in different parts of the
nonlinear mapping function, interpret the
sparsification penalty in the group sense.

"log-sum"

GroupNorm Norm used to measure the contribution
of each parameter group to the
sparsification penalty, specified as 2 or
Inf.

The default of 2 implies that the 2-norm
of each parameter group is used in the
sparsity measure.

2

Lambda Sparsification penalty, λ, specified as a
positive scalar.

The sparsification penalty is the cost, c,
of a regressor being identified as sparse
in the minimization objective, defined as

c = λ × f + p,

where:

• f is the fitting objective (prediction
error norm).

• p is the parameter property (l1 or l0
norm of the parameter groups
multiplying the regressors,
normalized by the minimum
parameter group norm).

1

MaxIterations Maximum number of Alternating
Direction Method of Multipliers (ADMM)
iterations to run to sparsify the regressor
selection, specified as a positive integer.

20

When configuring the sparsification algorithm, keep these points in mind:

1 Functions

1-1116

• Getting the best results can require trying various solver and sparsification options. The options
with the most significant effect on the results are the:

• Choice of sparsification measure (SparsificationOptions.SparsityMeasure = 'log-
sum', 'l1', or 'l2')

• Search method (SearchMethod = 'lm', 'lsqnonlin', and so on)
• Value of the SparsificationOptions.Lambda option, which describes the strength of the
sparsification penalty in the minimization objective

• Sparsification with the Focus property set to 'prediction' can be significantly faster than
specification with Focus = 'simulation', but the results might not lead to good simulation
models. To balance these approaches, consider performing sparsification with Focus =
'prediction' first. Then, perform a follow-up estimation using the selected regressors and
Focus = 'simulation'.

Dependencies

To enable these options, set SparsifyRegressors to true.

IterativeWavenet — Iterative idWaveletNetwork estimation setting
'auto' (default) | 'on' | 'off'

Iterative idWaveletNetwork estimation setting, specified as the comma-separated pair consisting of
'IterativeWavenet' and one of the following:

• 'auto' — First estimation is noniterative and subsequent estimations are iterative.
• 'on' — Perform iterative estimation only.
• 'off' — Perform noniterative estimation only.

This option applies only when using an idWaveletNetwork nonlinearity estimator.

InputInterSample — Input-channel intersample behavior
'auto' | 'zoh' | 'foh' | 'bl'

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata
object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

Regularization — Options for regularized estimation of model parameters
structure

 nlarxOptions

1-1117

Options for regularized estimation of model parameters, specified as the comma-separated pair
consisting of 'Regularization' and a structure with fields:

Field
Name

Description Default

Lambda Bias versus variance trade-off constant, specified as a
nonnegative scalar.

0 — Indicates no
regularization.

R Weighting matrix, specified as a vector of nonnegative scalars
or a square positive semidefinite matrix. The length must be
equal to the number of free parameters in the model, np. Use
the nparams command to determine the number of model
parameters.

1 — Indicates a value of
eye(np).

Nominal The nominal value towards which the free parameters are
pulled during estimation, specified as one of the following:

• 'zero' — Pull parameters towards zero.
• 'model' — Pull parameters towards preexisting values in

the initial model. Use this option only when you have a well-
initialized idnlarx model with finite parameter values.

'zero'

To specify field values in Regularization, create a default nlarxOptions set and modify the fields
using dot notation. Any fields that you do not modify retain their default values.

opt = nlarxOptions;
opt.Regularization.Lambda = 1.2;
opt.Regularization.R = 0.5*eye(np);

Regularization is a technique for specifying model flexibility constraints, which reduce uncertainty in
the estimated parameter values. For more information, see “Regularized Estimates of Model
Parameters”.

Advanced — Additional advanced options
structure

Additional advanced options, specified as the comma-separated pair consisting of 'Advanced' and a
structure with fields:

Field Name Description Default
ErrorThres
hold

Threshold for when to adjust the weight of large errors from
quadratic to linear, specified as a nonnegative scalar. Errors
larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the loss function. The
standard deviation is estimated robustly as the median of the
absolute deviations from the median of the prediction errors,
divided by 0.7. If your estimation data contains outliers, try
setting ErrorThreshold to 1.6.

0 — Leads to a purely
quadratic loss function.

MaxSize Maximum number of elements in a segment when input-
output data is split into segments, specified as a positive
integer.

250000

To specify field values in Advanced, create a default nlarxOptions set and modify the fields using
dot notation. Any fields that you do not modify retain their default values.

1 Functions

1-1118

opt = nlarxOptions;
opt.Advanced.ErrorThreshold = 1.2;

Output Arguments
opt — Option set for nlarx command
nlarxOptions option set

Option set for nlarx command, returned as an nlarxOptions option set.

Version History
Introduced in R2015a

InputInterSample option allows intersample behavior specification for continuous models
estimated from timetables or matrices.

iddata objects contain an InterSample property that describes the behavior of the signal between
sample points. The InputInterSample option implements a version of that property in
nlarxOptions so that intersample behavior can be specified also when estimation data is stored in
timetables or matrices.

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

See Also
nlarx

 nlarxOptions

1-1119

nlgreyest
Estimate nonlinear grey-box model parameters

Syntax
sys= nlgreyest(data,init_sys)
sys= nlgreyest(data,init_sys,options)

Description
sys= nlgreyest(data,init_sys) estimates the parameters of a nonlinear grey-box model,
init_sys, using time-domain data, data.

sys= nlgreyest(data,init_sys,options) specifies additional model estimation options.

Examples

Selectively Estimate Parameters of Nonlinear Grey-Box Model

Load data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','twotankdata'));
z = iddata(y,u,0.2,'Name','Two tanks');

The data contains 3000 input-output data samples of a two tank system. The input is the voltage
applied to a pump, and the output is the liquid level of the lower tank.

Specify file describing the model structure for a two-tank system. The file specifies the state
derivatives and model outputs as a function of time, states, inputs, and model parameters.

FileName = 'twotanks_c';

Specify model orders [ny nu nx].

Order = [1 1 2];

Specify initial parameters (Np = 6).

Parameters = {0.5;0.0035;0.019; ...
 9.81;0.25;0.016};

Specify initial initial states.

InitialStates = [0;0.1];

Specify as continuous system.

Ts = 0;

Create idnlgrey model object.

1 Functions

1-1120

nlgr = idnlgrey(FileName,Order,Parameters,InitialStates,Ts, ...
 'Name','Two tanks');

Set some parameters as constant.

nlgr.Parameters(1).Fixed = true;
nlgr.Parameters(4).Fixed = true;
nlgr.Parameters(5).Fixed = true;

Estimate the model parameters.

nlgr = nlgreyest(z,nlgr);

Estimate a Nonlinear Grey-Box Model Using Specific Options

Create estimation option set for nlgreyest to view estimation progress, and to set the maximum
iteration steps to 50.

opt = nlgreyestOptions;
opt.Display = 'on';
opt.SearchOptions.MaxIterations = 50;

Load data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor');

The data is from a linear DC motor with one input (voltage), and two outputs (angular position and
angular velocity). The structure of the model is specified by dcmotor_m.m file.

Create a nonlinear grey-box model.

file_name = 'dcmotor_m';
Order = [2 1 2];
Parameters = [1;0.28];
InitialStates = [0;0];

init_sys = idnlgrey(file_name,Order,Parameters,InitialStates,0, ...
 'Name','DC-motor');

Estimate the model parameters using the estimation options.

sys = nlgreyest(z,init_sys,opt);

Input Arguments
data — Time domain data
iddata object

Time-domain estimation data, specified as an iddata object. data has the same input and output
dimensions as init_sys.

If you specify the InterSample property of data as 'bl'(band-limited) and the model is continuous-
time, the software treats data as first-order-hold (foh) interpolated for estimation.

 nlgreyest

1-1121

init_sys — Constructed nonlinear grey-box model
idnlgrey object

Constructed nonlinear grey-box model that configures the initial parameterization of sys, specified as
an idnlgrey object. init_sys has the same input and output dimensions as data. Create
init_sys using idnlgrey.

options — Estimation options
nlgreyestOptions option set

Estimation options for nonlinear grey-box model identification, specified as an nlgreyestOptions
option set.

Output Arguments
sys — Estimated nonlinear grey-box model
idnlgrey object

Nonlinear grey-box model with the same structure as init_sys, returned as an idnlgrey object.
The parameters of sys are estimated such that the response of sys matches the output signal in the
estimation data.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Name of the simulation solver and the search method used during estimation.
Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function

and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

1 Functions

1-1122

Report
Field

Description

Parameter
s

Estimated values of the model parameters. Structure with the following fields:

Field Description
InitialValues Structure with values of parameters and initial states before

estimation.
ParVector Value of parameters after estimation.
Free Logical vector specifying the fixed or free status of parameters

during estimation
FreeParCovariance Covariance of the free parameters.
X0 Value of initial states after estimation.
X0Covariance Covariance of the initial states.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See nlgreyestOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

DataUsed Attributes of the data used for estimation — Structure with the following fields:

Field Description
Name Name of the data set.
Type Data type — For idnlgrey models, this is set to 'Time domain data'.
Length Number of data samples.
Ts Sample time. This is equivalent to data.Ts.
InterSam
ple

Input intersample behavior. One of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

The value of Intersample has no effect on estimation results for
discrete-time models.

InputOff
set

Empty, [], for nonlinear estimation methods.

OutputOf
fset

Empty, [], for nonlinear estimation methods.

 nlgreyest

1-1123

Report
Field

Description

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information, see “Estimation Report”.

Version History
Introduced in R2015a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

Parallel computing support is available for estimation using the lsqnonlin search method (requires
Optimization Toolbox). To enable parallel computing, use nlgreyestOptions, set SearchMethod to
'lsqnonlin', and set SearchOptions.Advanced.UseParallel to true.

For example:

opt = nlgreyestOptions;
opt.SearchMethod = 'lsqnonlin';
opt.SearchOptions.Advanced.UseParallel = true;

See Also
idnlgrey | nlgreyestOptions | pem | goodnessOfFit | aic | fpe

Topics
“Creating IDNLGREY Model Files”

1 Functions

1-1124

“Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation”
“Estimate Nonlinear Grey-Box Models”
“Loss Function and Model Quality Metrics”
“Regularized Estimates of Model Parameters”
“Estimation Report”

 nlgreyest

1-1125

nlgreyestOptions
Option set for nlgreyest

Syntax
opt = nlgreyestOptions
opt = nlgreyestOptions(Name,Value)

Description
opt = nlgreyestOptions creates the default option set for nlgreyest. Use dot notation to
customize the option set, if needed.

opt = nlgreyestOptions(Name,Value) creates an option set with options specified by one or
more Name,Value pair arguments. The options that you do not specify retain their default value.

Examples

Create Default Option Set for Nonlinear Grey-Box Model Estimation

opt = nlgreyestOptions;

Estimate a Nonlinear Grey-Box Model Using Specific Options

Create estimation option set for nlgreyest to view estimation progress, and to set the maximum
iteration steps to 50.

opt = nlgreyestOptions;
opt.Display = 'on';
opt.SearchOptions.MaxIterations = 50;

Load data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor');

The data is from a linear DC motor with one input (voltage), and two outputs (angular position and
angular velocity). The structure of the model is specified by dcmotor_m.m file.

Create a nonlinear grey-box model.

file_name = 'dcmotor_m';
Order = [2 1 2];
Parameters = [1;0.28];
InitialStates = [0;0];

init_sys = idnlgrey(file_name,Order,Parameters,InitialStates,0, ...
 'Name','DC-motor');

1 Functions

1-1126

Estimate the model parameters using the estimation options.

sys = nlgreyest(z,init_sys,opt);

Specify Options for Nonlinear Grey-Box Model Estimation

Create an option set for nlgreyest where:

• Parameter covariance data is not generated.
• Subspace Gauss-Newton least squares method is used for estimation.

opt = nlgreyestOptions('EstimateCovariance',false,'SearchMethod','gn');

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: nlgreyestOptions('Display','on')

GradientOptions — Options for computing Jacobians and gradients
structure

Options for computing Jacobians and gradients, specified as the comma-separated pair consisting of
'GradientOptions' and a structure with fields:

Field Name Description Default
MaxDifference Largest allowed parameter perturbation

when computing numerical derivatives.
Specified as a positive real value >
'MinDifference'.

Inf

MinDifference Smallest allowed parameter perturbation
when computing numerical derivatives.
Specified as a positive real value
<'MaxDifference'.

0.01*sqrt(eps)

 nlgreyestOptions

1-1127

Field Name Description Default
DifferencingS
cheme

Method for computing numerical derivatives
with respect to the components of the
parameters and/or the initial state(s) to form
the Jacobian. Specified as one of the
following:

• 'Auto' - Automatically chooses from the
following methods.

• 'Central approximation'
• 'Forward approximation'
• 'Backward approximation'

'Auto'

Type Method used when computing derivatives
(Jacobian) of the parameters or the initial
states to be estimated. Specified as one of
the following:

• 'Auto' — Automatically chooses from
the following methods.

• 'Basic' — Individually computes all
numerical derivatives required to form
each column of the Jacobian.

• 'Refined' — Simultaneously computes
all numerical derivatives required to form
each column of the Jacobian.

'Auto'

To specify field values in GradientOptions, create a default nlgreyestOptions set and modify
the fields using dot notation. Any fields that you do not modify retain their default values.

opt = nlgreyestOptions;
opt.GradientOptions.Type = 'Basic';

EstimateCovariance — Parameter covariance data generation setting
1 or true (default) | 0 or false

Controls whether parameter covariance data is generated, specified as true (1) or false (0).

Display — Estimation progress display setting
'off' (default) | 'on'

Estimation progress display setting, specified as the comma-separated pair consisting of 'Display'
and one of the following:

• 'off' — No progress or results information is displayed.
• 'on' — Information on model structure and estimation results are displayed in a progress-viewer

window.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as the comma-separated pair
consisting of 'Regularization' and a structure with fields:

1 Functions

1-1128

Field
Name

Description Default

Lambda Bias versus variance trade-off constant, specified as a
nonnegative scalar.

0 — Indicates no
regularization.

R Weighting matrix, specified as a vector of nonnegative scalars
or a square positive semi-definite matrix. The length must be
equal to the number of free parameters in the model, np. Use
the nparams command to determine the number of model
parameters.

1 — Indicates a value of
eye(np).

Nominal The nominal value towards which the free parameters are
pulled during estimation specified as one of the following:

• 'zero' — Pull parameters towards zero.
• 'model' — Pull parameters towards pre-existing values in

the initial model.

'zero'

To specify field values in Regularization, create a default nlgreyestOptions set and modify the
fields using dot notation. Any fields that you do not modify retain their default values.

opt = nlgreyestOptions;
opt.Regularization.Lambda = 1.2;
opt.Regularization.R = 0.5*eye(np);

Regularization is a technique for specifying model flexibility constraints, which reduce uncertainty in
the estimated parameter values. For more information, see “Regularized Estimates of Model
Parameters”.

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin'

Numerical search method used for iterative parameter estimation, specified as the comma-separated
pair consisting of 'SearchMethod' and one of the following:

• 'auto' — If Optimization Toolbox is available, 'lsqnonlin' is used. Otherwise, a combination of
the line search algorithms, 'gn', 'lm', 'gna', and 'grad' methods is tried in sequence at each
iteration. The first descent direction leading to a reduction in estimation cost is used.

• 'gn' — Subspace Gauss-Newton least squares search. Singular values of the Jacobian matrix less
than GnPinvConstant*eps*max(size(J))*norm(J) are discarded when computing the
search direction. J is the Jacobian matrix. The Hessian matrix is approximated by JTJ. If there is no
improvement in this direction, the function tries the gradient direction.

• 'gna' — Adaptive subspace Gauss-Newton search. Eigenvalues less than gamma*max(sv) of the
Hessian are ignored, where sv are the singular values of the Hessian. The Gauss-Newton direction
is computed in the remaining subspace. gamma has the initial value InitialGnaTolerance (see
Advanced in 'SearchOptions' for more information). This value is increased by the factor
LMStep each time the search fails to find a lower value of the criterion in fewer than five
bisections. This value is decreased by the factor 2*LMStep each time a search is successful
without any bisections.

• 'lm' — Levenberg-Marquardt least squares search, where the next parameter value is -pinv(H
+d*I)*grad from the previous one. H is the Hessian, I is the identity matrix, and grad is the
gradient. d is a number that is increased until a lower value of the criterion is found.

 nlgreyestOptions

1-1129

• 'grad' — Steepest descent least squares search.
• 'lsqnonlin' — Trust-region-reflective algorithm of lsqnonlin. Requires Optimization Toolbox

software.
• 'fmincon' — Constrained nonlinear solvers. You can use the sequential quadratic programming

(SQP) and trust-region-reflective algorithms of the fmincon solver. If you have Optimization
Toolbox software, you can also use the interior-point and active-set algorithms of the fmincon
solver. Specify the algorithm in the SearchOptions.Algorithm option. The fmincon algorithms
may result in improved estimation results in the following scenarios:

• Constrained minimization problems when there are bounds imposed on the model parameters.
• Model structures where the loss function is a nonlinear or non smooth function of the

parameters.
• Multi-output model estimation. A determinant loss function is minimized by default for MIMO

model estimation. fmincon algorithms are able to minimize such loss functions directly. The
other available search methods such as 'lm' and 'gn' minimize the determinant loss function
by alternately estimating the noise variance and reducing the loss value for a given noise
variance value. Hence, the fmincon algorithms can offer better efficiency and accuracy for
multi-output model estimations.

SearchOptions — Option set for the search algorithm
search option set

Option set for the search algorithm, specified as the comma-separated pair consisting of
'SearchOptions' and a search option set with fields that depend on the value of SearchMethod.

SearchOptions Structure When SearchMethod Is Specified as 'lsqnonlin' or 'auto',
When Optimization Toolbox Is Available

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software minimizes to
determine the estimated parameter values, specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values, specified as a
positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function minimization,
specified as a positive integer. The iterations stop when MaxIterations
is reached or another stopping criterion is satisfied, such as
FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

1 Functions

1-1130

SearchOptions Structure When SearchMethod Is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto', When Optimization Toolbox Is Not Available

Field
Name

Description Default

Toleranc
e

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified
as a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

1e-5

MaxItera
tions

Maximum number of iterations during loss-function minimization,
specified as a positive integer. The iterations stop when MaxIterations
is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

 nlgreyestOptions

1-1131

Field
Name

Description Default

Advanced Advanced search settings, specified as a structure with the following fields:

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try. This
reduction continues until either MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for SearchMethod
'lm' (Levenberg-Marquardt method).

2

1 Functions

1-1132

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

 nlgreyestOptions

1-1133

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

To specify field values in SearchOptions, create a default nlgreyestOptions set and modify the
fields using dot notation. Any fields that you do not modify retain their default values.

opt = nlgreyestOptions('SearchMethod','gna');
opt.SearchOptions.MaxIterations = 50;
opt.SearchOptions.Advanced.RelImprovement = 0.5;

OutputWeight — Weighting of prediction error in multi-output estimations
[] (default) | 'noise' | matrix

Weighting of prediction error in multi-output model estimations, specified as the comma-separated
pair consisting of 'OutputWeight' and one of the following:

• [] — No weighting is used. Specifying as [] is the same as eye(Ny), where Ny is the number of
outputs.

• 'noise' — Optimal weighting is automatically computed as the inverse of the estimated noise
variance. This weighting minimizes det(E'*E/N), where E is the matrix of prediction errors and
N is the number of data samples. This option is not available when using 'lsqnonlin' as a
'SearchMethod'.

• A positive semidefinite matrix, W, of size equal to the number of outputs. This weighting minimizes
trace(E'*E*W/N), where E is the matrix of prediction errors and N is the number of data
samples.

Advanced — Additional advanced options
structure

Additional advanced options, specified as the comma-separated pair consisting of 'Advanced' and a
structure with field:

1 Functions

1-1134

Field Name Description Default
ErrorThreshold Threshold for when to adjust the

weight of large errors from
quadratic to linear, specified as
a nonnegative scalar. Errors
larger than ErrorThreshold
times the estimated standard
deviation have a linear weight in
the loss function. The standard
deviation is estimated robustly
as the median of the absolute
deviations from the median of
the prediction errors divided by
0.7. If your estimation data
contains outliers, try setting
ErrorThreshold to 1.6.

0 — Leads to a purely quadratic
loss function.

To specify field values in Advanced, create a default nlgreyestOptions set and modify the fields
using dot notation. Any fields that you do not modify retain their default values.

opt = nlgreyestOptions;
opt.Advanced.ErrorThreshold = 1.2;

Output Arguments
opt — Option set for nlgreyest
nlgreyestOptions option set

Option set for nlgreyest, returned as an nlgreyestOptions option set.

Version History
Introduced in R2015a

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

See Also
nlgreyest

 nlgreyestOptions

1-1135

nlhw
Estimate Hammerstein-Wiener model

Syntax
sys = nlhw(data,Orders)
sys = nlhw(data,Orders,InputNonlinearity,OutputNonlinearity)

sys = nlhw(data,LinModel)
sys = nlhw(data,LinModel,InputNonlinearity,OutputNonlinearity)

sys = nlhw(data,sys0)

sys = nlhw(___ ,Options)

Description
Estimate Hammerstein-Wiener Model

sys = nlhw(data,Orders) creates and estimates a Hammerstein-Wiener model using the
estimation data, model orders and delays, and default piecewise linear functions as input and output
nonlinearity estimators. data can be in the form of a timetable, a comma-separated pair of numeric
matrices, or a data object.

sys = nlhw(data,Orders,InputNonlinearity,OutputNonlinearity) specifies InputNL
and OutputNL as the input and output nonlinearity estimators, respectively.

Specify Linear Model

sys = nlhw(data,LinModel) uses a linear model to specify the linear block coefficients, and
default piecewise linear functions for the input and output nonlinearity estimators.

sys = nlhw(data,LinModel,InputNonlinearity,OutputNonlinearity) specifies
InputNonlinearity and OutputNonlinearity as the input and output nonlinearity estimators,
respectively.

Refine Existing Model

sys = nlhw(data,sys0) refines or estimates the parameters of a Hammerstein-Wiener model,
sys0, using the estimation data.

Use this syntax to:

• Update the parameters of a previously estimated model to improve the fit to the estimation data.
In this case, the estimation algorithm uses the parameters of sys0 as initial guesses.

• Estimate the parameters of a model previously created using the idnlhw constructor. Prior to
estimation, you can configure the model properties using dot notation.

Specify Options

sys = nlhw(___ ,Options) specifies additional model estimation options using the option set
Options that you create using nlhwOptions. Use Options with any of the previous syntaxes.

1 Functions

1-1136

Examples

Estimate a Hammerstein-Wiener Model

load iddata3
m1 = nlhw(z3,[4 2 1]);

Estimate a Hammerstein Model with Saturation

Load data.

load twotankdata;
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);

Create a saturation object with lower limit of 0 and upper limit of 5.

InputNL = idSaturation('LinearInterval',[0 5]);

Estimate model with no output nonlinearity.

m = nlhw(z1,[2 3 0],InputNL,[]);

Estimate Hammerstein-Wiener Model with a Custom Network Nonlinearity

Generating a custom network nonlinearity requires the definition of a user-defined unit function.

Define the unit function and save it as gaussunit.m.

function [f,g,a] = gaussunit(x)
% Custom unit function nonlinearity.
%
% Copyright 2015 The MathWorks, Inc.
f = exp(-x.*x);
if nargout>1
 g = -2*x.*f;
 a = 0.2;
end

Create a custom network nonlinearity using the gaussunit function.

H = @gaussunit;
CNet = idCustomNetwork(H);

Load the estimation data.

load twotankdata;
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);

 nlhw

1-1137

Estimate a Hammerstein-Wiener model using the custom network.

m = nlhw(z1,[5 1 3],CNet,[]);

Estimate Default Hammerstein-Wiener Model Using an Input-Output Polynomial Model of
OE Structure

Estimate linear OE model.

load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData, Tr);
opt = oeOptions('Focus','simulation');
LinearModel = oe(DetrendedData,[1 2 1],opt);

Estimate Hammerstein-Wiener model using OE model as its linear component and saturation as its
output nonlinearity.

sys = nlhw(ThrottleData,LinearModel,[],idSaturation);

Estimate a Hammerstein-Wiener Model Using idnlhw to first Define the Model Properties

Load the estimation data.

load iddata1

Construct a Hammerstein-Wiener model using idnlhw to define the model properties B and F.

sys0 = idnlhw([2,2,0],[],'idWaveletNetwork');
sys0.B{1} = [0.8,1];
sys0.F{1} = [1,-1.2,0.5];

Estimate the model.

sys = nlhw(z1,sys0);

Estimate a Hammerstein-Wiener model using nlhw to define the model properties B and F.

sys2 = nlhw(z1,[2,2,0],[],'idWaveletNetwork','B',{[0.8,1]},'F',{[1,-1.2,0.5]});

Compare the two estimated models to see that they are equivalent.

compare(z1,sys,'g',sys2,'r--');

1 Functions

1-1138

Refine a Hammerstein-Wiener Model Using Successive Calls of nlhw

Estimate a Hammerstein-Wiener Model.

load iddata3
sys = nlhw(z3,[4 2 1],'idSigmoidNetwork','idWaveletNetwork');

Refine the model, sys.

sys = nlhw(z3,sys);

Estimate Hammerstein-Wiener Model Using an Estimation Option Set

Create estimation option set for nlhw to view estimation progress, use the Levenberg-Marquardt
search method, and set the maximum iteration steps to 50.

opt = nlhwOptions;
opt.Display = 'on';
opt.SearchMethod = 'lm';
opt.SearchOptions.MaxIterations = 50;

Load data and estimate the model.

 nlhw

1-1139

load iddata3
sys = nlhw(z3,[4 2 1],idSigmoidNetwork,idPiecewiseLinear,opt);

Input Arguments
data — Estimation data
timetable | cell array of timetables | numeric matrix pair | cell array pair of matrices | iddata object

Uniformly sampled estimation data, specified as described in the following sections.

Timetable

Specify data as a timetable that uses a regularly spaced time vector. tt contains variables
representing input and output channels. For multiexperiment data, tt is a cell array of timetables of
length Ne, where Ne is the number of experiments

The software determines the number of input and output channels to use for estimation from the
dimensions of the order in Orders. The input/output channel selection depends on whether the
'InputName' and 'OutputName' name-value arguments are specified.

• If 'InputName' and 'OutputName' are not specified, then the software uses the first Nu
variables of tt as inputs and the next Ny variables of tt as outputs.

• If 'InputName' and 'OutputName' are specified, then the software uses the specified variables.
The number of specified input and output names must be consistent with Nu and Ny.

• For functions that can estimate a time series model, where there are no inputs, 'InputName'
does not need to be specified.

Comma-Separated Matrix pair

Specify data as a comma-separated pair of real-valued matrices that contain uniformly sampled input
and output time-domain signal values. For multiexperiment data, use a cell array of matrices. When
you specify matrix-based data, the software assumes a sample time of 1 second. You can change the
sample time after estimation by setting the property sys.Ts.

• For SISO systems, specify data as a pair of Ns-by-1 real-valued matrices that contain uniformly
sampled input and output time-domain signal values. Here, Ns is the number of samples.

• For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

• For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

Data Object

An estimation data object, specified as a time-domain iddata object that contains uniformly sampled
input and output values. By default, the software sets the sample time of the model to the sample
time of the estimation data.

For multiexperiment data, the sample times and intersample behavior of all the experiments must
match.

1 Functions

1-1140

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

Orders — Order and delays of the linear subsystem transfer function
[nb nf nk] vector of positive integers | [nb nf nk] vector of matrices

Order and delays of the linear subsystem transfer function, specified as a [nb nf nk] vector.

Dimensions of Orders:

• For a SISO transfer function, Orders is a vector with 3 positive integers.

nb is the number of zeros plus 1, nf is the number of poles, and nk is the input delay.
• For a MIMO transfer function with nu inputs and ny outputs, Orders is a vector of matrices.

nb, nf, and nk are ny-by-nu matrices whose i-jth entry specifies the orders and delay of the
transfer function from the jth input to the ith output.

InputNonlinearity — Input nonlinearity estimator
idPiecewiseLinear (default) | 'idSigmoidNetwork' | 'idWaveletNetwork' |
'idSaturation' | idDeadZone | 'idPolynomial1D' | 'idUnitGain' | nonlinearity estimator |
array of nonlinearity estimators

Input nonlinearity estimator, specified as a column array containing one or more of the following
strings or mapping objects. Note that idGaussianProcess, which can be used as an output
nonlinearity estimator, cannot be used as an input nonlinearity estimator.

'idPiecewiseLinear' or idPiecewiseLinear object Piecewise linear function
'idSigmoidNetwork' or idSigmoidNetwork object Sigmoid network
'idWaveletNetwork' or idWaveletNetwork object Wavelet network
'idSaturation' or idSaturation object Saturation
'idDeadZone' or idDeadZone object Dead zone
'idPolynomial1D' or idPolynomial1D object One-dimensional polynomial
idCustomNetwork object Custom network — Similar to

idSigmoidNetwork, but with a user-
defined replacement for the sigmoid
function.

'idUnitGain' or [] or idUnitGain object Unit gain. Effectively eliminates
nonlinearity block.

Specifying a character vector, for example 'idSigmoidNetwork', creates a mapping object with
default settings. Alternatively, you can specify nonlinearity estimator properties in two other ways:

• Create the nonlinearity function using arguments to modify default properties.

InputNL = idSigmoidNetwork(15)

• Create a default nonlinearity function first and then use dot notation to modify properties.

InputNL = idSigmoidNetwork;
InputNL.NumberOfUnits = 15

 nlhw

1-1141

For nu input channels, you can specify nonlinear estimators individually for each input channel by
setting InputNL to an nu-by-1 array of nonlinearity estimators. To specify the same nonlinearity for
all inputs, specify a single input nonlinearity estimator.

OutputNonlinearity — Output nonlinearity estimator
idPiecewiseLinear (default) | 'idSigmoidNetwork' | 'idWaveletNetwork' |
'idSaturation' | idDeadZone | 'idPolynomial1D' | 'idGaussianProcess' | 'idUnitGain'
| nonlinearity estimator | array of nonlinearity estimators

Output nonlinearity estimator, specified as a column array containing one or more of the following
strings or mapping objects.

'idPiecewiseLinear' or idPiecewiseLinear object Piecewise linear function
'idSigmoidNetwork' or idSigmoidNetwork object Sigmoid network
'idWaveletNetwork' or idWaveletNetwork object Wavelet network
'idSaturation' or idSaturation object Saturation
'idDeadZone' or idDeadZone object Dead zone
'idPolynomial1D' or idPolynomial1D object One-dimensional polynomial
'idGaussianProcess' or idGaussianProcess object Gaussian process regression model

(requires Statistics and Machine
Learning Toolbox)

idCustomNetwork object Custom network — Similar to
idSigmoidNetwork, but with a user-
defined replacement for the sigmoid
function.

'idUnitGain' or [] or idUnitGain object Unit gain. Effectively eliminates
nonlinearity block.

Specifying a character vector, for example 'idSigmoidNetwork', creates a mapping object with
default settings. Alternatively, you can specify nonlinearity estimator properties in two other ways:

• Create the nonlinearity function using arguments to modify default properties.

NL = idSigmoidNetwork(15)

• Create a default nonlinearity function first and then use dot notation to modify properties.

outputNL = idSigmoidNetwork;
OutputNL.NumberOfUnits = 15

For ny output channels, you can specify nonlinear estimators individually for each output channel by
setting OutputNL to an ny-by-1 array of nonlinearity estimators. To specify the same nonlinearity for
all outputs, specify a single output nonlinearity estimator.

LinModel — Discrete time linear model
idpoly model | idss model | idtf model

Discrete-time linear model used to specify the linear subsystem, specified as one of the following:

• Input-output polynomial model of Output-Error (OE) structure (idpoly)
• State-space model (idss)

1 Functions

1-1142

• Transfer function model (idtf)

Typically, you estimate the model using oe, n4sid, or tfest.

sys0 — Hammerstein-Wiener model
idnlhw object

Hammerstein-Wiener model, specified as an idnlhw object. sys0 can be:

• A model previously created using idnlhw to specify model properties.
• A model previously estimated using nlhw, that you want to update using a new estimation data

set.

You can also refine sys0 using the original estimation data set. If the previous estimation stopped
when the numerical search was stuck at a local minima of the cost function, use init to first
randomize the parameters of sys0. See sys0.Report.Termination for search stopping
conditions. Using init does not guarantee a better solution on further refinement.

Options — Estimation options
nlhwOptions option set

Estimation options for Hammerstein-Wiener model identification, specified as an nlhwOptions
option set. Available options include:

• Search options
• Normalization options
• Regularization options

Output Arguments
sys — Estimated Hammerstein-Wiener model
idnlhw object

Estimated Hammerstein-Wiener model, returned as an idnlhw object. The model is estimated using
the specified model orders, input and output nonlinearity estimators, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.

 nlhw

1-1143

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See nlhwOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

1 Functions

1-1144

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information, see “Estimation Report”.

 nlhw

1-1145

Version History
Introduced in R2007a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

Use of previous idnlarx and idnlhw mapping object names is not recommended.
Not recommended starting in R2021b

Starting in R2021b, the mapping objects (also known as nonlinearities) used in the nonlinear
components of the idnlarx and idnlhw objects have been renamed. The following table lists the
name changes.

Pre-R2021b Name R2021b Name
wavenet idWaveletNetwork
sigmoidnet idSigmoidNetwork
treepartition idTreePartition
customnet idCustomNetwork
saturation idSaturation
deadzone idDeadZone
pwlinear idPiecewiseLinear
poly1d idPolynomial1D
unitgain idUnitGain
linear idLinear
neuralnet idFeedforwardNetwork

Scripts with the old names still run normally, although they will produce a warning. Consider using
the new names for continuing compatibility with newly developed features and algorithms. There are
no plans to exclude the use of these object names at this time

See Also
idnlhw | nlhwOptions | idnlhw/findop | linapp | linearize | pem | init | oe | tfest | n4sid
| goodnessOfFit | aic | fpe

Topics
“Estimate Multiple Hammerstein-Wiener Models”

1 Functions

1-1146

“Estimate Hammerstein-Wiener Models Initialized Using Linear OE Models”
“Identifying Hammerstein-Wiener Models”
“Available Nonlinearity Estimators for Hammerstein-Wiener Models”
“Initialize Hammerstein-Wiener Estimation Using Linear Model”
“Loss Function and Model Quality Metrics”
“Regularized Estimates of Model Parameters”
“Estimation Report”

 nlhw

1-1147

nlhwOptions
Option set for nlhw

Syntax
opt = nlhwOptions
opt = nlhwOptions(Name,Value)

Description
opt = nlhwOptions creates the default option set for nlhw. Use dot notation to customize the
option set, if needed.

opt = nlhwOptions(Name,Value) creates an option set with options specified by one or more
Name,Value pair arguments. The options that you do not specify retain their default value.

Examples

Estimate Hammerstein-Wiener Model Using an Estimation Option Set

Create estimation option set for nlhw to view estimation progress, use the Levenberg-Marquardt
search method, and set the maximum iteration steps to 50.

opt = nlhwOptions;
opt.Display = 'on';
opt.SearchMethod = 'lm';
opt.SearchOptions.MaxIterations = 50;

Load data and estimate the model.

load iddata3
sys = nlhw(z3,[4 2 1],idSigmoidNetwork,idPiecewiseLinear,opt);

Specify an Option Set for Hammerstein-Wiener Model Estimation

Create an options set for nlhw where:

• Initial conditions are estimated from the estimation data.
• Subspace Gauss-Newton least squares method is used for estimation.

opt = nlhwOptions('InitialCondition','estimate','SearchMethod','gn');

1 Functions

1-1148

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: nlhwOptions('InitialCondition','estimate')

InitialCondition — Handling of initial conditions
'zero' (default) | 'estimate'

Handling of initial conditions during estimation using nlhw, specified as the comma-separated pair
consisting of InitialCondition and one of the following:

• 'zero' — The initial conditions are set to zero.
• 'estimate' — The initial conditions are treated as independent estimation parameters.

Display — Estimation progress display setting
'off' (default) | 'on'

Estimation progress display setting, specified as the comma-separated pair consisting of 'Display'
and one of the following:

• 'off' — No progress or results information is displayed.
• 'on' — Information on model structure and estimation results are displayed in a progress-viewer

window.

Normalize — Option to normalize estimation data
true (default) | false

Option to normalize estimation data, specified as true or false. If Normalize is true, then the
algorithm uses the method specified in NormalizationOptions to normalize the data.

Because saturation, deadzone, and piecewise-linear nonlinearities are physically meaningful, you
must use caution to take normalization into account when specifying initial values. However, even
when Normalize is true, the software automatically disables normalization for these nonlinearities
when you set the property NormalizationOptions.NormalizationMethod to 'auto'.

NormalizationOptions — Option set for configuring normalization
option set

Option set for configuring normalization, specified as the options shown in the following table. The
first option, NormalizationMethod, determines which method the algorithm uses. The default
option is 'auto'. In general, for idnlhw models, a setting of 'auto' is equivalent to a setting of
'center'. However, if your model includes any of the nonlinearity estimators that have physically
meaningful parameters—idSaturation, idDeadzone, and idPiecewiseLinear—a setting of
'auto' results in the software disabling normalization for those estimators.

Except for 'medianiqr', each specific method in NormalizationMethod has an associated
configuration option, such as CenterMethodType when you specify the 'center' method. For more
information about these methods, see the MATLAB function normalize.

 nlhwOptions

1-1149

Method or Method
Option

Value Description Default

NormalizationMetho
d

'auto' Set method
automatically.

'auto'

(equivalent to
either'center')

The 'auto' setting
disables input and
output normalization for
idSaturation,
idDeadzone, and
idPiecewiseLinear
nonlinearities.

'center' Center data to have
mean 0.

'zscore' z-score with mean 0 and
standard deviation 1.

'norm' 2-norm.
'scale' Scale by standard

deviation.
'range' Rescale range of data to

[min,max].
'medianiqr' Center and scale data to

have median 0 and
interquartile scale of 1.

CenterMethodType
(applies to
'center')

'mean' Center to have mean 0. 'mean'
'median' Center to have median

0.
ZScoreType
(applies to
'zscore')

'std' Center and scale to
have mean 0 and
standard deviation 1.

'std'

'robust' Center and scale to
have median 0 and
median absolute
deviation 1.

ScaleMethodType
(applies to
'scale')

'std' Scale by standard
deviation.

'std'

'mad' Scale by median
absolute deviation.

'iqr' Scale by interquartile
range.

'first' Scale by first element of
data.

NormValue (applies
to 'norm')

Positive real value p-norm, where p is a
positive integer.

2

Range (applies to
'range')

2-element row vector Rescale range of data to
an interval of the form
[a b], where a < b.

[0 1]

OutputWeight — Weighting of prediction error in multi-output estimations
'noise' (default) | positive semidefinite matrix

Weighting of prediction error in multi-output model estimations, specified as the comma-separated
pair consisting of 'OutputWeight' and one of the following:

1 Functions

1-1150

• 'noise' — Optimal weighting is automatically computed as the inverse of the estimated noise
variance. This weighting minimizes det(E'*E), where E is the matrix of prediction errors. This
option is not available when using 'lsqnonlin' as a 'SearchMethod'.

• A positive semidefinite matrix, W, of size equal to the number of outputs. This weighting minimizes
trace(E'*E*W/N), where E is the matrix of prediction errors and N is the number of data
samples.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as the comma-separated pair
consisting of 'Regularization' and a structure with fields:

Field
Name

Description Default

Lambda Bias versus variance trade-off constant, specified as a
nonnegative scalar.

0 — Indicates no
regularization.

R Weighting matrix, specified as a vector of nonnegative scalars
or a square positive semi-definite matrix. The length must be
equal to the number of free parameters in the model, np. Use
the nparams command to determine the number of model
parameters.

1 — Indicates a value of
eye(np).

Nominal The nominal value towards which the free parameters are
pulled during estimation, specified as one of the following:

• 'zero' — Pull parameters towards zero.
• 'model' — Pull parameters towards pre-existing values in

the initial model. Use this option only when you have a well-
initialized idnlhw model with finite parameter values.

'zero'

To specify field values in Regularization, create a default nlhwOptions set and modify the fields
using dot notation. Any fields that you do not modify retain their default values.

opt = nlhwOptions;
opt.Regularization.Lambda = 1.2;
opt.Regularization.R = 0.5*eye(np);

Regularization is a technique for specifying model flexibility constraints, which reduce uncertainty in
the estimated parameter values. For more information, see “Regularized Estimates of Model
Parameters”.

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

 nlhwOptions

1-1151

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.

1 Functions

1-1152

SearchMethod Description
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for the search algorithm
search option set

Option set for the search algorithm, specified as the comma-separated pair consisting of
'SearchOptions' and a search option set with fields that depend on the value of SearchMethod.

 nlhwOptions

1-1153

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

1e-5

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

1 Functions

1-1154

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields:

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for SearchMethod
'lm' (Levenberg-Marquardt method).

2

 nlhwOptions

1-1155

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

1 Functions

1-1156

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

 nlhwOptions

1-1157

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

To specify field values in SearchOptions, create a default nlhwOptions set and modify the fields
using dot notation. Any fields that you do not modify retain their default values.

opt = nlhwOptions;
opt.SearchOptions.MaxIterations = 50;
opt.SearchOptions.Advanced.RelImprovement = 0.5;

Advanced — Additional advanced options
structure

Additional advanced options, specified as the comma-separated pair consisting of 'Advanced' and a
structure with fields:

Field Name Description Default
ErrorThres
hold

Threshold for when to adjust the weight of large errors from
quadratic to linear, specified as a nonnegative scalar. Errors
larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the loss function. The
standard deviation is estimated robustly as the median of the
absolute deviations from the median of the prediction errors,
divided by 0.7. If your estimation data contains outliers, try
setting ErrorThreshold to 1.6.

0 — Leads to a purely
quadratic loss function.

MaxSize Maximum number of elements in a segment when input-
output data is split into segments, specified as a positive
integer.

250000

To specify field values in Advanced, create a default nlhwOptions set and modify the fields using
dot notation. Any fields that you do not modify retain their default values.

opt = nlhwOptions;
opt.Advanced.ErrorThreshold = 1.2;

1 Functions

1-1158

Output Arguments
opt — Option set for nlhw
nlhwOptions option set

Option set for nlhw, returned as an nlhwOptions option set.

Version History
Introduced in R2015a

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

See Also
nlhw

 nlhwOptions

1-1159

nlssest
Estimate nonlinear state-space model using measured time-domain system data

Syntax
nssEstimated = nlssest(U,Y,nss)
nssEstimated = nlssest(Data,nss)
nssEstimated = nlssest(___ ,Options)
nssEstimated = nlssest(___ ,Name=Value)

Description
nssEstimated = nlssest(U,Y,nss) uses measured input and output data sets U and Y, and
default training options, to train the state and output networks of the idNeuralStateSpace object
nss. It returns the idNeuralStateSpace object nssEstimated with trained state and the output
networks.

nssEstimated = nlssest(Data,nss) uses measured input and output data stored in Data, and
the default training options, to train the state and output networks of nss.

nssEstimated = nlssest(___ ,Options) specifies custom training options, which use either the
Adam algorithm or SGDM algorithm to train the networks.

nssEstimated = nlssest(___ ,Name=Value) specifies name-value pair arguments after any of
the input argument in the previous syntax. Use name-value pair arguments to specify whether you
want to use the last experiment for validation, and the frequency for the validation plots.

Examples

Estimate Neural State-Space System

This example shows how to estimate a neural-state space model with one input and one state equal to
the output. First, you collect identification and validation data by simulating a linear system, then use
the collected data to estimate and validate a neural state-space system, and finally compare the
estimated system to the original linear system used to produce the data.

Define Linear Model for Data Collection

Define a linear time-invariant discrete-time model that can be easily simulated to collect data. For this
example, use a low-pass filter with a bandwidth of about 1 rad/sec, discretized with a sample time of
0.1 sec.

Ts = 0.1;
sys = ss(c2d(tf(1,[1 1]),Ts));

The identification of a neural state-space system requires you to have measurement of the system
states. Therefore, transform the state-space coordinates so that the output is equal to the state.

sys.b = sys.b*sys.c;
sys.c = 1;

1 Functions

1-1160

Generate Data Set for Identification

Fix the random generator seed for reproducibility.

rng(0);

Run 1000 simulations each starting at a different initial state and lasting 1 second. Each experiment
must use identical time points.

N = 1000;
U = cell(N,1);
Y = cell(N,1);

for i=1:N

 % Each experiment uses random initial state and input sequence
 t = (0:Ts:1)';
 u = 0.5*randn(size(t));
 x0 = 0.5*randn(1,1);

 % Obtain state measurements over t
 x = lsim(sys,u,t,x0);

 % Each experiment in the data set is a timetable
 U{i} = array2timetable(u,RowTimes=seconds(t));
 Y{i} = array2timetable(x,RowTimes=seconds(t));

end

Generate Data Set for Validation

Run one simulation to collect data that will be used to visually inspect training result during the
identification progress. The validation data set can have different time points. For this example,
simulate the trained model for 10 seconds.

% Use random initial state and input sequence
t = (0:Ts:10)';
u = 0.5*randn(size(t));
x0 = 0.5*randn(1,1);

% Obtain state measurements over t
x = lsim(sys,u,t,x0);

% Append the validation experiment (also a timetable) as the last entry in the data set
U{end+1} = array2timetable(u,RowTimes=seconds(t));
Y{end+1} = array2timetable(x,RowTimes=seconds(t));

Create a Neural State-Space Object

Create time-invariant discrete-time neural state-space object with one state identical to the output,
one input, and sample time Ts.

nss = idNeuralStateSpace(1,NumInputs=1,Ts=Ts);

 nlssest

1-1161

Configure State Network

Define the neural network that approximates the state function as having no hidden layer (because
the output layer, which is a fully connected layer, should be sufficient to approximate the linear
function: x k + 1 = Ax k + Bu k).

Use createMLPNetwork to create the network and dot notation to assign it to the StateNetwork
property of nss.

nss.StateNetwork = createMLPNetwork(nss,'state', ...
 LayerSizes=zeros(0,1), ...
 WeightsInitializer="glorot", ...
 BiasInitializer="zeros");

Display the number of network parameters.

summary(nss.StateNetwork)

 Initialized: true

 Number of learnables: 3

 Inputs:
 1 'x[k]' 1 features
 2 'u[k]' 1 features

Specify the training options for the state network. Use the Adam algorithm, specify the maximum
number of epochs as 300 (an epoch is the full pass of the training algorithm over the entire training
set), and let the algorithm use the entire set of 1000 experiment data as a batch set to calculate the
gradient at each iteration.

opt = nssTrainingOptions('adam');
opt.MaxEpochs = 300;
opt.MiniBatchSize = N;

Also specify the InputInterSample option to hold the input constant between two sampling
interval. Finally, specify the learning rate.

opt.InputInterSample = "zoh";
opt.LearnRate = 0.01;

Estimate the Neural State-Space System

Use nlssest to train the state network of nss, using the identification data set and the predefined
set of optimization options.

nss = nlssest(U,Y,nss,opt,'UseLastExperimentForValidation',true);

Training in progress (completed epoch/max epochs): 0/ 300 1/ 300 2/ 300 3/ 300 4/ 300 5/ 300 6/ 300 7/ 300 8/ 300 9/ 300 10/ 300 11/ 300 12/ 300 13/ 300 14/ 300 15/ 300 16/ 300 17/ 300 18/ 300 19/ 300 20/ 300 21/ 300 22/ 300 23/ 300 24/ 300 25/ 300 26/ 300 27/ 300 28/ 300 29/ 300 30/ 300 31/ 300 32/ 300 33/ 300 34/ 300 35/ 300 36/ 300 37/ 300 38/ 300 39/ 300 40/ 300 41/ 300 42/ 300 43/ 300 44/ 300 45/ 300 46/ 300 47/ 300 48/ 300 49/ 300 50/ 300 51/ 300 52/ 300 53/ 300 54/ 300 55/ 300 56/ 300 57/ 300 58/ 300 59/ 300 60/ 300 61/ 300 62/ 300 63/ 300 64/ 300 65/ 300 66/ 300 67/ 300 68/ 300 69/ 300 70/ 300 71/ 300 72/ 300 73/ 300 74/ 300 75/ 300 76/ 300 77/ 300 78/ 300 79/ 300 80/ 300 81/ 300 82/ 300 83/ 300 84/ 300 85/ 300 86/ 300 87/ 300 88/ 300 89/ 300 90/ 300 91/ 300 92/ 300 93/ 300 94/ 300 95/ 300 96/ 300 97/ 300 98/ 300 99/ 300 100/ 300 101/ 300 102/ 300 103/ 300 104/ 300 105/ 300 106/ 300 107/ 300 108/ 300 109/ 300 110/ 300 111/ 300 112/ 300 113/ 300 114/ 300 115/ 300 116/ 300 117/ 300 118/ 300 119/ 300 120/ 300 121/ 300 122/ 300 123/ 300 124/ 300 125/ 300 126/ 300 127/ 300 128/ 300 129/ 300 130/ 300 131/ 300 132/ 300 133/ 300 134/ 300 135/ 300 136/ 300 137/ 300 138/ 300 139/ 300 140/ 300 141/ 300 142/ 300 143/ 300 144/ 300 145/ 300 146/ 300 147/ 300 148/ 300 149/ 300 150/ 300 151/ 300 152/ 300 153/ 300 154/ 300 155/ 300 156/ 300 157/ 300 158/ 300 159/ 300 160/ 300 161/ 300 162/ 300 163/ 300 164/ 300 165/ 300 166/ 300 167/ 300 168/ 300 169/ 300 170/ 300 171/ 300 172/ 300 173/ 300 174/ 300 175/ 300 176/ 300 177/ 300 178/ 300 179/ 300 180/ 300 181/ 300 182/ 300 183/ 300 184/ 300 185/ 300 186/ 300 187/ 300 188/ 300 189/ 300 190/ 300 191/ 300 192/ 300 193/ 300 194/ 300 195/ 300 196/ 300 197/ 300 198/ 300 199/ 300 200/ 300 201/ 300 202/ 300 203/ 300 204/ 300 205/ 300 206/ 300 207/ 300 208/ 300 209/ 300 210/ 300 211/ 300 212/ 300 213/ 300 214/ 300 215/ 300 216/ 300 217/ 300 218/ 300 219/ 300 220/ 300 221/ 300 222/ 300 223/ 300 224/ 300 225/ 300 226/ 300 227/ 300 228/ 300 229/ 300 230/ 300 231/ 300 232/ 300 233/ 300 234/ 300 235/ 300 236/ 300 237/ 300 238/ 300 239/ 300 240/ 300 241/ 300 242/ 300 243/ 300 244/ 300 245/ 300 246/ 300 247/ 300 248/ 300 249/ 300 250/ 300 251/ 300 252/ 300 253/ 300 254/ 300 255/ 300 256/ 300 257/ 300 258/ 300 259/ 300 260/ 300 261/ 300 262/ 300 263/ 300 264/ 300 265/ 300 266/ 300 267/ 300 268/ 300 269/ 300 270/ 300 271/ 300 272/ 300 273/ 300 274/ 300 275/ 300 276/ 300 277/ 300 278/ 300 279/ 300 280/ 300 281/ 300 282/ 300 283/ 300 284/ 300 285/ 300 286/ 300 287/ 300 288/ 300 289/ 300 290/ 300 291/ 300 292/ 300 293/ 300 294/ 300 295/ 300 296/ 300 297/ 300 298/ 300 299/ 300

1 Functions

1-1162

 300/ 300

 nlssest

1-1163

Generating estimation report...done.

The validation plot shows that the resulting system is able to reproduce well the validation data.

Compare the Estimated System to the Original Linear System

Define a random input and initial condition.

x0 = 0.3*randn(1,1);
u0 = 0.3*randn(1,1);

Calculate the next state according to the linear system equation.

sys.a*x0 + sys.b*u0

ans = 0.4173

Evaluate nss at the point defined by x0 and u0.

evaluate(nss,x0,u0)

ans = 0.4171

The value of the next state calculated by evaluating nss is close to the one calculated by evaluating
the linear system equation.

Display the linear system.

sys

1 Functions

1-1164

sys =

 A =
 x1
 x1 0.9048

 B =
 u1
 x1 0.09516

 C =
 x1
 y1 1

 D =
 u1
 y1 0

Sample time: 0.1 seconds
Discrete-time state-space model.

Linearize nss around zero

linearize(nss,0,0)

ans =

 A =
 x1
 x1 0.9046

 B =
 u1
 x1 0.09835

 C =
 x1
 y1 1

 D =
 u1
 y1 0

Sample time: 0.1 seconds
Discrete-time state-space model.

The linearized system matrices are close to the ones of the original system.

Perform an Extra Validation Check

Create input time series and a random initial state.

t = (0:Ts:10)';
u = 0.5*randn(size(t));
x0 = 0.5*randn(1,1);

Simulate both the linear and neural state-space system with the same input data, from the same
initial state.

 nlssest

1-1165

% Simulate original system from x0
ylin = lsim(sys,u,t,x0);

% Simulate neural state-space system from x0
simOpt = simOptions('InitialCondition',x0);
yn = sim(nss,array2timetable(u,RowTimes=seconds(t)),simOpt);

Note that you can also use the following code to simulate nss.

x = zeros(size(t)); x(1)=x0;
for k = 1:length(t)-1, x(k+1) = evaluate(nss,x(k),u(k)); end

Plot the outputs of both systems, also display the norm of the difference in the plot title.

stairs(t,[ylin yn.Variables]);
xlabel("Time"); ylabel("State");
legend("Original","Estimated");
title(['Approximation error = ' num2str(norm(ylin-yn.Variables))])

The two outputs are similar, confirming that the identified system is a good approximation of the
original one.

Estimate Nonlinear Autonomous Neural State-Space System

This example shows how to estimate a nonlinear neural-state space model with no inputs and a two-
dimensional continuous state equal to the output. First, you collect identification and validation data
by simulating a Van Der Pol system, then use the collected data to estimate and validate a neural
state-space system, and finally compare the estimated system to the original system used to produce
the data.

1 Functions

1-1166

Define Model for Data Collection

Define a time-invariant continuous-time autonomous model that can be easily simulated to collect
data. For this example, use an unforced Van Der Pol system, which is an oscillator with nonlinear
damping that exhibits a limit cycle.

Specify the state equation using an anonymous function, using a damping coefficient of 1.

dx = @(x) [x(2); 1*(1-x(1)^2)*x(2)-x(1)];

Generate Data Set for Identification

Fix the random generator seed for reproducibility.

rng(0);

Run 1000 simulations each starting at a different initial state and lasting 2 seconds. Each experiment
must use identical time points.

N = 1000;
t = (0:0.1:2)';
Y = cell(1,N);

for i=1:N

 % Create random initial state within [-2,2]
 x0 = 4*rand(2,1)-2;

 % Obtain state measurements over t (solve using ode45)
 [~, x] = ode45(@(t,x) dx(x),t,x0);

 % Each experiment in the data set is a timetable
 Y{i} = array2timetable(x,RowTimes=seconds(t));

end

Generate Data Set for Validation

Run one simulation to collect data that will be used to visually inspect training result during the
identification progress. The validation data set can have different time points. For this example, use
the trained model to predict VDP behavior for 10 seconds.

% Create random initial state within [-2,2]
t = (0:0.1:10)';
x0 = 4*rand(2,1)-2;

% Obtain state measurements over t (solve using ode45)
[~, x] = ode45(@(t,x) dx(x),t,x0);

% Append the validation experiment (also a timetable) as the last entry in the data set
Y{end+1} = array2timetable(x,RowTimes=seconds(t));

Create a Neural State-Space Object

Create time-invariant continuous-time neural state-space object with a two-element state vector
identical to the output, and no input.

nss = idNeuralStateSpace(2);

 nlssest

1-1167

Configure State Network

Define the neural network that approximates the state function as having two hidden layers with 8
neurons each, and hyperbolic tangent activation function.

Use createMLPNetwork to create the network and dot notation to assign it to the StateNetwork
property of nss.

nss.StateNetwork = createMLPNetwork(nss,'state', ...
 LayerSizes=[12 12], ...
 Activations="tanh", ...
 WeightsInitializer="glorot", ...
 BiasInitializer="zeros");

Display the number of network parameters.

summary(nss.StateNetwork)

 Initialized: true

 Number of learnables: 218

 Inputs:
 1 'x' 2 features

Specify the training options for the state network. Use the Adam algorithm, specify the maximum
number of epochs as 400 (an epoch is the full pass of the training algorithm over the entire training
set), and let the algorithm use the entire set of 1000 experiments as a batch set to calculate the
gradient at each iteration.

opt = nssTrainingOptions('adam');
opt.MaxEpochs = 400;
opt.MiniBatchSize = N;

Also specify the leaning rate.

opt.LearnRate = 0.005;

Estimate the Neural State-Space System

Use nlssest to train the state network of nss, using the identification data set and the predefined
set of optimization options.

nss = nlssest([],Y,nss,opt,'UseLastExperimentForValidation',true);

Training in progress (completed epoch/max epochs): 0/ 400 1/ 400 2/ 400 3/ 400 4/ 400 5/ 400 6/ 400 7/ 400 8/ 400 9/ 400 10/ 400 11/ 400 12/ 400 13/ 400 14/ 400 15/ 400 16/ 400 17/ 400 18/ 400 19/ 400 20/ 400 21/ 400 22/ 400 23/ 400 24/ 400 25/ 400 26/ 400 27/ 400 28/ 400 29/ 400 30/ 400 31/ 400 32/ 400 33/ 400 34/ 400 35/ 400 36/ 400 37/ 400 38/ 400 39/ 400 40/ 400 41/ 400 42/ 400 43/ 400 44/ 400 45/ 400 46/ 400 47/ 400 48/ 400 49/ 400 50/ 400 51/ 400 52/ 400 53/ 400 54/ 400 55/ 400 56/ 400 57/ 400 58/ 400 59/ 400 60/ 400 61/ 400 62/ 400 63/ 400 64/ 400 65/ 400 66/ 400 67/ 400 68/ 400 69/ 400 70/ 400 71/ 400 72/ 400 73/ 400 74/ 400 75/ 400 76/ 400 77/ 400 78/ 400 79/ 400 80/ 400 81/ 400 82/ 400 83/ 400 84/ 400 85/ 400 86/ 400 87/ 400 88/ 400 89/ 400 90/ 400 91/ 400 92/ 400 93/ 400 94/ 400 95/ 400 96/ 400 97/ 400 98/ 400 99/ 400 100/ 400 101/ 400 102/ 400 103/ 400 104/ 400 105/ 400 106/ 400 107/ 400 108/ 400 109/ 400 110/ 400 111/ 400 112/ 400 113/ 400 114/ 400 115/ 400 116/ 400 117/ 400 118/ 400 119/ 400 120/ 400 121/ 400 122/ 400 123/ 400 124/ 400 125/ 400 126/ 400 127/ 400 128/ 400 129/ 400 130/ 400 131/ 400 132/ 400 133/ 400 134/ 400 135/ 400 136/ 400 137/ 400 138/ 400 139/ 400 140/ 400 141/ 400 142/ 400 143/ 400 144/ 400 145/ 400 146/ 400 147/ 400 148/ 400 149/ 400 150/ 400 151/ 400 152/ 400 153/ 400 154/ 400 155/ 400 156/ 400 157/ 400 158/ 400 159/ 400 160/ 400 161/ 400 162/ 400 163/ 400 164/ 400 165/ 400 166/ 400 167/ 400 168/ 400 169/ 400 170/ 400 171/ 400 172/ 400 173/ 400 174/ 400 175/ 400 176/ 400 177/ 400 178/ 400 179/ 400 180/ 400 181/ 400 182/ 400 183/ 400 184/ 400 185/ 400 186/ 400 187/ 400 188/ 400 189/ 400 190/ 400 191/ 400 192/ 400 193/ 400 194/ 400 195/ 400 196/ 400 197/ 400 198/ 400 199/ 400 200/ 400 201/ 400 202/ 400 203/ 400 204/ 400 205/ 400 206/ 400 207/ 400 208/ 400 209/ 400 210/ 400 211/ 400 212/ 400 213/ 400 214/ 400 215/ 400 216/ 400 217/ 400 218/ 400 219/ 400 220/ 400 221/ 400 222/ 400 223/ 400 224/ 400 225/ 400 226/ 400 227/ 400 228/ 400 229/ 400 230/ 400 231/ 400 232/ 400 233/ 400 234/ 400 235/ 400 236/ 400 237/ 400 238/ 400 239/ 400 240/ 400 241/ 400 242/ 400 243/ 400 244/ 400 245/ 400 246/ 400 247/ 400 248/ 400 249/ 400 250/ 400 251/ 400 252/ 400 253/ 400 254/ 400 255/ 400 256/ 400 257/ 400 258/ 400 259/ 400 260/ 400 261/ 400 262/ 400 263/ 400 264/ 400 265/ 400 266/ 400 267/ 400 268/ 400 269/ 400 270/ 400 271/ 400 272/ 400 273/ 400 274/ 400 275/ 400 276/ 400 277/ 400 278/ 400 279/ 400 280/ 400 281/ 400 282/ 400 283/ 400 284/ 400 285/ 400 286/ 400 287/ 400 288/ 400 289/ 400 290/ 400 291/ 400 292/ 400 293/ 400 294/ 400 295/ 400 296/ 400 297/ 400 298/ 400 299/ 400 300/ 400 301/ 400 302/ 400 303/ 400 304/ 400 305/ 400 306/ 400 307/ 400 308/ 400 309/ 400 310/ 400 311/ 400 312/ 400 313/ 400 314/ 400 315/ 400 316/ 400 317/ 400 318/ 400 319/ 400 320/ 400 321/ 400 322/ 400 323/ 400 324/ 400 325/ 400 326/ 400 327/ 400 328/ 400 329/ 400 330/ 400 331/ 400 332/ 400 333/ 400 334/ 400 335/ 400 336/ 400 337/ 400 338/ 400 339/ 400 340/ 400 341/ 400 342/ 400 343/ 400 344/ 400 345/ 400 346/ 400 347/ 400 348/ 400 349/ 400 350/ 400 351/ 400 352/ 400 353/ 400 354/ 400 355/ 400 356/ 400 357/ 400 358/ 400 359/ 400 360/ 400 361/ 400 362/ 400 363/ 400 364/ 400 365/ 400 366/ 400 367/ 400 368/ 400 369/ 400 370/ 400 371/ 400 372/ 400 373/ 400 374/ 400 375/ 400 376/ 400 377/ 400 378/ 400 379/ 400 380/ 400 381/ 400 382/ 400 383/ 400 384/ 400 385/ 400 386/ 400 387/ 400 388/ 400 389/ 400 390/ 400 391/ 400 392/ 400 393/ 400 394/ 400 395/ 400 396/ 400 397/ 400 398/ 400 399/ 400

1 Functions

1-1168

 400/ 400

 nlssest

1-1169

Generating estimation report...done.

The validation plot shows that the resulting system is able to reproduce well the validation data.

Compare the Estimated System to the Original Linear System

Define a random initial condition.

x0 = 0.3*randn(2,1);

Calculate the state derivative according to the original system equation.

dx(x0)

ans = 2×1

 0.3111
 0.3243

Evaluate nss at x0.

evaluate(nss,x0)

ans = 2×1

 0.3337
 0.3389

1 Functions

1-1170

The value of the state derivative calculated by evaluating nss is close to the one calculated by
evaluating the original system equation.

You can linearize nss around an operating point, and apply linear control analysis and synthesis
methods on the resulting linear time-invariant state-space system.

sys = linearize(nss,x0)

sys =

 A =
 x1 x2
 x1 0.02866 1.128
 x2 -0.9795 1.045

 B =
 Empty matrix: 2-by-0

 C =
 x1 x2
 y1 1 0
 y2 0 1

 D =
 Empty matrix: 2-by-0

Continuous-time state-space model.

Simulate the neural state-space system

Create a time sequence and a random initial state.

t = (0:0.1:10)';
x0 = 0.3*randn(2,1);

Simulate both the original and neural state-space system with the same input data, from the same
initial state.

% Simulate original system from x0
[~, x] = ode45(@(t,x) dx(x),t,x0);

% Simulate neural state-space system from x0
simOpt = simOptions('InitialCondition',x0,'OutputTimes',t);
xn = sim(nss,zeros(length(t),0),simOpt);

Plot the outputs of both systems, also display the norm of the difference in the plot title.

figure;
subplot(2,1,1)
plot(t,x(:,1),t,xn(:,1));
ylabel("States(1)");
legend("Original","Estimated");
title(['Approximation error = ' num2str(norm(x-xn))])
subplot(2,1,2)
plot(t,x(:,2),t,xn(:,2));
xlabel("Time"); ylabel("States(2)");
legend("Original","Estimated");

 nlssest

1-1171

The two outputs are similar, confirming that the identified system is a good approximation of the
original one.

Input Arguments
U — Input data
timetable object | matrix | cell array of timetable objects or matrices | []

Input data. Specify U as:

• A timetable containing a variable for each input. The variable names of the timetable must match
the input names of nss, and its row times must be duration objects. This timetable represents a
single experiment. For more information, see timetable and duration.

• A double matrix with one column for each input signal and one row for each time step. Use this
option only if the system is discrete-time (that is nss.Ts is greater than zero). This matrix
represents a single experiment.

• A cell array of N experiments composed of timetables or double matrices. All the experiments
must contain the same time points. In other words the time vector corresponding to all the
observations must match.

• An empty array, [], if nss has no inputs (that is size(nss,2) is zero).

Y — Output data
timetable object | matrix | cell array of timetable objects or matrices | []

Output data. Specify Y as:

• A timetable containing a variable for each output. The variable names of the timetable must match
the output names of nss, and its row times must be duration objects. This timetable represents
a single experiment. For more information, see timetable and duration.

1 Functions

1-1172

• A double matrix with one column for each output signal and one row for each time step. Use this
option only if the system is discrete-time (that is nss.Ts is greater than zero). This matrix
represents a single experiment.

• A cell array of N experiments composed of timetables or double matrices. All the experiments
must contain the same time points. In other words the time vector corresponding to all the
observations must match.

Note The first nx channels in Y must be state measurements (here, nx is the number of states
specified in nss).

Data — Input and output data
timetable object | iddata object

Input and output data, specified as a timetable or iddata object. This argument allows you to
specify the training data using a single input argument rather than separate U and Y arguments.
Specify Data as one of the following:

• An iddata object. If you have multiple experiments, create a multi-experiment iddata object.
Use this option if all the input and output variables in an experiment share the time vector. For
more information, see merge (iddata).

• A timetable. The timetable must contain a variable for each of the input and output variables in
nss. In the multi-experiment case, use a cell array of timetables. All the timetables in the cell
array must use the same time vector.

nss — Neural state-space system
idNeuralStateSpace object

Neural state-space system, specified as an idNeuralStateSpace object.

Options — Training options
nssTrainingADAM object (default) | nssTrainingSGDM object

Training options, specified as an nssTrainingADAM or nssTrainingSGDM object. Create the
training options set object options using the nssTrainingOptions command. If nss contains a non-
state output network (that is, if nss.OutputNetwork contains two networks), you can pick different
training options for the state transition function network, nss.StateNetwork, and the nontrivial
output function nss.OutputNetwork(2). Note that nss.OutputNetwork(1) does not contain any
learnable parameters because is always fixed to the identity function returning all the states as
outputs.
Example: myNrlSS

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: UseLastExperimentForValidation = true

UseLastExperimentForValidation — Option to use the last experiment for validation
false (default) | true

 nlssest

1-1173

Option to use the last experiment for validation, specified as one of the following:

• true — The last experiment is not used for training, but only to display a validation plot after a
number of epochs specified by ValidationFrequency. This allows you to monitor the estimation
performance during the training process. The last experiment can have a different duration than
all the other experiments

• false — All experiments are used for training, and no validation plot is displayed.

Example: false

ValidationFrequency — Validation Frequency
10 (default) | positive integer

Validation frequency, specified as a positive integer. This is the number of epochs after which the
validation plot is updated with a new comparison (new predicted output against measured outputs).
Example: ValidationFrequency=20

Output Arguments
nssEstimated — Estimated neural state-space system
idNeuralStateSpace object

Estimated neural state-space system, returned as an idNeuralStateSpace object.

Version History
Introduced in R2022b

See Also
Objects
idNeuralStateSpace | nssTrainingADAM | nssTrainingSGDM | idss | idnlgrey

Functions
createMLPNetwork | nssTrainingOptions | generateMATLABFunction |
idNeuralStateSpace/evaluate | idNeuralStateSpace/linearize | sim

Blocks
Neural State-Space Model

Topics
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

1 Functions

1-1174

noise2meas
Noise component of model

Syntax
noise_model = noise2meas(sys)
noise_model = noise2meas(sys,noise)

Description
noise_model = noise2meas(sys) returns the noise component, noise_model, of a linear
identified model, sys. Use noise2meas to convert a time-series model (no inputs) to an input/output
model. The converted model can be used for linear analysis, including viewing pole/zero maps, and
plotting the step response.

noise_model = noise2meas(sys,noise) specifies the noise variance normalization method.

Input Arguments
sys

Identified linear model.

noise

Noise variance normalization method, specified as one of the following values:

• 'innovations' — Noise sources are not normalized and remain as the innovations process.
• 'normalize' — Noise sources are normalized to be independent and of unit variance.

Default: 'innovations'

Output Arguments
noise_model

Noise component of sys.

sys represents the system

y(t) = Gu(t) + He(t)

G is the transfer function between the measured input, u(t), and the output, y(t). H is the noise model
and describes the effect of the disturbance, e(t), on the model’s response.

An equivalent state-space representation of sys is

ẋ(t) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)
e(t) = Lv(t)

 noise2meas

1-1175

v(t) is white noise with independent channels and unit variances. The white-noise signal e(t)
represents the model’s innovations and has variance LLT. The noise-variance data is stored using the
NoiseVariance property of sys.

• If noise is 'innovations', then noise2meas returns H and noise_model represents the
system

y(t) = He(t)

An equivalent state-space representation of noise_model is

ẋ(t) = Ax(t) + Ke(t)
y(t) = Cx(t) + e(t)

noise2meas returns the noise channels of sys as the input channels of noise_model. The input
channels are named using the format 'e@yk', where yk corresponds to the OutputName property
of an output. The measured input channels of sys are discarded and the noise variance is set to
zero.

• If noise is 'normalize', then noise2meas first normalizes

e(t) = Lv(t)

noise_model represents the system

y(t) = HLv(t)

or, equivalently, in state-space representation

ẋ(t) = Ax(t) + KLv(t)
y(t) = Cx(t) + Lv(t)

The input channels are named using the format 'v@yk', where yk corresponds to the
OutputName property of an output.

The model type of noise_model depends on the model type of sys.

• noise_model is an idtf model if sys is an idproc model.
• noise_model is an idss model if sys is an idgrey model.
• noise_model is the same type of model as sys for all other model types.

To obtain the model coefficients of noise_model in state-space form, use ssdata. Similarly, to
obtain the model coefficients in transfer-function form, use tfdata.

Examples

Convert Noise Component of Linear Identified Model into Input/Output Model

Convert a time-series model to an input/output model that may be used by linear analysis tools.

Identify a time-series model.

load iddata9 z9
sys = ar(z9,4,'ls');

1 Functions

1-1176

sys is an idpoly model with no inputs.

Convert sys to a measured model.

noise_model = noise2meas(sys);

noise_model is an idpoly model with one input.

You can use noise_model for linear analysis functions such as step, iopzmap, etc.

Normalizing Noise Variance

Convert an identified linear model to an input/output model, and normalize its noise variance.

Identify a linear model using data.

load twotankdata;
z = iddata(y,u,0.2);
sys = ssest(z,4);

sys is an idss model, with a noise variance of 6.6211e-06. The value of L is
sqrt(sys.NoiseVariance), which is 0.0026.

View the disturbance matrix.

sys.K

ans = 4×1

 0.2719
 1.6570
 0.6318
 0.2877

Obtain a model that absorbs the noise variance of sys.

noise_model_normalize = noise2meas(sys,'normalize');

noise_model_normalize is an idpoly model.

View the B matrix for noise_model_normalize

noise_model_normalize.B

ans = 4×1

 0.0007
 0.0043
 0.0016
 0.0007

As expected, noise_model_normalize.B is equal to L*sys.K.

Compare the bode response with a model that ignores the noise variance of sys.

 noise2meas

1-1177

noise_model_innovation = noise2meas(sys,'innovations');
bodemag(noise_model_normalize,noise_model_innovation);
legend('Normalized noise variance','Ignored noise variance');

The difference between the bode magnitudes of the noise_model_innovation and
noise_model_normalized is approximately 51 dB. As expected, the magnitude difference is
approximately equal to 20*log10(L).

Version History
Introduced in R2012a

See Also
noisecnv | tfdata | zpkdata | idssdata | spectrum

1 Functions

1-1178

noisecnv
Transform identified linear model with noise channels to model with measured channels only

Syntax
mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'normalize')

Description
mod1 = noisecnv(mod) and mod2 = noisecnv(mod,'normalize') transform an identified
linear model with noise channels to a model with measured channels only.

mod is any linear identified model, idproc, idtf, idgrey, idpoly, or idss.

The noise input channels in mod are converted as follows: Consider a model with both measured input
channels u (nu channels) and noise channels e (ny channels) with covariance matrix Λ:

y = Gu + He
cov(e) = Λ = LL′

where L is a lower triangular matrix. Note that mod.NoiseVariance = Λ. The model can also be
described with unit variance, using a normalized noise source v:

y = Gu + HLv
cov(v) = I

• mod1 = noisecnv(mod) converts the model to a representation of the system [G H] with nu+ny
inputs and ny outputs. All inputs are treated as measured, and mod1 does not have any noise
model. The former noise input channels have names e@yname, where yname is the name of the
corresponding output.

• mod2 = noisecnv(mod,'norm') converts the model to a representation of the system [G HL]
with nu+ny inputs and ny outputs. All inputs are treated as measured, and mod2 does not have
any noise model. The former noise input channels have names v@yname, where yname is the name
of the corresponding output. Note that the noise variance matrix factor L typically is uncertain
(has a nonzero covariance). This is taken into account in the uncertainty description of mod2.

• If mod is a time series, that is, nu = 0, mod1 is a model that describes the transfer function H
with measured input channels. Analogously, mod2 describes the transfer function HL.

Note the difference with subreferencing:

• mod(:,[]) gives a description of the noise model characteristics as a time-series model, that is, it
describes H and also the covariance of e. In contrast, noisecnv(m(:,[])) or noise2meas(m)
describe just the transfer function H. To obtain a description of the normalized transfer function
HL, use noisecnv(m(:,[]),'normalize') or noise2meas('normalize').

Converting the noise channels to measured inputs is useful to study the properties of the individual
transfer functions from noise to output. It is also useful for transforming identified linear models to
representations that do not handle disturbance descriptions explicitly.

 noisecnv

1-1179

Examples
Identify a model with a measured component (G) and a non-trivial noise component (H). Compare the
amplitude of the measured component's frequency response to the noise component's spectrum
amplitude. You must convert the noise component into a measured one by using noisecnv if you
want to compare its behavior against a truly measured component.

load iddata2 z2
sys1 = armax(z2,[2 2 2 1]); % model with noise component
sys2 = tfest(z2,3); % model with a trivial noise component

sys1 = noisecnv(sys1);
sys2 = noisecnv(sys2);
bodemag(sys1,sys2)

Version History
Introduced before R2006a

See Also
noise2meas | tfdata | zpkdata | idssdata

Topics
“Treating Noise Channels as Measured Inputs”

1 Functions

1-1180

norm
Norm of linear model

Syntax
n = norm(sys)
n = norm(sys,2)

n = norm(sys,Inf)
[n,fpeak] = norm(sys,Inf)
[n,fpeak] = norm(sys,Inf,tol)

Description
n = norm(sys) or n = norm(sys,2) returns the root-mean-squares of the impulse response of the
linear dynamic system model sys. This value is equivalent to the H2 norm on page 1-1183 of sys.

n = norm(sys,Inf) returns the L∞ norm (Control System Toolbox) of sys, which is the peak gain of
the frequency response of sys across frequencies. For MIMO systems, this quantity is the peak gain
over all frequencies and all input directions, which corresponds to the peak value of the largest
singular value of sys. For stable systems, the L∞ norm is equivalent to the H∞ norm. For more
information, see hinfnorm.

[n,fpeak] = norm(sys,Inf) also returns the frequency fpeak at which the gain reaches its peak
value.

[n,fpeak] = norm(sys,Inf,tol) sets the relative accuracy of the L∞ norm to tol.

This command requires a Control System Toolbox license.

Examples

Compute Norm of Discrete-Time Linear System

Compute the H2 and L∞ norms of the following discrete-time transfer function, with sample time 0.1
second.

sys(z) = z3− 2 . 841z2 + 2 . 875z − 1 . 004
z3− 2 . 417z2 + 2 . 003z − 0 . 5488

.

Compute the H2 norm of the transfer function. The H2 norm is the root-mean-square of the impulse
response of sys.

sys = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1);
n2 = norm(sys)

n2 = 1.2438

Compute the L∞ norm of the transfer function.

 norm

1-1181

[ninf,fpeak] = norm(sys,Inf)

ninf = 2.5721

fpeak = 3.0178

Because sys is a stable system, ninf is the peak gain of the frequency response of sys, and fpeak is
the frequency at which the peak gain occurs. Confirm these values using getPeakGain.

[gpeak,fpeak] = getPeakGain(sys)

gpeak = 2.5721

fpeak = 3.0178

Input Arguments
sys — Dynamic system
dynamic system model | model array

Input dynamic system, specified as any SISO or MIMO linear dynamic system model or model array.
sys can be continuous-time or discrete-time.

tol — Relative accuracy
0.01 (default) | positive real scalar

Relative accuracy of the H∞ norm, specified as a positive real scalar value.

Output Arguments
n — H2 or L∞ norm
scalar | array

H2 norm or L∞ norm of sys, returned as a scalar or an array.

• If sys is a single model, then n is a scalar value.
• If sys is a model array, then n is an array of the same size as sys, where n(k) =

norm(sys(:,:,k)).

fpeak — Frequency of peak gain
real scalar | array of real values

Frequency at which the gain achieves the peak value gpeak, returned as a real scalar value or an
array of real values. The frequency is expressed in units of rad/TimeUnit, relative to the TimeUnit
property of sys.

• If sys is a single model, then fpeak is a scalar.
• If sys is a model array, then fpeak is an array of the same size as sys, where fpeak(k) is the

peak gain frequency of sys(:,:,k).

fpeak can be negative for systems with complex coefficients.

1 Functions

1-1182

More About
H2 norm

The H2 norm of a stable system H is the root-mean-square of the impulse response of the system. The
H2 norm measures the steady-state covariance (or power) of the output response y = Hw to unit
white noise inputs w:

H 2
2 = limE

t ∞
y(t)Ty(t) , E w(t)w(τ)T = δ t − τ I .

The H2 norm of a continuous-time system with transfer function H(s) is given by:

H 2 = 1
2π∫−∞

∞
Trace H(jω)HH(jω) dω .

For a discrete-time system with transfer function H(z), the H2 norm is given by:

H 2 = 1
2π∫−π

π
Trace H(e jω)HH(e jω) dω .

The H2 norm is infinite in the following cases:

• sys is unstable.
• sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the frequency ω = ∞).

Using norm(sys) produces the same result as sqrt(trace(covar(sys,1))).

L-infinity norm

The L∞ norm of a SISO linear system is the peak gain of the frequency response. For a MIMO system,
the L∞ norm is the peak gain across all input/output channels.

For a continuous-time system H(s), this definition means:

H s L∞ = max
ω ∈ R

H jω (SISO)

H s L∞ = max
ω ∈ R

σmax H jω (MIMO)

where σmax(·) denotes the largest singular value of a matrix.

For a discrete-time system H(z), the definition means:

H z L∞ = max
θ ∈ 0, 2π

H e jθ (SISO)

H z L∞ = max
θ ∈ 0, 2π

σmax H e jθ (MIMO)

For stable systems, the L∞ norm is equivalent to the H∞ norm. For more information, see hinfnorm.
For a system with unstable poles, the H∞ norm is infinite. For all systems, norm returns the L∞ norm,
which is the peak gain without regard to system stability.

 norm

1-1183

Algorithms
After converting sys to a state space model, norm uses the same algorithm as covar for the H2
norm. For the L∞ norm, norm uses the algorithm of [1]. norm computes the peak gain using the
SLICOT library. For more information about the SLICOT library, see http://slicot.org.

Version History
Introduced before R2006a

References
[1] Bruinsma, N.A., and M. Steinbuch. "A Fast Algorithm to Compute the H∞ Norm of a Transfer

Function Matrix." Systems & Control Letters, 14, no.4 (April 1990): 287–93.

See Also
freqresp | sigma | getPeakGain | hinfnorm

1 Functions

1-1184

http://slicot.org

nparams
Number of model parameters

Syntax
np = nparams(sys)
np = nparams(sys,'free')

Description
np = nparams(sys) returns the number of parameters in the identified model sys.

np = nparams(sys,'free') returns the number free estimation parameters in the identified
model sys.

Note Not all model coefficients are parameters, such as the leading entry of the denominator
polynomials in idpoly and idtf models.

Input Arguments
sys

Identified linear model.

Output Arguments
np

Number of parameters of sys.

For the syntax np = nparams(sys,'free'), np is the number of free estimation parameters of
sys.

idgrey models can contain non-scalar parameters. nparams accounts for each individual entry of
the non-scalar parameters in the total parameter count.

Examples
Obtain the number of parameters of a transfer function model.

sys = idtf(1,[1 2]);
np = nparams(sys);

Obtain the number of free estimation parameters of a transfer function model.

sys0 = idtf([1 0],[1 2 0]);
sys0.Structure.Denominator.Free(3) = false;
np = nparams(sys,'free');

 nparams

1-1185

Version History
Introduced in R2012a

See Also
size | idpoly | idss | idtf | idproc | idgrey | idfrd

1 Functions

1-1186

nuderst
Set step size for numerical differentiation

Syntax
nds = nuderst(pars)

Description
Many estimation functions use numerical differentiation with respect to the model parameters to
compute their values.

The step size used in these numerical derivatives is determined by the nuderst command. The
output argument nds is a row vector whose kth entry gives the increment to be used when
differentiating with respect to the kth element of the parameter vector pars.

The default version of nuderst uses a very simple method. The step size is the maximum of 10-4

times the absolute value of the current parameter and 10-7. You can adjust this to the actual value of
the corresponding parameter by editing nuderst. Note that the nominal value, for example 0, of a
parameter might not reflect its normal size.

Version History
Introduced before R2006a

 nuderst

1-1187

nyquist
Nyquist plot of frequency response

Syntax
nyquist(sys)
nyquist(sys1,sys2,...,sysN)
nyquist(sys1,LineSpec1,...,sysN,LineSpecN)
nyquist(___ ,w)

[re,im,wout] = nyquist(sys)
[re,im,wout] = nyquist(sys,w)
[re,im,wout,sdre,sdim] = nyquist(sys,w)

Description
nyquist(sys) creates a Nyquist plot of the frequency response of a dynamic system model sys. The
plot displays real and imaginary parts of the system response as a function of frequency.

nyquist plots a contour comprised of both positive and negative frequencies. The plot also shows
arrows to indicate the direction of increasing frequency for each branch. nyquist automatically
determines frequencies to plot based on system dynamics.

If sys is a multi-input, multi-output (MIMO) model, then nyquist produces an array of Nyquist plots,
each plot showing the frequency response of one I/O pair.

If sys is a model with complex coefficients, then the positive and negative branches are not
symmetric.

nyquist(sys1,sys2,...,sysN) plots the frequency response of multiple dynamic systems on the
same plot. All systems must have the same number of inputs and outputs.

nyquist(sys1,LineSpec1,...,sysN,LineSpecN) specifies a color, line style, and marker for
each system in the plot.

nyquist(___ ,w) plots system responses for frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then nyquist plots the response at frequencies
ranging between wmin and wmax.

• If w is a vector of frequencies, then nyquist plots the response at each specified frequency. The
vector w can contain both negative and positive frequencies.

You can use w with any of the input-argument combinations in previous syntaxes.

[re,im,wout] = nyquist(sys) returns the real and imaginary parts of the frequency response at
each frequency in the vector wout. The function automatically determines frequencies in wout based
on system dynamics. This syntax does not draw a plot.

[re,im,wout] = nyquist(sys,w) returns the response data at the frequencies specified by w.

1 Functions

1-1188

• If w is a cell array of the form {wmin,wmax}, then wout contains frequencies ranging between
wmin and wmax.

• If w is a vector of frequencies, then wout = w.

[re,im,wout,sdre,sdim] = nyquist(sys,w) also returns the estimated standard deviation of
the real and imaginary parts of the frequency response for the identified model sys. If you omit w,
then the function automatically determines frequencies in wout based on system dynamics.

Examples

Nyquist Plot of Dynamic System

Create the following transfer function and plot its Nyquist response.

H s = 2s2 + 5s + 1
s2 + 2s + 3

.

H = tf([2 5 1],[1 2 3]);
nyquist(H)

The nyquist function can display a grid of M-circles, which are the contours of constant closed-loop
magnitude. M-circles are defined as the locus of complex numbers where the following quantity is a
constant value across frequency.

 nyquist

1-1189

T jω = G jω
1 + G jω .

Here, ω is the frequency in radians/TimeUnit, where TimeUnit is the system time units, and G is
the collection of complex numbers that satisfy the constant magnitude requirement.

To display the grid of M-circles, right-click in the plot and select Grid. Alternatively, use the grid
command.

grid on

Nyquist Plot at Specified Frequencies

Create a Nyquist plot over a specified frequency range. Use this approach when you want to focus on
the dynamics in a particular range of frequencies.

H = tf([-0.1,-2.4,-181,-1950],[1,3.3,990,2600]);
nyquist(H,{1,100})

1 Functions

1-1190

The cell array {1,100} specifies a frequency range [1,100] for the positive frequency branch and [–
100,–1] for the negative frequency branch in the Nyquist plot. The negative frequency branch is
obtained by symmetry for models with real coefficients. When you provide frequency bounds in this
way, the function selects intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency
response.

w = 1:0.1:30;
nyquist(H,w,'.-')

 nyquist

1-1191

nyquist plots the frequency response at the specified frequencies.

Nyquist Plot of Several Dynamic Systems

Compare the frequency response of several systems on the same Nyquist plot.

Create the dynamic systems.

rng(0)
sys1 = tf(3,[1,2,1]);
sys2 = tf([2 5 1],[1 2 3]);
sys3 = rss(4);

Create a Nyquist plot that displays all systems.

nyquist(sys1,sys2,sys3)
legend('Location','southwest')

1 Functions

1-1192

Nyquist Plot with Specified Line Attributes

Specify the line style, color, or marker for each system in a Nyquist plot using the LineSpec input
argument.

sys1 = tf(3,[1,2,1]);
sys2 = tf([2 5 1],[1 2 3]);
nyquist(sys1,'o:',sys2,'g')

 nyquist

1-1193

The first LineSpec, 'o:', specifies a dotted line with circle markers for the response of sys1. The
second LineSpec, 'g', specifies a solid green line for the response of sys2.

Obtain Real and Imaginary Parts of Frequency Response

Compute the real and imaginary parts of the frequency response of a SISO system.

If you do not specify frequencies, nyquist chooses frequencies based on the system dynamics and
returns them in the third output argument.

H = tf([2 5 1],[1 2 3]);
[re,im,wout] = nyquist(H);

Because H is a SISO model, the first two dimensions of re and im are both 1. The third dimension is
the number of frequencies in wout.

size(re)

ans = 1×3

 1 1 141

length(wout)

1 Functions

1-1194

ans = 141

Thus, each entry along the third dimension of re gives the real part of the response at the
corresponding frequency in wout.

Nyquist Plot of MIMO System

For this example, create a 2-output, 3-input system.

rng(0,'twister');
H = rss(4,2,3);

For this system, nyquist plots the frequency responses of each I/O channel in a separate plot in a
single figure.

nyquist(H)

Compute the real and imaginary parts of these responses at 20 frequencies between 1 and 10
radians.

w = logspace(0,1,20);
[re,im] = nyquist(H,w);

 nyquist

1-1195

re and im are three-dimensional arrays, in which the first two dimensions correspond to the output
and input dimensions of H, and the third dimension is the number of frequencies. For instance,
examine the dimensions of re.

size(re)

ans = 1×3

 2 3 20

Thus, for example, re(1,3,10) is the real part of the response from the third input to the first
output, computed at the 10th frequency in w. Similarly, im(1,3,10) contains the imaginary part of
the same response.

Create Nyquist Plot of Identified Model With Response Uncertainty

Compute the standard deviations of the real and imaginary parts of the frequency response of an
identified model. Use this data to create a 3σ plot of the response uncertainty.

Load the estimation data z2.

load iddata2 z2;

Identify a transfer function model using the data. Using the tfest command requires System
Identification Toolbox™ software.

sys_p = tfest(z2,2);

Obtain the standard deviations for the real and imaginary parts of the frequency response for a set of
512 frequencies, w.

w = linspace(-10*pi,10*pi,512);
[re,im,wout,sdre,sdim] = nyquist(sys_p,w);

re and im are the real and imaginary parts of the frequency response, and sdre and sdim are their
standard deviations, respectively. The frequencies in wout are the same as the frequencies you
specified in w.

Use the standard deviation data to create a 3σ plot corresponding to the confidence region.

re = squeeze(re);
im = squeeze(im);
sdre = squeeze(sdre);
sdim = squeeze(sdim);
plot(re,im,'b',re+3*sdre,im+3*sdim,'k:',re-3*sdre,im-3*sdim,'k:')
xlabel('Real Axis');
ylabel('Imaginary Axis');

1 Functions

1-1196

Nyquist Plot of Model with Complex Coefficients

Create a Nyquist plot of a model with complex coefficients and a model with real coefficients on the
same plot.

rng(0)
A = [-3.50,-1.25-0.25i;2,0];
B = [1;0];
C = [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Gc = ss(A,B,C,D);
Gr = rss(4);
nyquist(Gc,Gr)
legend('Complex-coefficient model','Real-coefficient model')

 nyquist

1-1197

The Nyquist plot always shows two branches, one for positive frequencies and one for negative
frequencies. The arrows indicate the direction of increasing frequency for each branch. For models
with complex coefficients, the two branches are not symmetric. For models with real coefficients, the
negative branch is obtained by symmetry.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value for
both plotting and returning frequency response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model. When you use output arguments, the function returns frequency response data
for the nominal model only.

• Frequency-response data models such as frd models. For such models, the function plots the
response at frequencies defined in the model.

1 Functions

1-1198

• Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can
also plot confidence intervals and return standard deviations of the frequency response. See
“Create Nyquist Plot of Identified Model With Response Uncertainty” on page 1-1196.

If sys is an array of models, the function plots the frequency responses of all models in the array on
the same axes.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute and plot frequency response, specified as the cell array
{wmin,wmax} or as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the response at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the response at each specified
frequency. For example, use logspace to generate a row vector with logarithmically spaced
frequency values. The vector w can contain both positive and negative frequencies.

If you specify a frequency range of [wmin,wmax] for your plot, then the plot shows a contour comprised
of both positive frequencies [wmin,wmax] and negative frequencies [–wmax,–wmin].

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

Output Arguments
re — Real part of system response
3-D array

Real part of the system response, returned as a 3-D array. The dimensions of this array are (number
of system outputs)-by-(number of system inputs)-by-(number of frequency points).

• For SISO systems, re(1,1,k) gives the real part of the response at the kth frequency in w or
wout. For an example, see “Obtain Real and Imaginary Parts of Frequency Response” on page 1-
1194.

• For MIMO systems, re(i,j,k) gives the real part of the response at the kth frequency from the
jth input to the ith output. For an example, see “Nyquist Plot of MIMO System” on page 1-1195.

 nyquist

1-1199

im — Imaginary part of system response
3-D array

Imaginary part of the system response, returned as a 3-D array. The dimensions of this array are
(number of system outputs)-by(number of system inputs)-by-(number of frequency points).

• For SISO systems, im(1,1,k) gives the imaginary part of the response at the kth frequency in w
or wout. For an example, see “Obtain Real and Imaginary Parts of Frequency Response” on page
1-1194.

• For MIMO systems, im(i,j,k) gives the imaginary part of the response at the kth frequency
from the jth input to the ith output. For an example, see “Nyquist Plot of MIMO System” on page
1-1195.

wout — Frequencies
vector

Frequencies at which the function returns the system response, returned as a column vector. The
function chooses the frequency values based on the model dynamics, unless you specify frequencies
using the input argument w.

wout also contains negative frequency values for models with complex coefficients.

Frequency values are in radians per TimeUnit, where TimeUnit is the value of the TimeUnit
property of sys.

sdre — Standard deviation of real part
3-D array | []

Estimated standard deviation of the real part of the response at each frequency point, returned as a
3-D array. sdre has the same dimensions as re.

If sys is not an identified LTI model, sdre is [].

sdim — Standard deviation of imaginary part
3-D array | []

Estimated standard deviation of the imaginary part of the response at each frequency point, returned
as a 3-D array. sdim has the same dimensions as im.

If sys is not an identified LTI model, sdim is [].

Tips
• When you need additional plot customization options, use nyquistplot instead.
• Two zoom options that apply specifically to Nyquist plots are available from the right-click menu :

• Full View — Clips unbounded branches of the Nyquist plot, but still includes the critical point
(–1, 0).

• Zoom on (-1,0) — Zooms around the critical point (–1, 0). To access critical-point zoom
programmatically, use the zoomcp command. For more information, see nyquistplot.

• To activate data markers that display the real and imaginary values at a given frequency, click
anywhere on the curve. The following figure shows a nyquist plot with a data marker.

1 Functions

1-1200

Version History
Introduced before R2006a

See Also
sigma | bode | nyquistplot

Topics
“Plot Bode and Nyquist Plots at the Command Line”
“Dynamic System Models”

 nyquist

1-1201

nyquistoptions
Create list of Nyquist plot options

Description
Use the nyquistoptions command to create a NyquistPlotOptions object to customize your
Nyquist plot appearance. You can also use the command to override the plot preference settings in
the MATLAB session in which you create the Nyquist plots.

Creation

Syntax
plotoptions = nyquistoptions
plotoptions = nyquistoptions('cstprefs')

Description

plotoptions = nyquistoptions returns a default set of plot options for use with the
nyquistplot command. You can use these options to customize the Nyquist plot appearance using
the command line. This syntax is useful when you want to write a script to generate plots that look
the same regardless of the preference settings of the MATLAB session in which you run the script.

plotoptions = nyquistoptions('cstprefs') initializes the plot options with the options you
selected in the Control System Toolbox and System Identification Toolbox Preferences Editor. For
more information about the editor, see “Toolbox Preferences Editor”. This syntax is useful when you
want to change a few plot options but otherwise use your default preferences. A script that uses this
syntax may generate results that look different when run in a session with different preferences.

Properties
FreqUnits — Frequency units
'rad/s' (default)

Frequency units, specified as one of the following values:

• 'Hz'
• 'rad/second'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'

1 Functions

1-1202

• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

MagUnits — Magnitude units
'dB' (default) | 'abs'

Magnitude units, specified as either 'dB' or absolute value 'abs'.

PhaseUnits — Phase units
'deg' (default) | 'rad'

Phase units, specified as either 'deg' or 'rad' to change to degrees or radians, respectively.

ShowFullContour — Toggle display of the response for negative frequencies
'on' (default) | 'off'

Toggle display of the response for negative frequencies, specified as either 'on' or 'off'.

ConfidenceRegionNumberSD — Number of standard deviations to use to plot the confidence
region
1 (default) | scalar

Number of standard deviations to use to plot the confidence region, specified as a scalar. This is
applicable to identified models only.

ConfidenceRegionDisplaySpacing — Frequency spacing of the confidence ellipses
5 (default) | scalar

Frequency spacing of the confidence ellipses to use to plot the confidence region, specified as a
scalar. This is applicable to identified models only. The default value is 5, which means the confidence
ellipses are shown at every 5th frequency sample

IOGrouping — Grouping of input-output pairs
'none' (default) | 'inputs' | 'outputs' | 'all'

Grouping of input-output (I/O) pairs, specified as one of the following:

 nyquistoptions

1-1203

• 'none' — No input-output grouping.
• 'inputs' — Group only the inputs.
• 'outputs' — Group only the outputs.
• 'all' — Group all the I/O pairs.

InputLabels — Input label style
structure (default)

Input label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet
[0.4,0.4,0.4].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

OutputLabels — Output label style
structure (default)

Output label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet
[0.4,0.4,0.4].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

InputVisible — Toggle display of inputs
{'on'} (default) | {'off'} | cell array

1 Functions

1-1204

Toggle display of inputs, specified as either {'on'}, {'off'} or a cell array with multiple elements .

OutputVisible — Toggle display of outputs
{'on'} (default) | {'off'} | cell array

Toggle display of outputs, specified as either {'on'}, {'off'} or a cell array with multiple
elements.

Title — Title text and style
structure (default)

Title text and style, specified as a structure with the following fields:

• String — Label text, specified as a character vector. By default, the plot is titled 'Nyquist
Diagram'.

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

XLabel — X-axis label text and style
structure (default)

X-axis label text and style, specified as a structure with the following fields:

• String — Label text, specified as a character vector. By default, the axis is titled 'Real Axis'.
• FontSize — Font size, specified as a scalar value greater than zero in point units. The default

font size depends on the specific operating system and locale. One point equals 1/72 inch.
• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the

FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

 nyquistoptions

1-1205

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

YLabel — Y-axis label text and style
structure (default)

Y-axis label text and style, specified as a structure with the following fields:

• String — Label text, specified as a cell array of character vectors. By default, the axis is titled
'Imaginary Axis'.

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TickLabel — Tick label style
structure (default)

Tick label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

Grid — Toggle grid display
'off' (default) | 'on'

Toggle grid display on the plot, specified as either 'off' or 'on'.

GridColor — Color of the grid lines
[0.15,0.15,0.15] (default) | RGB triplet

Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB
triplet [0.15,0.15,0.15].

1 Functions

1-1206

XLimMode — X-axis limit selection mode
'auto' (default) | 'manual' | cell array

Selection mode for the x-axis limits, specified as one of these values:

• 'auto' — Enable automatic limit selection, which is based on the total span of the plotted data.
• 'manual' — Manually specify the axis limits. To specify the axis limits, set the XLim property.

YLimMode — Y-axis limit selection mode
'auto' (default) | 'manual' | cell array

Selection mode for the y-axis limits, specified as one of these values:

• 'auto' — Enable automatic limit selection, which is based on the total span of the plotted data.
• 'manual' — Manually specify the axis limits. To specify the axis limits, set the YLim property.

XLim — X-axis limits
'{[1,10]}' (default) | cell array of two-element vector of the form [min,max] | cell array

X-axis limits, specified as a cell array of two-element vector of the form [min,max].

YLim — Y-axis limits
'{[1,10]}' (default) | cell array of two-element vector of the form [min,max] | cell array

Y-axis limits, specified as a cell array of two-element vector of the form [min,max].

Object Functions
nyquistplot Nyquist plot with additional plot customization options

Examples

Customize Nyquist Plot using Plot Handle

For this example, use the plot handle to change the phase units to radians and to turn the grid on.

Generate a random state-space model with 5 states and create the Nyquist diagram with plot handle
h.

rng("default")
sys = rss(5);
h = nyquistplot(sys);

 nyquistoptions

1-1207

Change the phase units to radians and turn on the grid. To do so, edit properties of the plot handle, h
using setoptions.

setoptions(h,'PhaseUnits','rad','Grid','on');

1 Functions

1-1208

The Nyquist plot automatically updates when you call setoptions.

Alternatively, you can also use the nyquistoptions command to specify the required plot options.
First, create an options set based on the toolbox preferences.

plotoptions = nyquistoptions('cstprefs');

Change properties of the options set by setting the phase units to radians and enabling the grid.

plotoptions.PhaseUnits = 'rad';
plotoptions.Grid = 'on';
nyquistplot(sys,plotoptions);

 nyquistoptions

1-1209

You can use the same option set to create multiple Nyquist plots with the same customization.
Depending on your own toolbox preferences, the plot you obtain might look different from this plot.
Only the properties that you set explicitly, in this example PhaseUnits and Grid, override the
toolbox preferences.

Nyquist Plot of Identified Models with Confidence Regions at Selected Points

Compare the frequency responses of identified state-space models of order 2 and 6 along with their
1-std confidence regions rendered at every 50th frequency sample.

Load the identified model data and estimate the state-space models using n4sid. Then, plot the
Nyquist diagram.

load iddata1
sys1 = n4sid(z1,2);
sys2 = n4sid(z1,6);
w = linspace(10,10*pi,256);
h = nyquistplot(sys1,sys2,w);

1 Functions

1-1210

Both models produce about 76% fit to data. However, sys2 shows higher uncertainty in its frequency
response, especially close to Nyquist frequency as shown by the plot. To see this, show the confidence
region at a subset of the points at which the Nyquist response is displayed.

setoptions(h,'ConfidenceRegionDisplaySpacing',50,...
 'ShowFullContour','off');

 nyquistoptions

1-1211

To turn on the confidence region display, right-click the plot and select Characteristics >
Confidence Region.

1 Functions

1-1212

Nyquist Plot with Specific Customization

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a
Nyquist plot, display only the partial contour and turn the grid on.

Create the MIMO state-space model sys_mimo.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

Create a Nyquist plot with plot handle h and use getoptions for a list of the options available.

h = nyquistplot(sys_mimo);

 nyquistoptions

1-1213

p = getoptions(h)

p =

 FreqUnits: 'rad/s'
 MagUnits: 'dB'
 PhaseUnits: 'deg'
 ShowFullContour: 'on'
 ConfidenceRegionNumberSD: 1
 ConfidenceRegionDisplaySpacing: 5
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {3x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {3x1 cell}

Use setoptions to update the plot with the requires customization.

1 Functions

1-1214

setoptions(h,'ShowFullContour','off','Grid','on');

The Nyquist plot automatically updates when you call setoptions. For MIMO models,
nyquistplot produces an array of Nyquist diagrams, each plot displaying the frequency response of
one I/O pair.

Version History
Introduced in R2012a

See Also
nyquist | nyquistplot | getoptions | setoptions | setoptions | showConfidence

Topics
“Toolbox Preferences Editor”

 nyquistoptions

1-1215

nyquistplot
Nyquist plot with additional plot customization options

Syntax
h = nyquistplot(sys)
h = nyquistplot(sys1,sys2,...,sysN)
h = nyquistplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = nyquistplot(___ ,w)
h = nyquistplot(AX, ___)
h = nyquistplot(___ ,plotoptions)

Description
nyquistplot lets you plot the Nyquist diagram of a dynamic system model with a broader range of
plot customization options than nyquist. You can use nyquistplot to obtain the plot handle and
use it to customize the plot, such as modify the axes labels, limits and units. You can also use
nyquistplot to draw a Nyquist diagram on an existing set of axes represented by an axes handle.
To customize an existing Nyquist plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox). To create Nyquist plots with default options or to extract the standard deviation, real and
imaginary parts of the frequency response data, use nyquist.

h = nyquistplot(sys) plots the Nyquist plot of the dynamic system model sys and returns the
plot handle h to the plot. You can use this handle h to customize the plot with the getoptions and
setoptions commands. If sys is a multi-input, multi-output (MIMO) model, then nyquistplot
produces a grid of Nyquist plots, each plot displaying the frequency response of one I/O pair.

h = nyquistplot(sys1,sys2,...,sysN) plots the Nyquist plot of multiple dynamic systems
sys1,sys2,…,sysN on the same plot. All systems must have the same number of inputs and outputs
to use this syntax.

h = nyquistplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and
color for the Nyquist plot of each system. All systems must have the same number of inputs and
outputs to use this syntax.

h = nyquistplot(___ ,w) plots Nyquist diagram for frequencies specified by the frequencies in w.

• If w is a cell array of the form {wmin,wmax}, then nyquistplot plots the Nyquist diagram at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then nyquistplot plots the Nyquist diagram at each specified
frequency.

You can use w with any of the input-argument combinations in previous syntaxes.

1 Functions

1-1216

See logspace to generate logarithmically spaced frequency vectors.

h = nyquistplot(AX, ___) plots the Nyquist plot on the Axes object in the current figure with
the handle AX.

h = nyquistplot(___ ,plotoptions) plots the Nyquist plot with the options set specified in
plotoptions. You can use these options to customize the Nyquist plot appearance using the
command line. Settings you specify in plotoptions overrides the preference settings in the
MATLAB session in which you run nyquistplot. Therefore, this syntax is useful when you want to
write a script to generate multiple plots that look the same regardless of the local preferences.

Examples

Customize Nyquist Plot using Plot Handle

For this example, use the plot handle to change the phase units to radians and to turn the grid on.

Generate a random state-space model with 5 states and create the Nyquist diagram with plot handle
h.

rng("default")
sys = rss(5);
h = nyquistplot(sys);

 nyquistplot

1-1217

Change the phase units to radians and turn on the grid. To do so, edit properties of the plot handle, h
using setoptions.

setoptions(h,'PhaseUnits','rad','Grid','on');

The Nyquist plot automatically updates when you call setoptions.

Alternatively, you can also use the nyquistoptions command to specify the required plot options.
First, create an options set based on the toolbox preferences.

plotoptions = nyquistoptions('cstprefs');

Change properties of the options set by setting the phase units to radians and enabling the grid.

plotoptions.PhaseUnits = 'rad';
plotoptions.Grid = 'on';
nyquistplot(sys,plotoptions);

1 Functions

1-1218

You can use the same option set to create multiple Nyquist plots with the same customization.
Depending on your own toolbox preferences, the plot you obtain might look different from this plot.
Only the properties that you set explicitly, in this example PhaseUnits and Grid, override the
toolbox preferences.

Customize Nyquist Plot Title

Create a Nyquist plot of a dynamic system model and store a handle to the plot.

sys = tf(100,[1,2,1]);
h = nyquistplot(sys);

 nyquistplot

1-1219

Change the plot title to read "Nyquist Plot of sys." To do so, use getoptions to extract the existing
plot options from the plot handle h.

opt = getoptions(h)

opt =

 FreqUnits: 'rad/s'
 MagUnits: 'dB'
 PhaseUnits: 'deg'
 ShowFullContour: 'on'
 ConfidenceRegionNumberSD: 1
 ConfidenceRegionDisplaySpacing: 5
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {'on'}
 OutputVisible: {'on'}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {[-20 100]}
 YLim: {[-80 80]}
 XLimMode: {'auto'}
 YLimMode: {'auto'}

1 Functions

1-1220

The Title option is a structure with several fields.

opt.Title

ans = struct with fields:
 String: 'Nyquist Diagram'
 FontSize: 11
 FontWeight: 'bold'
 FontAngle: 'normal'
 Color: [0 0 0]
 Interpreter: 'tex'

Change the String field of the Title structure, and use setoptions to apply the change to the
plot.

opt.Title.String = 'Nyquist Plot of sys';
setoptions(h,opt)

Zoom on Critical Point

Plot the Nyquist frequency response of a dynamic system. Assign a variable name to the plot handle
so that you can access it for further manipulation.

sys = tf(100,[1,2,1]);
h = nyquistplot(sys);

 nyquistplot

1-1221

Zoom in on the critical point, (–1,0). You can do so interactively by right-clicking on the plot and
selecting Zoom on (-1,0). Alternatively, use the zoomcp command on the plot handle h.

zoomcp(h)

1 Functions

1-1222

Nyquist Plot of Identified Models with Confidence Regions at Selected Points

Compare the frequency responses of identified state-space models of order 2 and 6 along with their
1-std confidence regions rendered at every 50th frequency sample.

Load the identified model data and estimate the state-space models using n4sid. Then, plot the
Nyquist diagram.

load iddata1
sys1 = n4sid(z1,2);
sys2 = n4sid(z1,6);
w = linspace(10,10*pi,256);
h = nyquistplot(sys1,sys2,w);

 nyquistplot

1-1223

Both models produce about 76% fit to data. However, sys2 shows higher uncertainty in its frequency
response, especially close to Nyquist frequency as shown by the plot. To see this, show the confidence
region at a subset of the points at which the Nyquist response is displayed.

setoptions(h,'ConfidenceRegionDisplaySpacing',50,...
 'ShowFullContour','off');

1 Functions

1-1224

To turn on the confidence region display, right-click the plot and select Characteristics >
Confidence Region.

 nyquistplot

1-1225

Nyquist Plot with Specific Customization

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a
Nyquist plot, display only the partial contour and turn the grid on.

Create the MIMO state-space model sys_mimo.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

Create a Nyquist plot with plot handle h and use getoptions for a list of the options available.

h = nyquistplot(sys_mimo);

1 Functions

1-1226

p = getoptions(h)

p =

 FreqUnits: 'rad/s'
 MagUnits: 'dB'
 PhaseUnits: 'deg'
 ShowFullContour: 'on'
 ConfidenceRegionNumberSD: 1
 ConfidenceRegionDisplaySpacing: 5
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {3x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {3x1 cell}

Use setoptions to update the plot with the requires customization.

 nyquistplot

1-1227

setoptions(h,'ShowFullContour','off','Grid','on');

The Nyquist plot automatically updates when you call setoptions. For MIMO models,
nyquistplot produces an array of Nyquist diagrams, each plot displaying the frequency response of
one I/O pair.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Sparse state-space models, such as sparss or mechss models. Frequency grid w must be
specified for sparse models.

• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models
requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value to plot
the frequency response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model.

1 Functions

1-1228

• Frequency-response data models such as frd models. For such models, the function plots the
Nyquist plot at frequencies defined in the model.

• Identified LTI models, such as idtf, idss, or idproc models.

If sys is an array of models, the function plots the Nyquist responses of all models in the array on the
same axes.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Pentagram
'h' Hexagram

Color Description
y yellow
m magenta
c cyan

 nyquistplot

1-1229

Color Description
r red
g green
b blue
w white
k black

AX — Target axes
Axes object | UIAxes object

Target axes, specified as an Axes or UIAxes object. If you do not specify the axes and if the current
axes are Cartesian axes, then nyquistplot plots on the current axes.

plotoptions — Nyquist plot options set
NyquistPlotOptions object

Nyquist plot options set, specified as a NyquistPlotOptions object. You can use this option set to
customize the Nyquist plot appearance. Use nyquistoptions to create the option set. Settings you
specify in plotoptions overrides the preference settings in the MATLAB session in which you run
nyquistplot. Therefore, plotoptions is useful when you want to write a script to generate
multiple plots that look the same regardless of the local preferences.

For the list of available options, see nyquistoptions.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute and plot Nyquist response, specified as the cell array {wmin,wmax}
or as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the response at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the response at each specified
frequency. For example, use logspace to generate a row vector with logarithmically spaced
frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

Output Arguments
h — Plot handle
handle object

Plot handle, returned as a handle object. Use the handle h to get and set the properties of the
Nyquist plot using getoptions and setoptions. For the list of available options, see the Properties
and Values Reference section in “Customizing Response Plots from the Command Line” (Control
System Toolbox).

1 Functions

1-1230

Tips
• There are two zoom options available from the right-click menu that apply specifically to Nyquist

plots:

• Full View — Clips unbounded branches of the Nyquist plot, but still includes the critical point
(–1, 0).

• Zoom on (-1,0) — Zooms around the critical point (–1,0). To access critical-point zoom
programmatically, use the zoomcp command. See “Zoom on Critical Point” on page 1-1221.

• To activate data markers that display the real and imaginary values at a given frequency, click
anywhere on the curve. The following figure shows a Nyquist plot with a data marker.

Version History
Introduced in R2012a

See Also
getoptions | nyquist | setoptions | showConfidence | nyquistoptions

Topics
“Customizing Response Plots from the Command Line” (Control System Toolbox)

 nyquistplot

1-1231

nssTrainingADAM
Adam training options object for neural state-space systems

Description
Adam options set object to train an idNeuralStateSpace network using nlssest.

Creation
Create a nssTrainingADAM object using nssTrainingOptions and specifying "adam" as input
argument.

Properties
UpdateMethod — Solver used to update network parameters
ADAM (default)

Solver used to update network parameters, returned as a string. This property is read-only. Use
nssTrainingOptions("sgdm") to return an options set object for the SGDM solver instead.
Example: ADAM

GradientDecayFactor — Decay rate of gradient moving average
0.9 (default) | nonnegative scalar less than 1

Decay rate of gradient moving average for the Adam solver, specified as a nonnegative scalar less
than 1. The default value works well for most tasks.

For more information, see TrainingOptionsADAM.
Example: 0.95

SquaredGradientDecayFactor — Decay rate of squared gradient moving average
0.999 (default) | nonnegative scalar less than 1

Decay rate of squared gradient moving average for the Adam solver, specified as a nonnegative scalar
less than 1.

Typical values of the decay rate are 0.9, 0.99, and 0.999, corresponding to averaging lengths of 10,
100, and 1000 parameter updates, respectively.

For more information, see TrainingOptionsADAM.
Example: 0.995

LossFcn — Type of function used to calculate loss
"MeanAbsoluteError" (default) | "MeanSquaredError"

Type of function used to calculate loss, specified as one of the following:

1 Functions

1-1232

• "MeanAbsoluteError" — use the mean value of the absolute error.
• "MeanSquaredError" — using the mean value of the squared error.

Example: MeanSquaredError

PlotLossFcn — Option to plot the value of the loss function during training
true (default) | false

Option to plot the value of the loss function during training, specified as one of the following:

• true — plot the value of the loss function during training.
• false — do not plot the value of the loss function during training.

Example: false

LearnRate — Learning rate
0.001 (default) | positive scalar

Learning rate used for training, specified as a positive scalar. If the learning rate is too low, then
training can take a long time. If the learning rate is too high, then training might reach a suboptimal
result or diverge.

For more information, see TrainingOptionsADAM.
Example: 0.01

MaxEpochs — Maximum number of epochs
100 (default) | positive integer

Maximum number of epochs to use for training, specified as a positive integer. An epoch is the full
pass of the training algorithm over the entire training set.

For more information, see TrainingOptionsADAM.
Example: 400

MiniBatchSize — Size of mini-batch
100 (default) | positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

If the mini-batch size does not evenly divide the number of training samples, then nlssest discards
the training data that does not fit into the final complete mini-batch of each epoch.

For more information, see TrainingOptionsADAM.
Example: 200

ODESolverOptions — ODE solver options for continuous-time systems
nssDLODE45 (default)

ODE solver options to integrate continuous-time neural state-space systems, specified as an
nssDLODE45 object

Use dot notation to access properties such as the following:

 nssTrainingADAM

1-1233

• Solver — Solver type, set as "dlode45". This is a read-only property.
• InitialStepSize — Initial step size, specified as a positive scalar. If you do not specify an initial

step size, then the solver bases the initial step size on the slope of the solution at the initial time
point.

• MaxStepSize — Maximum step size, specified as a positive scalar. It is an upper bound on the
size of any step taken by the solver. The default is one tenth of the difference between final and
initial time.

• AbsoluteTolerance — Absolute tolerance, specified as a positive scalar. This tolerance is a
threshold below which the value of the solution becomes unimportant.

• RelativeTolerance — Relative tolerance, specified as a positive scalar. This tolerance measures
the error relative to the magnitude of each solution component.

For more information, see odeset.
Example: 200

InputInterSample — Input interpolation method
10 (default) | positive integer

Input interpolation method, specified as one of the following strings:

• "zoh" — Use zero-order hold interpolation method.
• "foh" — Use first-order hold interpolation method.
• "cubic" — Use cubic interpolation method.
• "makima" — Use modified Akima interpolation method.
• "pchip" — Use shape-preserving piecewise cubic interpolation method.
• "spline" — Use spline interpolation method.

This is the interpolation method used to interpolate the input when integrating continuous-time
neural state-space systems. For more information, see interpolation methods in interp1.
Example: 20

Examples

Create Adam Option Set to Train a Neural State-Space System

Use nssTrainingOptions to return an options set object to train an idNeuralStateSpace
system.

adamOpts = nssTrainingOptions("adam")

adamOpts =
 nssTrainingADAM with properties:

 UpdateMethod: "ADAM"
 GradientDecayFactor: 0.9000
 SquaredGradientDecayFactor: 0.9990
 LossFcn: "MeanAbsoluteError"
 PlotLossFcn: 1
 LearnRate: 1.0000e-03

1 Functions

1-1234

 MaxEpochs: 100
 MiniBatchSize: 100
 ODESolverOptions: [1×1 idoptions.nssDLODE45]
 ValidationDataU: []
 ValidationDataX: []
 ValidationDataY: []
 ValidationFrequency: 10
 InputInterpolationMethod: "zoh"

Use dot notation to access the object properties.

adamOpts.PlotLossFcn = false;

You can now use adamOpts as the value of a name-value pair input argument to nlssest to specify
the training options for the state (StateOptions=adamOpts) or the output
(OutputOptions=adamOpts) network of an idNeuralStateSpace object.

Version History
Introduced in R2022b

See Also
Objects
idNeuralStateSpace | nssTrainingSGDM | idss | idnlgrey

Functions
nssTrainingOptions | nlssest | odeset | generateMATLABFunction |
idNeuralStateSpace/evaluate | idNeuralStateSpace/linearize | sim |
createMLPNetwork

Blocks
Neural State-Space Model

Topics
odeset
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

 nssTrainingADAM

1-1235

nssTrainingOptions
Create training options object for neural state-space systems

Syntax
adamOpts = nssTrainingOptions("adam")
sgdmOpts = nssTrainingOptions("sgdm")

Description
Returns either an Adam or SGDM options set object to train a idNeuralStateSpace network using
nlssest.

adamOpts = nssTrainingOptions("adam") returns a default optimizer option set to train an
idNeuralStateSpace object using the Adam solver. Use dot notation to access the object
properties.

sgdmOpts = nssTrainingOptions("sgdm") returns a default optimizer option set to train an
idNeuralStateSpace object using the stochastic gradient descent with momentum solver. Use dot
notation to access the object properties.

Examples

Create Adam Option Set to Train a Neural State-Space System

Use nssTrainingOptions to return an options set object to train an idNeuralStateSpace
system.

adamOpts = nssTrainingOptions("adam")

adamOpts =
 nssTrainingADAM with properties:

 UpdateMethod: "ADAM"
 GradientDecayFactor: 0.9000
 SquaredGradientDecayFactor: 0.9990
 LossFcn: "MeanAbsoluteError"
 PlotLossFcn: 1
 LearnRate: 1.0000e-03
 MaxEpochs: 100
 MiniBatchSize: 100
 ODESolverOptions: [1×1 idoptions.nssDLODE45]
 ValidationDataU: []
 ValidationDataX: []
 ValidationDataY: []
 ValidationFrequency: 10
 InputInterpolationMethod: "zoh"

Use dot notation to access the object properties.

1 Functions

1-1236

adamOpts.PlotLossFcn = false;

You can now use adamOpts as the value of a name-value pair input argument to nlssest to specify
the training options for the state (StateOptions=adamOpts) or the output
(OutputOptions=adamOpts) network of an idNeuralStateSpace object.

Create SGDM Option Set to Train a Neural State-Space System

Use nssTrainingOptions to return an options set object to train an idNeuralStateSpace
system.

adamOpts = nssTrainingOptions("sgdm")

adamOpts =
 nssTrainingSGDM with properties:

 UpdateMethod: "SGDM"
 Momentum: 0.9500
 LossFcn: "MeanAbsoluteError"
 PlotLossFcn: 1
 LearnRate: 1.0000e-03
 MaxEpochs: 100
 MiniBatchSize: 100
 ODESolverOptions: [1×1 idoptions.nssDLODE45]
 ValidationDataU: []
 ValidationDataX: []
 ValidationDataY: []
 ValidationFrequency: 10
 InputInterpolationMethod: "zoh"

Use dot notation to access the object properties.

adamOpts.LearnRate = 0.01;

You can now use sgdmOpts as the value of a name-value pair input argument to nlssest to specify
the training options for the state (StateOptions=sgdmOpts) or the output
(OutputOptions=sgdmOpts) network of an idNeuralStateSpace object.

Output Arguments
adamOpts — Adam options set object
nssTrainingADAM object

Adam options set object, specified as a nssTrainingADAM object.

sgdmOpts — SGDM options set object
nssTrainingSGDM object

SGDM options set object, specified as a nssTrainingSGDM object.

 nssTrainingOptions

1-1237

Version History
Introduced in R2022b

See Also
Objects
nssTrainingADAM | nssTrainingSGDM | idNeuralStateSpace

Functions
createMLPNetwork | nlssest | generateMATLABFunction | idNeuralStateSpace/evaluate |
idNeuralStateSpace/linearize | sim

Blocks
Neural State-Space Model

Topics
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

1 Functions

1-1238

nssTrainingSGDM
SGDM training options object for neural state-space systems

Description
SGDM options set object to train an idNeuralStateSpace network using nlssest.

Creation
Create a nssTrainingSGDM object using nssTrainingOptions and specifying "sgdm" as input
argument.

Properties
UpdateMethod — Solver used to update network parameters
SGDM (default)

Solver used to update network parameters, returned as a string. This property is read-only. Use
nssTrainingOptions("sgdm") to return an options set object for the SGDM solver instead.
Example: SGDM

Momentum — Contribution of previous step
0.95 (default) | nonnegative scalar less than 1

Contribution of the parameter update step of the previous iteration to the current iteration of
stochastic gradient descent with momentum, specified as a scalar from 0 to 1.

A value of 0 means no contribution from the previous step, whereas a value of 1 means maximal
contribution from the previous step. The default value works well for most tasks.

For more information, see TrainingOptionsSGDM.
Example: 0.9

LossFcn — Type of function used to calculate loss
"MeanAbsoluteError" (default) | "MeanSquaredError"

Type of function used to calculate loss, specified as one of the following:

• "MeanAbsoluteError" — use the mean value of the absolute error.
• "MeanSquaredError" — using the mean value of the squared error.

Example: MeanSquaredError

PlotLossFcn — Option to plot the value of the loss function during training
true (default) | false

Option to plot the value of the loss function during training, specified as one of the following:

 nssTrainingSGDM

1-1239

• true — plot the value of the loss function during training.
• false — do not plot the value of the loss function during training

Example: false

LearnRate — Learning rate
0.001 (default) | positive scalar

Learning rate used for training, specified as a positive scalar. If the learning rate is too low, then
training can take a long time. If the learning rate is too high, then training might reach a suboptimal
result or diverge.

For more information, see TrainingOptionsSGDM.
Example: 0.01

MaxEpochs — Maximum number of epochs
100 (default) | positive integer

Maximum number of epochs to use for training, specified as a positive integer. An epoch is the full
pass of the training algorithm over the entire training set.

For more information, see TrainingOptionsSGDM.
Example: 400

MiniBatchSize — Size of mini-batch
100 (default) | positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

If the mini-batch size does not evenly divide the number of training samples, then nlssest discards
the training data that does not fit into the final complete mini-batch of each epoch.

For more information, see TrainingOptionsSGDM.
Example: 200

ODESolverOptions — ODE solver options for continuous-time systems
nssDLODE45 (default)

ODE solver options to integrate continuous-time neural state-space systems, specified as an
nssDLODE45 object

Use dot notation to access properties such as the following:

• Solver — Solver type, set as "dlode45". This is a read-only property.
• InitialStepSize — Initial step size, specified as a positive scalar. If you do not specify an initial

step size, then the solver bases the initial step size on the slope of the solution at the initial time
point.

• MaxStepSize — Maximum step size, specified as a positive scalar. It is an upper bound on the
size of any step taken by the solver. The default is one tenth of the difference between final and
initial time.

1 Functions

1-1240

• AbsoluteTolerance — Absolute tolerance, specified as a positive scalar. This tolerance is a
threshold below which the value of the solution becomes unimportant.

• RelativeTolerance — Relative tolerance, specified as a positive scalar. This tolerance measures
the error relative to the magnitude of each solution component.

For more information, see odeset.
Example: 200

InputInterSample — Input interpolation method
10 (default) | positive integer

Input interpolation method, specified as one of the following strings:

• "zoh" — Use zero-order hold interpolation method.
• "foh" — Use first-order hold interpolation method.
• "cubic" — Use cubic interpolation method.
• "makima" — Use modified Akima interpolation method.
• "pchip" — Use shape-preserving piecewise cubic interpolation method.
• "spline" — Use spline interpolation method.

This is the interpolation method used to interpolate the input when integrating continuous-time
neural state-space systems. For more information, see interpolation methods in interp1.
Example: 20

Examples

Create SGDM Option Set to Train a Neural State-Space System

Use nssTrainingOptions to return an options set object to train an idNeuralStateSpace
system.

adamOpts = nssTrainingOptions("sgdm")

adamOpts =
 nssTrainingSGDM with properties:

 UpdateMethod: "SGDM"
 Momentum: 0.9500
 LossFcn: "MeanAbsoluteError"
 PlotLossFcn: 1
 LearnRate: 1.0000e-03
 MaxEpochs: 100
 MiniBatchSize: 100
 ODESolverOptions: [1×1 idoptions.nssDLODE45]
 ValidationDataU: []
 ValidationDataX: []
 ValidationDataY: []
 ValidationFrequency: 10
 InputInterpolationMethod: "zoh"

Use dot notation to access the object properties.

 nssTrainingSGDM

1-1241

adamOpts.LearnRate = 0.01;

You can now use sgdmOpts as the value of a name-value pair input argument to nlssest to specify
the training options for the state (StateOptions=sgdmOpts) or the output
(OutputOptions=sgdmOpts) network of an idNeuralStateSpace object.

Version History
Introduced in R2022b

See Also
Objects
idNeuralStateSpace | nssTrainingADAM | idss | idnlgrey

Functions
nssTrainingOptions | nlssest | odeset | generateMATLABFunction |
idNeuralStateSpace/evaluate | idNeuralStateSpace/linearize | sim |
createMLPNetwork

Blocks
Neural State-Space Model

Topics
“Estimate Neural State-Space System” on page 1-1160
“Estimate Nonlinear Autonomous Neural State-Space System” on page 1-1166

1 Functions

1-1242

oe
Estimate output-error polynomial model using time-domain or frequency-domain data

Syntax
sys = oe(tt,[nb nf nk])
sys = oe(u,y,[nb nf nk])
sys = oe(data,[nb nf nk])
sys = oe(___ ,Name,Value)

sys = oe(tt,init_sys)
sys = oe(u,y,init_sys)
sys = oe(data,init_sys)

sys = oe(___ ,opt)

[sys,ic] = oe(___)

Description
Output-error (OE) models are a special configuration of polynomial models, having only two active
polynomials—B and F. OE models represent conventional transfer functions that relate measured
inputs to outputs while also including white noise as an additive output disturbance. You can estimate
OE models using time- and frequency-domain data. The tfest command offers the same functionality
as oe. For tfest, you specify the model orders using number of poles and zeros rather than
polynomial degrees. For continuous-time estimation, tfest provides faster and more accurate
results, and is recommended.

Estimate OE Model

sys = oe(tt,[nb nf nk]) estimates an OE model sys using the data contained in the variables
of timetable tt. The software uses the first Nu variables as inputs and the next Ny variables as
outputs, where Nu and Ny are determined from the dimensions of the specified polynomial orders.

sys is represented by the equation

y(t) = B(q)
F(q)u(t − nk) + e(t)

Here, y(t) is the output, u(t) is the input, and e(t) is the error.

The orders [nb nf nk] define the number of parameters in each component of the estimated
polynomial.

To select specific input and output channels from tt, use name-value syntax to set 'InputName' and
'OutputName' to the corresponding timetable variable names.

sys = oe(u,y,[nb nf nk]) uses the time-domain input and output signals in the comma-
separated matrices u,y. The software assumes that the data sample time is 1 second. To change the
sample time, set Ts using name-value syntax.

 oe

1-1243

sys = oe(data,[nb nf nk]) uses the time-domain or frequency-domain data in the data object
data.

sys = oe(___ ,Name,Value) specifies model structure attributes using additional options
specified by one or more name-value pair arguments. You can use this syntax with any of the previous
input-argument combinations.

Configure Initial Parameters

sys = oe(tt,init_sys) uses the linear system init_sys to configure the initial
parameterization of sys for estimation using the timetable tt.

sys = oe(u,y,init_sys) uses the matrix data u,y for estimation

sys = oe(data,init_sys) uses the data object data for estimation.

Specify Additional Estimation Options

sys = oe(___ ,opt) estimates a polynomial model using the option set opt to specify estimation
behavior.

Return Estimated Initial Conditions

[sys,ic] = oe(___) returns the estimated initial conditions as an initialCondition object.
Use this syntax if you plan to simulate or predict the model response using the same estimation input
data and then compare the response with the same estimation output data. Incorporating the initial
conditions yields a better match during the first part of the simulation.

Examples

Estimate OE Polynomial Model

Estimate an OE polynomial from time-domain data using two methods to specify input delay.

Load the estimation data.

load iddata1 z1

Set the orders of the B and F polynomials nb and nf. Set the input delay nk to one sample. Compute
the model sys.

nb = 2;
nf = 2;
nk = 1;
sys = oe(z1,[nb nf nk]);

Compare the simulated model response with the measured output.

compare(z1,sys)

1 Functions

1-1244

The plot shows that the fit percentage between the simulated model and the estimation data is
greater than 70%.

Instead of using nk, you can also use the name-value pair argument 'InputDelay' to specify the
one-sample delay.

nk = 0;
sys1 = oe(z1,[nb nf nk],'InputDelay',1);
figure
compare(z1,sys1)

 oe

1-1245

The results are identical.

You can view more information about the estimation by exploring the idpoly property sys.Report.

sys.Report

ans =
 Status: 'Estimated using OE'
 Method: 'OE'
 InitialCondition: 'zero'
 Fit: [1x1 struct]
 Parameters: [1x1 struct]
 OptionsUsed: [1x1 idoptions.polyest]
 RandState: [1x1 struct]
 DataUsed: [1x1 struct]
 Termination: [1x1 struct]

For example, find out more information about the termination conditions.

sys.Report.Termination

ans = struct with fields:
 WhyStop: 'Near (local) minimum, (norm(g) < tol).'
 Iterations: 3
 FirstOrderOptimality: 0.0708
 FcnCount: 7
 UpdateNorm: 1.4809e-05

1 Functions

1-1246

 LastImprovement: 5.1744e-06

The report includes information on the number of iterations and the reason the estimation stopped
iterating.

Estimate Continuous-Time OE Model Using Frequency Response

Load the estimation data.

load oe_data1 data;

The idfrd object data contains the continuous-time frequency response for the following model:

G(s) = s + 3
s3 + 2s2 + s + 1

Estimate the model.

nb = 2;
nf = 3;
sys = oe(data,[nb nf]);

Evaluate the goodness of fit.

compare(data,sys);

 oe

1-1247

Estimate OE Model Using Regularization

Estimate a high-order OE model from data collected by simulating a high-order system. Determine
the regularization constants by trial and error and use the values for model estimation.

Load the data.

load regularizationExampleData.mat m0simdata

Estimate an unregularized OE model of order 30.

m1 = oe(m0simdata,[30 30 1]);

Obtain a regularized OE model by determining the Lambda value using trial and error.

opt = oeOptions;
opt.Regularization.Lambda = 1;
m2 = oe(m0simdata,[30 30 1],opt);

Compare the model outputs with the estimation data.

opt = compareOptions('InitialCondition','z');
compare(m0simdata,m1,m2,opt);

The regularized model m2 produces a better fit than the unregularized model m1.

1 Functions

1-1248

Compare the variance in the model responses.

h = bodeplot(m1,m2);
opt = getoptions(h);
opt.PhaseMatching = 'on';
opt.ConfidenceRegionNumberSD = 3;
opt.PhaseMatching = 'on';
setoptions(h,opt);
showConfidence(h);

The regularized model m2 has a reduced variance compared to the unregularized model m1.

Estimate Continuous Model Using Band-Limited Discrete-Time Frequency-Domain Data

Load the estimation data data and sample time Ts.

load oe_data2.mat data Ts

An iddata object data contains the discrete-time frequency response for the following model:

G(s) = 1000
s + 500

View the estimation sample time Ts that you loaded.

 oe

1-1249

Ts

Ts = 1.0000e-03

This value matches the property data.Ts.

data.Ts

ans = 1.0000e-03

You can estimate a continuous model from data by limiting the input and output frequency bands to
the Nyquist frequency. To do so, specify the estimation prefilter option 'WeightingFilter' to define
a passband from 0 to 0.5*pi/Ts rad/s. The software ignores any response values with frequencies
outside of that passband.

opt = oeOptions('WeightingFilter',[0 0.5*pi/Ts]);

Set the Ts property to 0 to treat data as continuous-time data.

data.Ts = 0;

Estimate the continuous model.

nb = 1;
nf = 3;
sys = oe(data,[nb nf],opt);

Obtain Initial Conditions

Load the data.

load iddata1ic z1i

Estimate an OE polynomial model sys and return the initial conditions in ic.

nb = 2;
nf = 2;
nk = 1;
[sys,ic] = oe(z1i,[nb,nf,nk]);
ic

ic =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [0.9428 0.4824]
 Ts: 0.1000

ic is an initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z1i output signal.

1 Functions

1-1250

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables.

Estimation data, specified as a timetable that uses a regularly spaced time vector. tt contains
variables representing input and output channels. For multiexperiment data, tt is a cell array of
timetables of length Ne, where Ne is the number of experiments

The software determines the number of input and output channels to use for estimation from the
dimensions of the specified polynomial orders. The input/output channel selection depends on
whether the 'InputName' and 'OutputName' name-value arguments are specified.

• If 'InputName' and 'OutputName' are not specified, then the software uses the first Nu
variables of tt as inputs and the next Ny variables of tt as outputs.

• If 'InputName' and 'OutputName' are specified, then the software uses the specified variables.
The number of specified input and output names must be consistent with Nu and Ny.

• For functions that can estimate a time series model, where there are no inputs, 'InputName'
does not need to be specified.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

For time series data, which contains only outputs and no inputs, specify y only.
Limitations

• Matrix-based data does not support estimation from frequency-domain data. You must use a data
object such as an iddata object or idfrd object (see data).

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data
iddata object | frd object | idfrd object

Estimation data, specified as an iddata object, an frd object, or an idfrd object.

For time-domain estimation, data must be an iddata object containing the input and output signal
values.

 oe

1-1251

For frequency-domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)
• iddata object with properties specified as follows:

• InputData — Fourier transform of the input signal
• OutputData — Fourier transform of the output signal
• Domain — 'Frequency'

Time-domain estimation data must be uniformly sampled. By default, the software sets the sample
time of the model to the sample time of the estimation data.

For multiexperiment data, the sample times and intersample behavior of all the experiments must
match.

You can compute discrete-time models from time-domain data or discrete-time frequency-domain
data. Use tfest to compute continuous-time models.

[nb nf nk] — OE model orders
integer row vector | row vector of integer matrices

OE model orders, specified as a 1-by-3 vector or a vector of integer matrices.

For a system represented by

y(t) = B(q)
F(q)u(t − nk) + e(t)

where y(t) is the output, u(t) is the input, and e(t) is the error, the elements of [nb nf nk] are as
follows:

• nb — Order of the B(q) polynomial + 1, which is equivalent to the length of the B(q) polynomial.
nb is an Ny-by-Nu matrix. Ny is the number of outputs and Nu is the number of inputs.

• nf — Order of the F polynomial. nf is an Ny-by-Nu matrix.
• nk — Input delay, expressed as the number of samples. nk is an Ny-by-Nu matrix. The delay

appears as leading zeros of the B polynomial.

For estimation using continuous-time frequency-domain data, specify only [nb nf] and omit nk. For
an example, see “Estimate Continuous-Time OE Model Using Frequency Response” on page 1-1247.

init_sys — Linear system
idpoly model | linear model | structure

Linear system that configures the initial parameterization of sys, specified as an idpoly model,
another linear model, or a structure. You obtain init_sys either by performing an estimation using
measured data or by direct construction.

If init_sys is an idpoly model of the OE structure, oe uses the parameter values of init_sys as
the initial guess for estimating sys. The sample time of init_sys must match the sample time of the
data.

Use the Structure property of init_sys to configure initial guesses and constraints for B(q) and
F(q). For example:

1 Functions

1-1252

• To specify an initial guess for the F(q) term of init_sys, set init_sys.Structure.F.Value as
the initial guess.

• To specify constraints for the B(q) term of init_sys:

• Set init_sys.Structure.B.Minimum to the minimum B(q) coefficient values.
• Set init_sys.Structure.B.Maximum to the maximum B(q) coefficient values.
• Set init_sys.Structure.B.Free to indicate which B(q) coefficients are free for estimation.

If init_sys is not a polynomial model of the OE structure, the software first converts init_sys to
an OE structure model. oe uses the parameters of the resulting model as the initial guess for
estimating sys.

If you do not specify opt and init_sys was obtained by estimation, then the software uses
estimation options from init_sys.Report.OptionsUsed.

opt — Estimation options
oeOptions option set

Estimation options, specified as an oeOptions option set. Options specified by opt include:

• Estimation objective
• Handling of initial conditions
• Numerical search method and the associated options

For examples of specifying estimation options, see “Estimate Continuous Model Using Band-Limited
Discrete-Time Frequency-Domain Data” on page 1-1249.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'InputDelay',1

InputName — Input channel names
" " (default) | string | character vector | array of strings | cell array of character vectors

Input channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets all but the last variable in tt
as input channels. When you want to select a subset of the timetable variables as input channels use
'InputName' to identify them. For example, sys = oe(tt,__,'InputName',["u1" "u2"])
selects the variables u1 and u2 as the input channels for the estimation.

OutputName — Output signal names
" " (default) | character vector | string | cell array of character vectors or strings

Output channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets the last variable in tt as the
sole output channel. When you want to select a subset of the timetable variables as output channels,
use 'OutputName' to identify them. For example, sys = oe(tt,__,'OutputName',["y1"
"y3"]) selects the variables y1 and y3 as the output channels for the estimation.

 oe

1-1253

Ts — Sample time
1 (default) | positive scalar

Sample time, specified as the comma-separated pair consisting of 'Ts' and the sample time in
seconds. When you use matrix-based data (u,y), you must specify 'Ts' if you require a sample time
other than the assumed sample time of 1 second.

To obtain the data sample time for a timetable tt, use the timetable property
tt.Properties.Timestep.
Example: oe(umat1,ymat1,___,'Ts',0.08) computes a model with sample time of 0.08 seconds.

InputDelay — Input delays
0 (default) | positive integer vector | integer scalar

Input delays for each input channel, specified as the comma-separated pair consisting of
'InputDelay' and a numeric vector.

• For continuous-time models, specify 'InputDelay' in the time units stored in the TimeUnit
property.

• For discrete-time models, specify 'InputDelay' in integer multiples of the sample time Ts. For
example, setting 'InputDelay' to 3 specifies a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

To apply the same delay to all channels, specify 'InputDelay' as a scalar.

For an example, see “Estimate OE Polynomial Model” on page 1-1244.

IODelay — Transport delays
0 (default) | scalar | numeric array

Transport delays for each input-output pair, specified as the comma-separated pair consisting of
'IODelay' and a numeric array.

• For continuous-time models, specify 'IODelay' in the time units stored in the TimeUnit
property.

• For discrete-time models, specify 'IODelay' in integer multiples of the sample time Ts. For
example, setting 'IODelay' to 4 specifies a transport delay of four sampling periods.

For a system with Nu inputs and Ny outputs, set 'IODelay' to an Ny-by-Nu matrix. Each entry is an
integer value representing the transport delay for the corresponding input-output pair.

To apply the same delay to all channels, specify 'IODelay' as a scalar.

You can specify 'IODelay' as an alternative to the nk value. Doing so simplifies the model structure
by reducing the number of leading zeros in the B polynomial. In particular, you can represent
max(nk-1,0) leading zeros as input-output delays using 'IODelay' instead.

Output Arguments
sys — OE polynomial model
idpoly object

1 Functions

1-1254

OE polynomial model that fits the estimation data, returned as an idpoly model object. This model is
created using the specified model orders, delays, and estimation options. The sample time of sys
matches the sample time of the estimation data. Therefore, sys is always a discrete-time model when
estimated from time-domain data. For continuous-time model identification using time-domain data,
use tfest.

The Report property of the model stores information about the estimation results and options used.
Report has the following fields.

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent estimation

parameters.
• 'backcast' — The initial conditions were estimated using the best least squares
fit.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option set is 'auto'.

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See oeOptions for more information.

 oe

1-1255

Report
Field

Description

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

1 Functions

1-1256

For more information on using Report, see “Estimation Report”.

ic — Initial conditions
initialCondition object | object array of initialCondition values

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

• For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x0).

• For a multiple-experiment data set with Ne experiments, ic is an object array of length Ne that
contains one set of initialCondition values for each experiment.

If oe returns ic values of 0 and the you know that you have non-zero initial conditions, set the
'InitialCondition' option in oeOptions to 'estimate' and pass the updated option set to oe.
For example:

opt = oeOptions('InitialCondition','estimate')
[sys,ic] = oe(data,np,nz,opt)

The default 'auto' setting of 'InitialCondition' uses the 'zero' method when the initial
conditions have a negligible effect on the overall estimation-error minimization process. Specifying
'estimate' ensures that the software estimates values for ic.

For more information, see initialCondition. For an example of using this argument, see “Obtain
Initial Conditions” on page 1-1250.

More About
Output-Error (OE) Model

The general output-error model structure is:

y(t) = B(q)
F(q)u(t − nk) + e(t)

The orders of the output-error model are:

nb: B(q) = b1 + b2q−1 + ... + bnbq−nb + 1

nf : F(q) = 1 + f1q−1 + ... + fnfq−nf

Continuous-Time Output-Error Model

If data is continuous-time frequency-domain data, oe estimates a continuous-time model with the
following transfer function:

G(s) = B(s)
F(s) =

bnbs(nb− 1) + bnb− 1s(nb− 2) + ... + b1
snf + fnfs(nf − 1) + ... + f1

The orders of the numerator and denominator are nb and nf, similar to the discrete-time case.
However, the sample delay nk does not exist in the continuous case, and you should not specify nk
when you command the estimation. Instead, express any system delay using the name-value pair
argument 'IODelay' along with the system delay in the time units that are stored in the property

 oe

1-1257

TimeUnit. For example, suppose that your continuous system has a delay of iod seconds. Use model
= oe(data,[nb nf],'IODelay',iod).

Version History
Introduced before R2006a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

See Also
oeOptions | tfest | arx | armax | iv4 | n4sid | bj | polyest | idpoly | iddata | idfrd | sim |
compare

Topics
“What Are Polynomial Models?”
“Data Supported by Polynomial Models”
“Regularized Estimates of Model Parameters”
“Apply Initial Conditions When Simulating Identified Linear Models”

1 Functions

1-1258

oeOptions
Option set for oe

Syntax
opt = oeOptions
opt = oeOptions(Name,Value)

Description
opt = oeOptions creates the default options set for oe.

opt = oeOptions(Name,Value) creates an option set with the options specified by one or more
Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate' | 'backcast'

Handling of initial conditions during estimation, specified as one of the following values:

• 'zero' — The initial conditions are set to zero.
• 'estimate' — The initial conditions are treated as independent estimation parameters.
• 'backcast' — The initial conditions are estimated using the best least squares fit.
• 'auto' — The software chooses the method to handle initial conditions based on the estimation

data.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,

 oeOptions

1-1259

[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

• Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EnforceStability — Option to enforce stability of model
false (default) | true

Option to enforce stability of the estimated model, specified as true or false.

Use this option when estimating models using frequency-domain data. Models estimated using time-
domain data are always stable.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.

1 Functions

1-1260

• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as a structure with the fields in the
following table. For more information on regularization, see “Regularized Estimates of Model
Parameters”.

Field Name Description Default
Lambda Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the
estimation cost.

The default value of 0 implies no regularization.

0

R Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-
definite matrix. The length must be equal to the number of free
parameters of the model.

For black-box models, using the default value is recommended. For
structured and grey-box models, you can also specify a vector of np
positive numbers such that each entry denotes the confidence in the
value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where
npfree is the number of free parameters.

1

 oeOptions

1-1261

Field Name Description Default
Nominal The nominal value towards which the free parameters are pulled

during estimation.

The default value of 0 implies that the parameter values are pulled
towards zero. If you are refining a model, you can set the value to
'model' to pull the parameters towards the parameter values of the
initial model. The initial parameter values must be finite for this
setting to work.

0

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.

1 Functions

1-1262

SearchMethod Description
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

 oeOptions

1-1263

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

1 Functions

1-1264

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

 oeOptions

1-1265

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

1 Functions

1-1266

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

 oeOptions

1-1267

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight
in the loss function. The standard deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors, divided by 0.7. For more information on
robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic loss function.
When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For
time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
• MaxSize — Specifies the maximum number of elements in a segment when input-output data is

split into segments.

MaxSize must be a positive integer.

Default: 250000
• StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

• s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0
• z — Specifies the maximum distance of all poles from the origin to test stability of discrete-

time models. A model is considered stable if all poles are within the distance z from the origin.

1 Functions

1-1268

Default: 1+sqrt(eps)
• AutoInitThreshold — Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

yp, z − ymeas
yp, e− ymeas

> AutoInitThreshold

• ymeas is the measured output.
• yp,z is the predicted output of a model estimated using zero initial conditions.
• yp,e is the predicted output of a model estimated using estimated initial conditions.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output Arguments
opt — Options set for oe
oeOptions option set

Option set for oe, returned as an oeOptions option set.

Examples

Create Default Options Set for Output-Error Estimation

opt = oeOptions;

Specify Options for Output-Error Estimation

Create an options set for oe using the 'backcast' algorithm to initialize the condition and set the
Display to 'on'.

opt = oeOptions('InitialCondition','backcast','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = oeOptions;
opt.InitialCondition = 'backcast';
opt.Display = 'on';

Version History
Introduced in R2012a

Renaming of Estimation and Analysis Options

 oeOptions

1-1269

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References

[1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates”. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3–8,
2005. Oxford, UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

See Also
oe | idfilt

Topics
“Loss Function and Model Quality Metrics”

1 Functions

1-1270

idnlarx/operspec
Construct operating point specification object for idnlarx model

Syntax
spec = operspec(nlsys)

Description
spec = operspec(nlsys) creates a default operating point specification object for the idnlarx
model nlsys. This object is used with findop and specifies constraints on the model input and
output signal values. Modify the default specifications using dot notation.

Input Arguments
nlsys — Nonlinear ARX model
idnlarx object

Nonlinear ARX model, specified as an idnlarx object.

Output Arguments
spec — Operating point specification
operating point specification object

Operating point specification, used to determine an operating point of the idnlarx model using
findop, returned as an object containing the following:

• Input — Structure with fields:

Field Description Default
for
Each
Input

Value Initial guesses or fixed levels for the values of the model inputs, specified as
a vector with length equal to the number of input signals.

0

Min Minimum value constraints on the model inputs, specified as a vector with
length equal to the number of input signals.

-Inf

Max Maximum value constraints on the model inputs, specified as a vector with
length equal to the number of input signals.

Inf

Known Known value indicator, specified as a logical vector with length equal to the
number of input signals and with the following values:

• true — findop will set the corresponding input signal to Value.
• false — findop will estimate the corresponding input signal using

Value as an initial guess.

true

 idnlarx/operspec

1-1271

• Output — Structure with fields:

Field Description Default
for
Each
Output

Value Initial guesses for the values of the model outputs, specified as a vector
with length equal to the number of output signals.

0

Min Minimum value constraints on the model outputs, specified as a vector with
length equal to the number of output signals.

-Inf

Max Maximum value constraints on the model outputs, specified as a vector with
length equal to the number of output signals.

Inf

Version History
Introduced in R2008a

See Also
idnlarx/findop

1 Functions

1-1272

idnlhw/operspec
Construct operating point specification object for idnlhw model

Syntax
spec = operspec(nlsys)

Description
spec = operspec(nlsys) creates a default operating point specification object for the idnlhw
model nlsys. This object is used with findop and specifies constraints on the model input and
output signal values. Modify the default specifications using dot notation.

Input Arguments
nlsys — Nonlinear Hammerstein-Wiener model
idnlhw object

Nonlinear Hammerstein-Wiener model, specified as an idnlhw object.

Output Arguments
spec — Operating point specification
operating point specification object

Operating point specification, used to determine an operating point of the idnlhw model using
findop, returned as an object containing the following:

• Input — Structure with fields:

Field Description Default
for
Each
Input

Value Initial guesses or fixed levels for the values of the model inputs, specified as
a vector with length equal to the number of input signals.

0

Min Minimum value constraints on the model inputs, specified as a vector with
length equal to the number of input signals.

-Inf

Max Maximum value constraints on the model inputs, specified as a vector with
length equal to the number of input signals.

Inf

Known Known value indicator, specified as a logical vector with length equal to the
number of input signals and with the following values:

• true — findop will set the corresponding input signal to Value.
• false — findop will estimate the corresponding input signal using

Value as an initial guess.

true

 idnlhw/operspec

1-1273

• Output — Structure with fields:

Field Description Default
for
Each
Input

Value Target values the model outputs, specified as a vector with length equal to
the number of output signals.

0

Min Minimum value constraints on the model outputs, specified as a vector with
length equal to the number of output signals.

-Inf

Max Maximum value constraints on the model outputs, specified as a vector with
length equal to the number of output signals.

Inf

Known Known value indicator, specified as a logical vector with length equal to the
number of output signals and with the following values:

• true — findop will use Value as an estimation target for the
corresponding output.

• false — findop will keep the corresponding output within the
constraints specified by Min and Max.

false

Note

1 If Input.Known is true for all model inputs, then the initial state values are determined using
the input specifications only. In this case, findop ignores the specifications in the Output
structure.

2 Otherwise, findop uses the output specifications to meet the objectives indicated by
Output.Known.

Version History
Introduced in R2008a

See Also
idnlhw/findop

1 Functions

1-1274

order
Query model order

Syntax
NS = order(sys)

Description
NS = order(sys) returns the model order NS. The order of a dynamic system model is the number
of poles (for proper transfer functions) or the number of states (for state-space models). For improper
transfer functions, the order is defined as the minimum number of states needed to build an
equivalent state-space model (ignoring pole/zero cancellations).

order(sys) is an overloaded method that accepts SS, TF, and ZPK models. For LTI arrays, NS is an
array of the same size listing the orders of each model in sys.

Caveat
order does not attempt to find minimal realizations of MIMO systems. For example, consider this 2-
by-2 MIMO system:

s=tf('s');
h = [1, 1/(s*(s+1)); 1/(s+2), 1/(s*(s+1)*(s+2))];
order(h)
ans =

 6

Although h has a 3rd order realization, order returns 6. Use

order(ss(h,'min'))

to find the minimal realization order.

Version History
Introduced in R2012a

See Also
pole | balred

 order

1-1275

particleFilter
Particle filter object for online state estimation

Description
A particle filter is a recursive, Bayesian state estimator that uses discrete particles to approximate
the posterior distribution of an estimated state. It is useful for online state estimation when
measurements and a system model, that relates model states to the measurements, are available. The
particle filter algorithm computes the state estimates recursively and involves initialization,
prediction, and correction steps.

particleFilter creates an object for online state estimation of a discrete-time nonlinear system
using the discrete-time particle filter algorithm.

Consider a plant with states x, input u, output m, process noise w, and measurement y. Assume that
you can represent the plant as a nonlinear system.

The algorithm computes the state estimates x of the nonlinear system using the state transition and
measurement likelihood functions you specify.

The software supports arbitrary nonlinear state transition and measurement models, with arbitrary
process and measurement noise distributions.

To perform online state estimation, create the nonlinear state transition function and measurement
likelihood function. Then construct the particleFilter object using these nonlinear functions.
After you create the object:

1 Initialize the particles using the initialize command.
2 Predict state estimates at the next step using the predict command.
3 Correct the state estimates using the correct command.

The prediction step uses the latest state to predict the next state based on the state transition model
you provide. The correction step uses the current sensor measurement to correct the state estimate.
The algorithm optionally redistributes, or resamples, the particles in the state space to match the
posterior distribution of the estimated state. Each particle represents a discrete state hypothesis of
these state variables. The set of all particles is used to help determine the state estimate.

1 Functions

1-1276

Creation

Syntax
pf = particleFilter(StateTransitionFcn,MeasurementLikelihoodFcn)

Object Description

pf = particleFilter(StateTransitionFcn,MeasurementLikelihoodFcn) creates a particle
filter object for online state estimation of a discrete-time nonlinear system. StateTransitionFcn is
a function that calculates the particles (state hypotheses) at the next time step, given the state vector
at a time step. MeasurementLikelihoodFcn is a function that calculates the likelihood of each
particle based on sensor measurements.

After creating the object, use the initialize command to initialize the particles with a known mean
and covariance or uniformly distributed particles within defined bounds. Then, use the correct and
predict commands to update particles (and hence the state estimate) using sensor measurements.

Input Arguments

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle, determines the transition of particles (state
hypotheses) between time steps. Also a property of the particleFilter object. For more
information, see “Properties” on page 1-1277.

MeasurementLikelihoodFcn — Measurement likelihood function
function handle

Measurement likelihood function, specified as a function handle, is used to calculate the likelihood of
particles (state hypotheses) from sensor measurements. Also a property of the particleFilter
object. For more information, see “Properties” on page 1-1277.

Properties
NumStateVariables — Number of state variables
[] (default) | scalar

Number of state variables, specified as a scalar. This property is read-only and is set using
initialize. The number of states is implicit based on the specified matrices for the initial mean of
particles, or the state bounds.

NumParticles — Number of particles used in the filter
[] (default) | scalar

Number of particles used in the filter, specified as a scalar. Each particle represents a state
hypothesis. You specify this property only by using initialize.

StateTransitionFcn — State transition function
function handle

 particleFilter

1-1277

State transition function, specified as a function handle, determines the transition of particles (state
hypotheses) between time steps. This function calculates the particles at the next time step, including
the process noise, given particles at a time step.

In contrast, the state transition function for the extendedKalmanFilter and
unscentedKalmanFilter generates a single state estimate at a given time step.

You write and save the state transition function for your nonlinear system, and specify it as a function
handle when constructing the particleFilter object. For example, if
vdpParticleFilterStateFcn.m is the state transition function, specify StateTransitionFcn as
@vdpParticleFilterStateFcn. You can also specify StateTransitionFcn as a function handle
to an anonymous function.

The function signature is as follows:
function predictedParticles = myStateTransitionFcn(previousParticles,varargin)

The StateTransitionFcn function accepts at least one input argument. The first argument is the
set of particles previousParticles that represents the state hypotheses at the previous time step.
The optional use of varargin in the function enables you to input any extra parameters that are
relevant for predicting the next state, using predict, as follows:

predict(pf,arg1,arg2)

If StateOrientation is 'column', then previousParticles is a NumStateVariables-by-
NumParticles array. If StateOrientation is 'row', then previousParticles is a
NumParticles-by-NumStateVariables array.

StateTransitionFcn must return exactly one output, predictedParticles, which is the set of
predicted particle locations for the current time step (array with same dimensions as
previousParticles).

StateTransitionFcn must include the random process noise (from any distribution suitable for
your application) in the predictedParticles.

To see an example of a state transition function with the StateOrientation property set to
'column', type edit vdpParticleFilterStateFcn at the command line.

MeasurementLikelihoodFcn — Measurement likelihood function
function handle

Measurement likelihood function, specified as a function handle, is used to calculate the likelihood of
particles (state hypotheses) using the sensor measurements. For each state hypothesis (particle), the
function first calculates an N-element measurement hypothesis vector. Then the likelihood of each
measurement hypothesis is calculated based on the sensor measurement and the measurement noise
probability distribution.

In contrast, the measurement function for extendedKalmanFilter and unscentedKalmanFilter
takes a single state hypothesis and returns a single measurement estimate.

You write and save the measurement likelihood function based on your measurement model, and use
it to construct the object. For example, if vdpMeasurementLikelihoodFcn.m is the measurement
likelihood function, specify MeasurementLikelihoodFcn as @vdpMeasurementLikelihoodFcn.
You can also specify MeasurementLikelihoodFcn as a function handle to an anonymous function.

The function signature is as follows:

1 Functions

1-1278

function likelihood = myMeasurementLikelihoodFcn(predictedParticles,measurement,varargin)

The MeasurementLikelihoodFcn function accepts at least two input arguments. The first
argument is the set of particles predictedParticles that represents the predicted state
hypothesis. If StateOrientation is 'column', then predictedParticles is a
NumStateVariables-by-NumParticles array. If StateOrientation is 'row', then
predictedParticles is a NumParticles-by-NumStateVariables array. The second argument,
measurement, is the N-element sensor measurement at the current time step. You can provide
additional input arguments using varargin.

The MeasurementLikelihoodFcn must return exactly one output, likelihood, a vector with
NumParticles length, which is the likelihood of the given measurement for each particle (state
hypothesis).

To see an example of a measurement likelihood function, type edit
vdpMeasurementLikelihoodFcn at the command line.

IsStateVariableCircular — Whether the state variables have a circular distribution
[] (default) | logical array

Whether the state variables have a circular distribution, specified as a logical array.

This is a read-only property and is set using initialize.

Circular (or angular) distributions use a probability density function with a range of [-pi,pi].
IsStateVariableCircular is a row-vector with NumStateVariables elements. Each vector
element indicates whether the associated state variable is circular.

ResamplingPolicy — Policy settings that determine when to trigger resampling
particleResamplingPolicy object

Policy settings that determine when to trigger resampling, specified as a
particleResamplingPolicy object.

The resampling of particles is a vital step in estimating states using a particle filter. It enables you to
select particles based on the current state, instead of using the particle distribution given at
initialization. By continuously resampling the particles around the current estimate, you can get more
accurate tracking and improve long-term performance.

You can trigger resampling either at fixed intervals or dynamically, based on the number of effective
particles. The minimum effective particle ratio is a measure of how well the current set of particles
approximates the posterior distribution. The number of effective particles is calculated by:

Nef f = 1

∑
i = 1

N
wi 2

In this equation, N is the number of particles, and w is the normalized weight of each particle. The
effective particle ratio is then Neff / NumParticles. Therefore, the effective particle ratio is a
function of the weights of all the particles. After the weights of the particles reach a low enough
value, they are not contributing to the state estimation. This low value triggers resampling, so the
particles are closer to the current state estimation and have higher weights.

The following properties of the particleResamplingPolicy object can be modified to control
when resampling is triggered:

 particleFilter

1-1279

P
r
o
p
e
r
t
y

V
a
l
u
e

T
y
p
e

Description

T
r
i
g
g
e
r
M
e
t
h
o
d

'
r
a
t
i
o
'
(
d
e
f
a
u
l
t
)

'
i
n
t
e
r
v
a
l
'

c
h
a
r
a
c
t
e
r
v
e
c
t
o
r

It is a method to determine when resampling occurs, based on the value chosen. The 'interval'
value triggers resampling at regular time steps of the particle filter operation. The 'ratio' value
triggers resampling based on the ratio of effective total particles.

S
a
m
p
l
i
n
g
I
n
t
e
r
v
a
l

1
(
d
e
f
a
u
l
t
)

s
c
a
l
a
r

Fixed interval between resampling, specified as a scalar. This interval determines during which
correction steps the resampling is executed. For example, a value of 2 means the resampling is
executed every second correction step. A value of inf means that resampling is never executed.

This property only applies with the TriggerMethod is set to 'interval'.

1 Functions

1-1280

P
r
o
p
e
r
t
y

V
a
l
u
e

T
y
p
e

Description

M
i
n
E
ff
e
c
t
i
v
e
P
a
r
t
i
c
l
e
R
a
t
i
o

0
.
5
(
d
e
f
a
u
l
t
)

s
c
a
l
a
r

It is the minimum desired ratio of the effective number of particles to the total number of particles
NumParticles. The effective number of particles is a measure of how well the current set of
particles approximates the posterior distribution. A lower effective particle ratio implies that a lower
number of particles are contributing to the estimation and resampling is required.

If the ratio of the effective number of particles to the total number of particles NumParticles falls
below the MinEffectiveParticleRatio, a resampling step is triggered.

ResamplingMethod — Method used for particle resampling
'multinomial' (default) | 'residual' | 'stratified' | 'systematic'

Method used for particle resampling, specified as one of the following:

• 'multinomial' — Multinomial resampling, also called simplified random sampling, generates N
random numbers independently from the uniform distribution in the open interval (0,1) and uses
them to select particles proportional to their weight.

• 'residual' — Residual resampling consists of two stages. The first stage is a deterministic
replication of each particle that have weights larger than 1/N. The second stage consists of
random sampling using the remainder of the weights (labelled as residuals).

• 'stratified' — Stratified resampling divides the whole population of particles into subsets
called strata. It pre-partitions the (0,1) interval into N disjoint sub-intervals of size 1/N. The
random numbers are drawn independently in each of these sub-intervals and the sample indices
chosen in the strata.

• 'systematic' — Systematic resampling is similar to stratified resampling as it also makes use of
strata. One distinction is that it only draws one random number from the open interval (0,1/N)
and the remaining sample points are calculated deterministically at a fixed 1/N step size.

 particleFilter

1-1281

StateEstimationMethod — Method used for extracting a state estimate from particles
'mean' (default) | 'maxweight'

Method used for extracting a state estimate from particles, specified as one of the following:

• 'mean' - The object outputs the weighted mean of the particles, depending on the properties
Weights and Particles, as the state estimate.

• 'maxweight' - The object outputs the particle with the highest weight as the state estimate.

Particles — Array of particle values
[] (default) | array

Array of particle values, specified as an array based on the StateOrientation property:

• If StateOrientation is 'row' then Particles is an NumParticles-by-NumStateVariables
array.

• If StateOrientation is 'column' then Particles is an NumStateVariables-by-
NumParticles array.

Each row or column corresponds to a state hypothesis (a single particle).

Weights — Particle weights
[] (default) | vector

Particle weights, defined as a vector based on the value of the StateOrientation property:

• If StateOrientation is 'row' then Weights is a NumParticles-by-1 vector, where each
weight is associated with the particle in the same row in the Particles property.

• If StateOrientation is 'column' then Weights is a 1-by-NumParticles vector, where each
weight is associated with the particle in the same column in the Particles property.

State — Current state estimate
[] (default) | vector

Current state estimate, defined as a vector based on the value of the StateOrientation property:

• If StateOrientation is 'row' then State is a 1-by-NumStateVariables vector
• If StateOrientation is 'column' then State is a NumStateVariables-by-1 vector

State is a read-only property, and is derived from Particles based on the
StateEstimationMethod property. Refer to “StateEstimationMethod” on page 1-0 for details on
how the value of State is determined.

State along with StateCovariance can also be determined using getStateEstimate.

StateCovariance — Current estimate of state estimation error covariance
NumStateVariables-by-NumStateVariables array (default) | [] | array

Current estimate of state estimation error covariance, defined as an NumStateVariables-by-
NumStateVariables array. StateCovariance is a read-only property and is calculated based on
the StateEstimationMethod. If you specify a state estimation method that does not support
covariance, then the function returns StateCovariance as [].

StateCovariance and State can be determined together using getStateEstimate.

1 Functions

1-1282

Object Functions
initialize Initialize the state of the particle filter
predict Predict state and state estimation error covariance at next time step using

extended or unscented Kalman filter, or particle filter
correct Correct state and state estimation error covariance using extended or unscented

Kalman filter, or particle filter and measurements
getStateEstimate Extract best state estimate and covariance from particles
clone Copy online state estimation object

Examples

Create Particle Filter Object for Online State Estimation

To create a particle filter object for estimating the states of your system, create appropriate state
transition function and measurement likelihood function for the system.

In this example, the function vdpParticleFilterStateFcn describes a discrete-time
approximation to van der Pol oscillator with nonlinearity parameter, mu, equal to 1. In addition, it
models Gaussian process noise. vdpMeasurementLikelihood function calculates the likelihood of
particles from the noisy measurements of the first state, assuming a Gaussian measurement noise
distribution.

Create the particle filter object. Use function handles to provide the state transition and
measurement likelihood functions to the object.

myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);

To initialize and estimate the states and state estimation error covariance from the constructed
object, use the initialize, predict, and correct commands.

Estimate States Online using Particle Filter

Load the van der Pol ODE data, and specify the sample time.

vdpODEdata.mat contains a simulation of the van der Pol ODE with nonlinearity parameter mu=1,
using ode45, with initial conditions [2;0]. The true state was extracted with sample time dt =
0.05.

load ('vdpODEdata.mat','xTrue','dt')
tSpan = 0:dt:5;

Get the measurements. For this example, a sensor measures the first state with a Gaussian noise with
standard deviation 0.04.

sqrtR = 0.04;
yMeas = xTrue(:,1) + sqrtR*randn(numel(tSpan),1);

Create a particle filter, and set the state transition and measurement likelihood functions.

myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);

Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.

 particleFilter

1-1283

initialize(myPF,1000,[2;0],eye(2));

Pick the mean state estimation and systematic resampling methods.

myPF.StateEstimationMethod = 'mean';
myPF.ResamplingMethod = 'systematic';

Estimate the states using the correct and predict commands, and store the estimated states.

xEst = zeros(size(xTrue));
for k=1:size(xTrue,1)
 xEst(k,:) = correct(myPF,yMeas(k));
 predict(myPF);
end

Plot the results, and compare the estimated and true states.

figure(1)
plot(xTrue(:,1),xTrue(:,2),'x',xEst(:,1),xEst(:,2),'ro')
legend('True','Estimated')

Version History
Introduced in R2017b

1 Functions

1-1284

References
[1] T. Li, M. Bolic, P.M. Djuric, "Resampling Methods for Particle Filtering: Classification,

implementation, and strategies," IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 70-86,
May 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For more information, see “Generate Code for Online State Estimation in MATLAB”.

Supports MATLAB Function block: No

See Also
Functions
initialize | predict | correct | clone | unscentedKalmanFilter | extendedKalmanFilter

Topics
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
“Generate Code for Online State Estimation in MATLAB”
“What Is Online Estimation?”
“Validate Online State Estimation at the Command Line”
“Troubleshoot Online State Estimation”

External Websites
Understanding Kalman Filters: Nonlinear State Estimators — MATLAB Video Series

 particleFilter

1-1285

https://www.mathworks.com/videos/understanding-kalman-filters-part-5-nonlinear-state-estimators-1495052905460.html

pe
Prediction error for identified model

Syntax
err = pe(sys,data,K)
err = pe(sys,data,K,opt)
[err,ice,sys_pred] = pe(___)
pe(sys,data,K, ___)
pe(sys,Linespec,data,K, ___)
pe(sys1,...,sysN,data,K, ___)
pe(sys1,Linespec1,...,sysN,LinespecN,data,K, ___)

Description
err = pe(sys,data,K) returns the K-step prediction error for the output of the identified model
sys. The prediction error is determined by subtracting the K-step ahead predicted response from the
measured output. The prediction error is calculated for the time span covered by data. For more
information on the computation of predicted response, see predict.

err = pe(sys,data,K,opt) returns the prediction error using the option set, opt, to specify
prediction error calculation behavior.

[err,ice,sys_pred] = pe(___) also returns the estimated initial conditions, ice, and a
predictor system, sys_pred.

pe(sys,data,K, ___) plots the prediction error. Use with any of the previous input argument
combinations. To change display options in the plot, right-click the plot to access the context menu.
For more details about the menu, see “Tips” on page 1-1289.

pe(sys,Linespec,data,K, ___) uses Linespec to specify the line type, marker symbol, and
color.

pe(sys1,...,sysN,data,K, ___) plots the prediction errors for multiple identified models. pe
automatically chooses colors and line styles.

pe(sys1,Linespec1,...,sysN,LinespecN,data,K, ___) uses the line type, marker symbol,
and color specified for each model.

Input Arguments
sys

Identified model.

data

Measured input-output history.

1 Functions

1-1286

If sys is a time-series model, which has no input signals, then specify data as an iddata object with
no inputs. In this case, you can also specify data as a matrix of the past time-series values.

K

Prediction horizon.

Specify K as a positive integer that is a multiple of the data sample time. Use K = Inf to compute
the pure simulation error.

Default: 1

opt

Prediction options.

opt is an option set, created using peOptions, that configures the computation of the predicted
response. Options that you can specify include:

• Handling of initial conditions
• Data offsets

Linespec

Line style, marker, and color

Line style, marker, and color, specified as a character vector. For example, 'b' or 'b+:'.

For more information about configuring Linespec, see plot.

Output Arguments
err

Prediction error.

err is returned as an iddata object or matrix, depending on how you specify data. For example, if
data is an iddata object, then so is err.

Outputs up to the time t-K and inputs up to the time instant t are used to calculate the prediction
error at the time instant t.

When K = Inf, the predicted output is a pure simulation of the system.

For multi-experiment data, err contains the prediction error data for each experiment. The time span
of the prediction error matches that of the observed data.

ice

Estimated initial conditions.

ice is returned as a column vector of initial states for state-space systems and as an
initialCondition object for transfer function and polynomial systems.

 pe

1-1287

sys_pred

Predictor system.

sys_pred is a dynamic system. When you simulate sys_pred, using [data.OutputData
data.InputData] as the input, the output, yp, is such that err.OutputData =
data.OutputData - yp. For state-space models, the software uses x0e as the initial condition
when simulating sys_pred.

For discrete-time data, sys_pred is always a discrete-time model.

For multi-experiment data, sys_pred is an array of models, with one entry for each experiment.

Examples

Compute Prediction Error for an ARIX Model

Compute the prediction error for an ARIX model.

Use the error data to compute the variance of the noise source e(t).

Obtain noisy data.

noise = [(1:150)';(151:-1:2)'];

load iddata1 z1;
z1.y = z1.y+noise;

noise is a triangular wave that is added to the output signal of z1, an iddata object.

Estimate an ARIX model for the noisy data.

sys = arx(z1,[2 2 1],'IntegrateNoise',true);

Compute the prediction error of the estimated model.

K = 1;
err = pe(z1,sys,K);

pe computes the one-step prediction error for the output of the identified model, sys.

Compute the variance of the noise source, e(t).

noise_var = err.y'*err.y/(299-nparams(sys)-order(sys));

Compare the computed value with model's noise variance.

sys.NoiseVariance

The output of sys.NoiseVariance matches the computed variance.

Plot Prediction Error for Multiple Models

Load the estimation data.

1 Functions

1-1288

load iddata1;
data = z1;

Estimate an ARX model of order [2 2 1].

sys1 = arx(data,[2 2 1]);

Estimate a transfer function with 2 poles.

 sys2 = tfest(data,2);

Plot the prediction error for the estimated models. Specify prediction horizon as 10, and specify the
line styles for plotting the prediction error of each system.

pe(sys1,'r--',sys2,'b',data,10);

To change the display options, right-click the plot to access the context menu. For example, to view
the estimation data, select Show Validation Data from the context menu. To view the predicted
outputs, select Predicted Response Plot.

Tips
• Right-clicking the plot of the prediction error opens the context menu, where you can access the

following options:

 pe

1-1289

• Systems — Select systems to view prediction error. By default, the prediction error of all
systems is plotted.

• Data Experiment — For multi-experiment data only. Toggle between data from different
experiments.

• Characteristics — View the following data characteristics:

• Peak Value — View the absolute peak value of the data. Applicable for time–domain data
only.

• Peak Response — View peak response of the data. Applicable for frequency–response data
only.

• Mean Value — View mean value of the data. Applicable for time–domain data only.
• Show — For frequency–domain and frequency–response data only.

• Magnitude — View magnitude of frequency response of the system.
• Phase — View phase of frequency response of the system.

• Show Validation Data — Plot data used to compute the prediction error.
• I/O Grouping — For datasets containing more than one input or output channel. Select

grouping of input and output channels on the plot.

• None — Plot input-output channels in their own separate axes.
• All — Group all input channels together and all output channels together.

• I/O Selector — For datasets containing more than one input or output channel. Select a subset
of the input and output channels to plot. By default, all output channels are plotted.

• Grid — Add grids to the plot.
• Normalize — Normalize the y-scale of all data in the plot.
• Full View — Return to full view. By default, the plot is scaled to full view.
• Prediction Horizon — Set the prediction horizon, or choose simulation.
• Initial Condition — Specify handling of initial conditions. Not applicable for frequency-

response data.

Specify as one of the following:

• Estimate — Treat the initial conditions as estimation parameters.
• Zero — Set all initial conditions to zero.
• Absorb delays and estimate — Absorb nonzero delays into the model coefficients and

treat the initial conditions as estimation parameters. Use this option for discrete-time
models only.

• Predicted Response Plot — Plot the predicted model response.
• Prediction Error Plot — Plot the error between the model response and prediction data. By

default, the error plot is shown.
• Properties — Open the Property Editor dialog box to customize plot attributes.

Version History
Introduced before R2006a

1 Functions

1-1290

See Also
peOptions | predict | resid | sim | compare | ar | arx | n4sid | iddata

 pe

1-1291

peOptions
Option set for pe

Syntax
opt = peOptions
opt = peOptions(Name,Value)

Description
opt = peOptions creates the default options set for pe.

opt = peOptions(Name,Value) creates an option set with the options specified by one or more
Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialCondition

Handling of initial conditions.

Specify InitialCondition as one of the following:

• 'z' — Zero initial conditions.
• 'e' — Estimate initial conditions such that the prediction error for observed output is minimized.

For nonlinear grey-box models, only those initial states i that are designated as free in the model
(sys.InitialStates(i).Fixed = false) are estimated. To estimate all the states of the
model, first specify all the Nx states of the idnlgrey model sys as free.

for i = 1:Nx
sys.InitialStates(i).Fixed = false;
end

Similarly, to fix all the initial states to values specified in sys.InitialStates, first specify all
the states as fixed in the sys.InitialStates property of the nonlinear grey-box model.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model coefficients. The delays are first
converted to explicit model states, and the initial values of those states are also estimated and
returned.

Use this option for linear models only.

1 Functions

1-1292

• Vector or Matrix — Initial guess for state values, specified as a numerical column vector of length
equal to the number of states. For multi-experiment data, specify a matrix with Ne columns, where
Ne is the number of experiments. Otherwise, use a column vector to specify the same initial
conditions for all experiments. Use this option for state-space (idss and idgrey) and nonlinear
models (idnlarx, idnlhw, and idnlgrey) only.

• initialCondition object — initialCondition object that represents a model of the free
response of the system to initial conditions. For multiexperiment data, specify a 1-by-Ne array of
objects, where Ne is the number of experiments.

Use this option for linear models only.
• Structure with the following fields, which contain the historical input and output values for a time

interval immediately before the start time of the data used by pe:

Field Description
Input Input history, specified as a matrix with Nu columns, where Nu is the number of

input channels. For time series models, use []. The number of rows must be
greater than or equal to the model order.

Output Output history, specified as a matrix with Ny columns, where Ny is the number of
output channels. The number of rows must be greater than or equal to the model
order.

For multi-experiment data, configure the initial conditions separately for each experiment by
specifying InitialCondition as a structure array with Ne elements. To specify the same initial
conditions for all experiments, use a single structure.

The software uses data2state to map the historical data to states. If your model is not idss,
idgrey, idnlgrey, or idnlarx, the software first converts the model to its state-space
representation and then maps the data to states. If conversion of your model to idss is not
possible, the estimated states are returned empty.

• x0obj — Specification object created using idpar. Use this object for discrete-time state-space
(idss and idgrey) and nonlinear grey-box (idnlgrey) models only. Use x0obj to impose
constraints on the initial states by fixing their value or specifying minimum or maximum bounds.

Default: 'e'

InputOffset

Removes offset from time domain input data during prediction-error calculation.

Specify as a column vector of length Nu, where Nu is the number of inputs.

For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu is the number of inputs,
and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

Specify input offset for only time domain data.

Default: []

OutputOffset

Removes offset from time domain output data during prediction-error calculation.

 peOptions

1-1293

Specify as a column vector of length Ny, where Ny is the number of outputs.

In case of multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is the number of
outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Specify output offset for only time domain data.

Default: []

OutputWeight

Weight of output for initial condition estimation.

OutputWeight takes one of the following:

• [] — No weighting is used. This value is the same as using eye(Ny) for the output weight, where
Ny is the number of outputs.

• 'noise' — Inverse of the noise variance stored with the model.
• matrix — A positive, semidefinite matrix of dimension Ny-by-Ny, where Ny is the number of

outputs.

Default: []

Output Arguments
opt

Option set containing the specified options for pe.

Examples

Create Default Options Set for Prediction-Error Calculation

opt = peOptions;

Specify Options for Prediction-Error Calculation

Create an options set for pe using zero initial conditions, and set the input offset to 5.

opt = peOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = peOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

1 Functions

1-1294

Version History
Introduced in R2012a

See Also
pe | idpar

 peOptions

1-1295

pem
Prediction error minimization for refining linear and nonlinear models

Syntax
sys = pem(data,init_sys)
sys = pem(data,init_sys,opt)

Description
sys = pem(data,init_sys) updates the parameters of an initial model to fit the estimation data.
The function uses prediction-error minimization algorithm to update the parameters of the initial
model. Use this command to refine the parameters of a previously estimated model.

sys = pem(data,init_sys,opt) specifies estimation options using an option set.

Examples

Refine Estimated State-Space Model

Estimate a discrete-time state-space model using the subspace method. Then, refine it by minimizing
the prediction error.

Estimate a discrete-time state-space model using n4sid, which applies the subspace method.

load iddata7 z7;
z7a = z7(1:300);
opt = n4sidOptions('Focus','simulation');
init_sys = n4sid(z7a,4,opt);

init_sys provides a 73.85% fit to the estimation data.

init_sys.Report.Fit.FitPercent

ans = 73.8490

Use pem to improve the closeness of the fit.

sys = pem(z7a,init_sys);

Analyze the results.

compare(z7a,sys,init_sys);

1 Functions

1-1296

sys provides a 74.54% fit to the estimation data.

Estimate Nonlinear Grey-Box Model

Estimate the parameters of a nonlinear grey-box model to fit DC motor data.

Load the experimental data, and specify the signal attributes such as start time and units.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
data = iddata(y, u, 0.1);
data.Tstart = 0;
data.TimeUnit = 's';

Configure the nonlinear grey-box model (idnlgrey) model.

For this example, use dcmotor_m.m file. To view this file, type edit dcmotor_m.m at the MATLAB®
command prompt.

file_name = 'dcmotor_m';
order = [2 1 2];
parameters = [1;0.28];
initial_states = [0;0];
Ts = 0;
init_sys = idnlgrey(file_name,order,parameters,initial_states,Ts);
init_sys.TimeUnit = 's';

 pem

1-1297

setinit(init_sys,'Fixed',{false false});

init_sys is a nonlinear grey-box model with its structure described by dcmotor_m.m. The model
has one input, two outputs and two states, as specified by order.

setinit(init_sys,'Fixed',{false false}) specifies that the initial states of init_sys are
free estimation parameters.

Estimate the model parameters and initial states.

sys = pem(data,init_sys);

sys is an idnlgrey model, which encapsulates the estimated parameters and their covariance.

Analyze the estimation result.

compare(data,sys,init_sys);

sys provides a 98.34% fit to the estimation data.

Configure Estimation Using Process Model

Create a process model structure and update its parameter values to minimize prediction error.

1 Functions

1-1298

Initialize the coefficients of a process model.

init_sys = idproc('P2UDZ');
init_sys.Kp = 10;
init_sys.Tw = 0.4;
init_sys.Zeta = 0.5;
init_sys.Td = 0.1;
init_sys.Tz = 0.01;

The Kp, Tw, Zeta, Td, and Tz coefficients of init_sys are configured with their initial guesses.

Use init_sys to configure the estimation of a prediction error minimizing model using measured
data. Because init_sys is an idproc model, use procestOptions to create the option set.

load iddata1 z1;
opt = procestOptions('Display','on','SearchMethod','lm');
sys = pem(z1,init_sys,opt);

Process Model Identification

Estimation data: Time domain data z1
Data has 1 outputs, 1 inputs and 300 samples.
Model Type:
 {'P2DUZ'}

Algorithm: Levenberg-Marquardt search

--

 Norm of First-order Improvement (%)
 Iteration Cost step optimality Expected Achieved Bisections
--
 0 21.2201 - 414 3.8 - -
 1 19.4048 1.15 323 3.8 8.55 7
 2 14.8743 2.48 814 4.41 23.3 0
 3 6.84305 0.873 451 4.43 54 11
 4 5.20355 0.977 1.49e+03 8.75 24 7
 5 1.83911 0.973 473 13 64.7 0
 6 1.67582 0.225 20.3 4.98 8.88 0
 7 1.67335 0.062 6.57 0.0829 0.147 0
 8 1.67334 0.00494 0.0555 0.000374 0.000648 0
--
Termination condition: Near (local) minimum, (norm(g) < tol)..
Number of iterations: 8, Number of function evaluations: 42

Status: Estimated using PEM
Fit to estimation data: 70.63%, FPE: 1.73006

Examine the model fit.

sys.Report.Fit.FitPercent

ans = 70.6330

sys provides a 70.63% fit to the measured data.

 pem

1-1299

Input Arguments
data — Estimation data
iddata | idfrd

Estimation data that contains measured input-output data, specified as an iddata or idfrd object.
You can use frequency-domain data only when init_sys is a linear model.

The input-output dimensions of data and init_sys must match.

init_sys — Identified model that configures the initial parameterization of sys
linear model | nonlinear model

Identified model that configures the initial parameterization of sys, specified as a linear, or nonlinear
model. You can obtain init_sys by performing an estimation using measured data or by direct
construction.

init_sys must have finite parameter values. You can configure initial guesses, specify minimum/
maximum bounds, and fix or free for estimating any parameter of init_sys:

• For linear models, use the Structure property. For more information, see “Imposing Constraints
on Model Parameter Values”.

• For nonlinear grey-box models, use the InitialStates and Parameters properties. Parameter
constraints cannot be specified for nonlinear ARX and Hammerstein-Wiener models.

opt — Estimation options
option set

Estimation options that configure the algorithm settings, handling of estimation focus, initial
conditions, and data offsets, specified as an option set. The command used to create the option set
depends on the initial model type:

Model Type Use
idss ssestOptions
idtf tfestOptions
idproc procestOptions
idpoly polyestOptions
idgrey greyestOptions
idnlarx nlarxOptions
idnlhw nlhwOptions
idnlgrey nlgreyestOptions

Output Arguments
sys — Identified model
linear model | nonlinear model

Identified model, returned as the same model type as init_sys. The model is obtained by estimating
the free parameters of init_sys using the prediction error minimization algorithm.

1 Functions

1-1300

Algorithms
PEM uses numerical optimization to minimize the cost function, a weighted norm of the prediction
error, defined as follows for scalar outputs:

VN G, H = ∑
t = 1

N
e2 t

where e(t) is the difference between the measured output and the predicted output of the model. For
a linear model, the error is defined as:

e(t) = H−1(q) y(t)− G(q)u(t)

where e(t) is a vector and the cost function VN G, H is a scalar value. The subscript N indicates that
the cost function is a function of the number of data samples and becomes more accurate for larger
values of N. For multiple-output models, the previous equation is more complex. For more
information, see chapter 7 in System Identification: Theory for the User, Second Edition, by Lennart
Ljung, Prentice Hall PTR, 1999.

Alternative Functionality
You can achieve the same results as pem by using dedicated estimation commands for the various
model structures. For example, use ssest(data,init_sys) for estimating state-space models.

Version History
Introduced before R2006a

See Also
tfest | ssest | n4sid | procest | polyest | armax | oe | bj | greyest | nlhw | nlarx |
nlgreyest

Topics
“Refine Linear Parametric Models”

 pem

1-1301

periodicRegressor
Specify periodic regressor for nonlinear ARX model

Description
Periodic regressors are sine and cosine functions of delayed input and output variables. For example,
sin(y(t–1)) and cos(y(t–1)) are both periodic regressors with delays of one sample. A
periodicRegressor object encapsulates a set of periodic regressors. Use periodicRegressor
objects when you create nonlinear ARX models using idnlarx or nlarx. You can specify
periodicRegressor objects along with linearRegressor, polynomialRegressor, and
customRegressor objects and combine them into a single combined regressor set.

Creation

Syntax
scReg = periodicRegressor(Variables,Lags)
scReg = periodicRegressor(Variables,Lags,W)
scReg = periodicRegressor(Variables,Lags,W,NumTerms)
scReg = periodicRegressor(Variables,Lags,W,NumTerms,UseAbsolute)
scReg = periodicRegressor(Variables,Lags,W,NumTerms,Type)

Description

scReg = periodicRegressor(Variables,Lags) creates a periodicRegressor object that
contains sine and cosine functions for each output and input variable in Variables and the
corresponding lags in Lags. For example, if Variables contains {'y','u'} and Lags contains the
corresponding lag vector {1,2}, then the function creates the regressors sin(y(t-1)), cos(y(t-1)),
sin(u(t-2)), and cos(u(t-2)).

scReg = periodicRegressor(Variables,Lags,W) applies the frequency multiplier W to each
formula. For example, if Variables contains {'y','u'}, Lags contains {1,2}, and W is equal to
1.5, then the function creates the regressors sin(1.5y(t-1)), cos(1.5y(t-1)), sin(1.5u(t-2)), and
cos(1.5u(t-2)).

scReg = periodicRegressor(Variables,Lags,W,NumTerms) approximates each regressor
signal as a Fourier series that contains NumTerms coefficients by creating NumTerms periodic
regressors for each lagged variable, as shown in the sequence sin(x), sin(2x), …, sin(Mx), cos(x),
cos(2x), …, cos(Mx).

In this sequence, x represents a lagged variable, such as y(t-1), and M is equal to NumTerms.

scReg = periodicRegressor(Variables,Lags,W,NumTerms,UseAbsolute) specifies
whether to apply absolute value operations that create regressors such as |sin(y(t-k))| or |cos(u(t))|.

scReg = periodicRegressor(Variables,Lags,W,NumTerms,Type) generates only sine
functions, only cosine functions, or both sine and cosine functions, depending on the value of Type.

1 Functions

1-1302

Input Arguments

Type — Regressor type
'all' (default) | 'sin' | 'cos'

Regressor type, specified as 'all', 'sin', or 'cos'. When Type is set to 'sin' or 'cos', the
software generates regressors with only sine functions or only cosine functions, respectively. When
Type is set to 'all', the software generates both sine and cosine functions.

The value of Type determines the values for the properties UseSin and UseCos.

For an example of using Type, see “Specify Periodic Regressors with Absolute Values and Only Sine
Terms” on page 1-1307.

Properties
Variables — Names of output and input variables
cell array of strings | cell array of character vectors

Names of output and input variables that the regressor formulas combine, specified as a string array
or a cell array of character vectors. For estimation, these variables are typically a subset of the inputs
and outputs of the estimation data. Each entry must be a string with no special characters other than
white space. For an example of using this property, see “Estimate Nonlinear ARX Model with Periodic
Regressors” on page 1-1305.
Example: {'y1','u1'}
Example: [z.OutputName; z.InputName]', where z is an iddata object

Lags — Lags in each variable
cell array of non-negative integer row vectors

Lags in each variable, specified as a 1-by-nv cell array of non-negative integer row vectors, where nv
is the total number of regressor variables. Each row vector contains nr integers that specify the nr
regressor lags for the corresponding variable. For instance, suppose that you want the following
regressors:

• Output variable y1: cos(y1(t–1)) and cos(y1(t–2))
• Input variable u1: sin(u1(t–3))

To obtain these lags, set Lags to {[1 2],3}.

If a lag corresponds to an output variable of an idnlarx model, the minimum lag must be greater
than or equal to 1.

For an example of using this property, see “Estimate Nonlinear ARX Model with Periodic Regressors”
on page 1-1305.
Example: {1 1}
Example: {[1 2],[1,3,4]}

W — Frequency Multiplier
1 (default) | numeric value

Frequency multiplier, specified as a numeric value. Use this property to apply the same frequency
multiplier to all the regressors you create. For example, if you set W to 1.5, then the resulting sine

 periodicRegressor

1-1303

regressor for variable y with a lag of 1 would be sin(1.5y(t-1)). For an example of using this
property, see “Specify Frequency Multiplier for Periodic Regressors” on page 1-1306.

NumTerms — Number of Terms
cell array of strings | iddata object properties

Number of terms to use for each lagged variable. Use this property when you want to approximate a
Fourier series for a regressor signal. The number of terms represents the number of Fourier
coefficients. For an example of using this property, see “Specify Fourier Series Coefficients for
Periodic Regressors” on page 1-1306.

UseAbsolute — Absolute value indicator
false (default) | logical vector

Absolute value indicator that determines whether to use the absolute value of the regressor of a
variable instead of the signed value, specified as a logical vector with a length equal to the number of
variables. If you specify UseAbsolute as a single value, then that value is applied to all variables.
For example, if you specify false when there are three regressors, the UseAbsolute values for all
three regressors are false.

For an example of setting this property, see “Specify Periodic Regressors with Absolute Values and
Only Sine Terms” on page 1-1307.
Example: [true,false]

UseSin — Sine regressor indicator
true (default) | false

Sine regressor indicator that determines whether to generate sine regressors, specified as a scalar.
The value of Type determines the value of UseSin.

• If Type is equal to 'all' or 'sin', then UseSin is true.
• If Type is equal to 'cos', then UseSin is false.

For an example of setting this property, see “Specify Periodic Regressors with Absolute Values and
Only Sine Terms” on page 1-1307.
Example: true

UseCos — Cosine regressor indicator
true (default) | false

Cosine regressor indicator that determines whether to generate cosine regressors, specified as a
scalar. The value of Type determines the value of UseCos.

• If Type is equal to 'all' or 'cos', then UseCos is true.
• If Type is equal to 'sin', then UseCos is false.

Example: false

TimeVariable — Name of time variable
't' (default) | character array | string

Name of the time variable, specified as a valid MATLAB variable name that is distinct from values in
Variables.

1 Functions

1-1304

Example: 'ClockTime'

Examples

Estimate Nonlinear ARX Model with Periodic Regressors

Load the data and create an iddata object z with a sample time of 0.1 seconds.

load twotankdata y u
z = iddata(y,u,'Ts',0.1);

Specify periodic regressors that incorporate lags of 1 and 2 samples for the output variable and 0 and
4 samples for the input variable.

Use the properties of z to specify the variable names.

Variables = [z.OutputName;z.InputName];

Specify the lags.

Lags = {[1:2],[0 4]};

Create the regressors.

scReg = periodicRegressor(Variables,Lags)

scReg =
Periodic regressors in variables y1, u1 with 1 Fourier terms
 Variables: {'y1' 'u1'}
 Lags: {[1 2] [0 4]}
 W: 1
 NumTerms: 1
 UseSin: 1
 UseCos: 1
 TimeVariable: 't'
 UseAbsolute: [0 0]

 Regressors described by this set

Use scReg to estimate the nonlinear ARX model.

sys = nlarx(z,scReg)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Periodic regressors in variables y1, u1 with W = 1, and 1 Fourier terms

Output function: Wavelet network with 6 units
Sample time: 0.1 seconds

Status:
Estimated using NLARX on time domain data "z".

 periodicRegressor

1-1305

Fit to estimation data: 96.3% (prediction focus)
FPE: 4.755e-05, MSE: 4.701e-05
More information in model's "Report" property.

View the regressors.

getreg(sys)

ans = 8x1 cell
 {'sin(y1(t-1))'}
 {'cos(y1(t-1))'}
 {'sin(y1(t-2))'}
 {'cos(y1(t-2))'}
 {'sin(u1(t))' }
 {'cos(u1(t))' }
 {'sin(u1(t-4))'}
 {'cos(u1(t-4))'}

Specify Frequency Multiplier for Periodic Regressors

Specify a set of periodic regressors that correspond to an input lag of 2 and an output lag of 5, and
which contain a frequency multiplier of 0.4.

Variables = {'u','y'};
Lags = {2 5};
W = 0.4;
scReg = periodicRegressor(Variables,Lags,W)

scReg =
Periodic regressors in variables u, y with 1 Fourier terms
 Variables: {'u' 'y'}
 Lags: {[2] [5]}
 W: 0.4000
 NumTerms: 1
 UseSin: 1
 UseCos: 1
 TimeVariable: 't'
 UseAbsolute: [0 0]

 Regressors described by this set

Specify Fourier Series Coefficients for Periodic Regressors

Specify a set of periodic regressors that contain three Fourier series terms for each variable. Also
specify an input lag of 2, an output lag of 5, and a frequency multiplier of 0.4.

numTerms = 3;
scReg = periodicRegressor({'u','y'},{2 5},0.4,numTerms)

scReg =
Periodic regressors in variables u, y with 3 Fourier terms
 Variables: {'u' 'y'}

1 Functions

1-1306

 Lags: {[2] [5]}
 W: 0.4000
 NumTerms: 3
 UseSin: 1
 UseCos: 1
 TimeVariable: 't'
 UseAbsolute: [0 0]

 Regressors described by this set

Specify Periodic Regressors with Absolute Values and Only Sine Terms

Load the data and create an iddata object z with a sample time of 0.1 seconds.

load twotankdata y u
z = iddata(y,u,'Ts',0.1);

Use the properties of z to specify the variable names.

Variables = [z.OutputName;z.InputName];

Set the regressor type for sine terms only.

Type = 'sin';

For the input variable regressor, use the absolute value.

UseAbs = [0 1];

Specify a set of periodic regressors that contain these values. Also specify an input lag of 2, an output
lag of 5, a frequency multiplier of 0.4, and three Fourier series terms for each variable.

scReg = periodicRegressor(Variables,{2 5},0.4,3,UseAbs,Type);

Estimate a nonlinear ARX model with these regressors

sys = nlarx(z,scReg)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Periodic regressors in variables y1, u1 with W = 0.4, and 3 Fourier terms

Output function: Wavelet network with 65 units
Sample time: 0.1 seconds

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 96.44% (prediction focus)
FPE: 4.576e-05, MSE: 4.354e-05
More information in model's "Report" property.

View the regressors

 periodicRegressor

1-1307

getreg(sys)

ans = 6x1 cell
 {'sin(0.4*y1(t-2))' }
 {'sin(2*0.4*y1(t-2))' }
 {'sin(3*0.4*y1(t-2))' }
 {'|sin(0.4*u1(t-5))|' }
 {'|sin(2*0.4*u1(t-5))|'}
 {'|sin(3*0.4*u1(t-5))|'}

Version History
Introduced in R2022a

See Also
idnlarx | nlarx | getreg | linearRegressor | polynomialRegressor | customRegressor

1 Functions

1-1308

pexcit
Level of excitation of input signals

Syntax
Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)

Description
Ped = pexcit(Data) tests the degree of persistence of excitation for the input. Data is an iddata
object with time- or frequency-domain signals. Ped is the degree or order of excitation of the inputs
in Data and is a row vector of integers with as many components as there are inputs in Data. The
intuitive interpretation of the degree of excitation in an input is the order of a model that the input is
capable of estimating in an unambiguous way.

[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold) specifies the maximum order tested and
threshold level used to measure which singular values are significant. Default value of Maxnr is
min(N/3,50), where N is the number of input data. Default value of Threshold is 1e-9.

Version History
Introduced before R2006a

References
Section 13.2 in Ljung (1999).

See Also
advice | iddata | feedback | idnlarx

 pexcit

1-1309

plot
Plot input and output channels of iddata object

Syntax
plot(data)
plot(data,LineSpec)
plot(data1,...,dataN)
plot(data1,LineSpec1...,dataN,LineSpecN)

plot(axes_handle, ___)

plot(___ ,plotoptions)

h = plot(___)

Description
plot(data) plots the input and output channels of an iddata object. The function plots the outputs
on the top axes and the inputs on the bottom axes.

• For time-domain data, the input and output signals are plotted as a function of time. Depending on
the InterSample property of the iddata object, the input signals are plotted as linearly
interpolated curves or as staircase plots. For example, if data.InterSample = 'zoh', the input
is piecewise constant between sampling points, and is plotted accordingly.

• For frequency-domain data, the magnitude and phase of each input and output signal are plotted
over the available frequency span.

To plot a subset of the data, use subreferencing:

• plot(data(201:300)) plots the samples 201 to 300 in the data set data.
• plot(data(201:300,'Altitude',{'Angle_of_attack','Speed'})) plots the specified

samples of the output named Altitude and the inputs named Angle_of_attack and Speed.
• plot(data(:,[3 4],[3:7])) plots all samples of output channel numbers 3 and 4 and input

numbers 3 through 7.

plot(data,LineSpec) specifies the color, line style, and marker symbol for the dataset.

plot(data1,...,dataN) plots multiple datasets. The number of plot axes is determined by the
number of unique input and output names among all the datasets.

plot(data1,LineSpec1...,dataN,LineSpecN) specifies the line style, marker type, and color
for each dataset. You can specify options for only some data sets. For example,
plot(data1,data2,'k',data3) specifies black as the plot color for data2.

plot(axes_handle, ___) plots into the axes with the handle axes_handle instead of into the
current axes (gca). Use this syntax with any of the input argument combinations in the previous
syntaxes.

plot(___ ,plotoptions) specifies the plot options.

1 Functions

1-1310

h = plot(___) returns the handle to the plot. You can use this handle to customize the plot with
getoptions and setoptions.

Examples

Plot Time-Domain Input-Output Data

Load the data.

load iddata1 z1;

Plot the data.

plot(z1)

The function plots the output on the top axes and the input on the bottom axes.

Plot the first 100 samples.

plot(z1(1:100))

 plot

1-1311

Only the first 100 samples appear in the plot.

You can right-click the plot to explore characteristics such as peak and mean values.

Plot Frequency-Domain Input-Output Data

Load the data.

load iddata1 z1

Convert the data to the frequency domain.

zf = fft(z1);

Plot the data.

plot(zf);

1 Functions

1-1312

Plot Input Data, Output Data, and Input-Output Data

Generate input data.

u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);

Generate output data.

sys = idtf(1,[1 2 1]);
y = sim(sys,u);

Plot only the input.

plot(u)

 plot

1-1313

Plot only the output.

plot(y)

1 Functions

1-1314

Plot the input and output together.

plot(y,u)

 plot

1-1315

Alternatively, you can use plot(iddata(y,u)).

Plot Multiple Data Sets

Load two data sets.

load iddata1 z1
load iddata2 z2

Plot both datasets.

plot(z1,z2)

1 Functions

1-1316

Because the data sets use the same input and output names, the function plots both data sets
together.

Specify unique input and output names.

z1.InputName = "z1_input";
z2.InputName = "z2_input";
z1.OutputName = "z1_output";
z2.OutputName = "z2_output";

Plot both datasets.

plot(z1,z2)

 plot

1-1317

The function plots the data sets separately.

Plot Multiexperiment Data

Create a multiexperiment data set.

load iddata1 z1
load iddata2 z2
zm = merge(z1,z2);

Plot the data.

plot(zm)
legend('show')

1 Functions

1-1318

For multiexperiment data, each experiment is treated as a separate data set. You can right-click the
plots to view their characteristics.

Specify Line Style, Marker Symbol, and Color

Load two data sets.

load iddata1 z1;
load iddata2 z2;

Specify the line style for both data sets.

plot(z1,'y:*',z2,'b')

 plot

1-1319

Specify Axes Handle

Create a figure with two subplots and return the handles for each subplot axes in s.

figure % new figure
s(1) = subplot(1,2,1); % left subplot
s(2) = subplot(1,2,2); % right subplot

1 Functions

1-1320

Load the data sets.

load iddata1;
load iddata2;

Create a data plot in each axes using the handles.

plot(s(1),z1)

 plot

1-1321

plot(s(2),z2)

1 Functions

1-1322

Get and Use Axes Handle

Get the handle to your current plot and modify an axis property.

Load and plot the data.

load iddata1 z1
plot(z1)

 plot

1-1323

Get the axes handle for the plot.

ah = gca

ah =
 Axes (u1) with properties:

 XLim: [0.1000 30]
 YLim: [-1 1]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.1300 0.1100 0.7750 0.3480]
 Units: 'normalized'

 Show all properties

The display shows the properties of the axes handle.

The scale of the x-axis xScale is 'linear'. Change xScale to 'log'.

ah.XScale = 'log';

1 Functions

1-1324

The x-axis now displays a log scale.

Specify Plot Options

Configure a time plot.

opt = iddataPlotOptions('time');

Specify minutes as the time unit of the plot.

opt.TimeUnits = 'minutes';

Turn the grid on.

opt.Grid = 'on';

Create the plot with the options specified by opt.

load iddata1 z1
plot(z1, opt);

 plot

1-1325

Change Plot Properties Using Handle

Create a data plot and return the handle.

load iddata1;
h = plot(z1);

1 Functions

1-1326

Set the time unit of the plot.

setoptions(h,'TimeUnits','minutes');

 plot

1-1327

Change Orientation of Input-Output Data Axes

Generate data with two inputs and one output.

z = iddata(randn(100,1),rand(100,2));

Configure a time plot.

opt = iddataPlotOptions('time');

Plot the data.

h = plot(z,opt);

1 Functions

1-1328

Change the orientation of the plots such that all inputs are plotted in one column, and all outputs are
in a second column.

opt.Orientation = 'two-column';
h = plot(z,opt);

 plot

1-1329

Alternatively, use setoptions.

setoptions(h,'Orientation','two-column')

You can also change the orientation by right-clicking the plot and choosing Orientation in the
context menu.

Input Arguments
data — Input-output data
iddata object

Input-output data, specified as an iddata object. The data can be in the time domain or the
frequency domain. It can be a single-channel or multichannel data, and single-experiment or
multiexperiment data.

LineSpec — Line style, marker symbol, and color
character vector

Line style, marker symbol, and color, specified as a character vector. LineSpec takes values such as
'b' and 'b+:'. For more information, see the plot reference page in the MATLAB documentation.
For an example of using LineSpec, see “Specify Line Style, Marker Symbol, and Color” on page 1-
1319.

1 Functions

1-1330

axes_handle — Axes handle
handle

Axes handle, specified as a handle, and which is the reference to an axes object. Use the gca
function to get the handle to the current axes, for example, axes_handle= gca. For an example of
using axes_handle to apply a specific set of axes to the current plot, see “Specify Axes Handle” on
page 1-1320. For an example of using gca to get your plot axes and then modifying the axes
properties, see “Get and Use Axes Handle” on page 1-1323.

plotoptions — Plot options
structure

Plot options, specified as an option set created using iddataPlotOptions. For an example of using
plotoptions, see “Specify Plot Options” on page 1-1325.

Output Arguments
h — Plot handle
scalar | vector

Plot handle, returned as a scalar or vector. Handles are unique identifiers that you can use to query
and modify properties of a specific plot. For an example, see “Change Plot Properties Using Handle”
on page 1-1326.

Tips
Right-clicking the plot opens the context menu, where you can access the following options and plot
controls.

Option Description and Suboptions
Datasets View the datasets used in the plot.
Characteristics Peak Value — View the peak value of the data.

This value is useful for transient data.

Mean Value — View the mean value of the data.
This value is useful for steady-state data.

 plot

1-1331

Option Description and Suboptions
Orientation For data with one input and one output channel:

• Single row — Plot all inputs and outputs in
one row.

• Single column— Plot all inputs and outputs
in one column.

For data with more than one input or output
channel:

• Output row and input row — Plot all
outputs in one row and all inputs in a second
row.

• Output column and input column — Plot
all outputs in one column and all inputs in a
second column.

I/O Grouping Group input and output channels on the plot.

Use this option with datasets with more than one
input or output channel.

I/O Selector Select a subset of the input and output channels
to plot. By default, all input and output channels
are plotted.

Use this option with data sets with more than one
input or output channel.

Grid Add grids to your plot.
Normalize Normalize the y-scale of all data in the plot.
Properties Open the Property Editor dialog box, where you

can customize plot attributes.

Version History
Introduced in R2014a

See Also
iddata | iddataPlotOptions | identpref

1 Functions

1-1332

idnlarx/plot
Plot nonlinearity of nonlinear ARX model

Syntax
plot(model)
plot(model,color)
plot(model1,...,modelN)
plot(model1,color1...,modelN,colorN)
plot(___ ,'NumberofSamples',N)

Description
plot(model) plots the nonlinearity of a nonlinear ARX model on a nonlinear ARX plot on page 1-
1337. The plot shows the nonlinearity for all outputs of the model as a function of its input
regressors.

plot(model,color) specifies the color to use.

plot(model1,...,modelN) generates the plot for multiple models.

plot(model1,color1...,modelN,colorN) specifies the color for each model. You do not need to
specify the color for all models.

plot(___ ,'NumberofSamples',N) specifies the number of samples to use to grid the regressor
space on each axis. This syntax can include any of the input argument combinations in the previous
syntaxes.

Examples

Plot Nonlinearity of a Nonlinear ARX Model

Estimate a nonlinear ARX model and plot its nonlinearity.

load iddata1
model1 = nlarx(z1,[4 2 1],'idWaveletNetwork','nlr',[1:3]);
plot(model1)

 idnlarx/plot

1-1333

In the plot window, you can choose:

• The regressors to use on the plot axes, and specify the center points for the other regressors in
the configuration panel. For multi-output models, each output is plotted separately.

• The output to view from the drop-down list located at the top of the plot.

Specify Line Style for Multiple Models

load iddata1
model1 = nlarx(z1,[4 2 1],'idwave','nlr',[1:3]);
model2 = nlarx(z1,[4 2 1],'idSigmoidNetwork','nlr',[1:3]);
plot(model1,'b', model2, 'g')

1 Functions

1-1334

Specify Number of Samples

load iddata1
model1 = nlarx(z1,[4 2 1],idWaveletNetwork);
model2 = nlarx(z1,[4 2 1],idSigmoidNetwork);
plot(model1,'b', model2, 'g','NumberofSamples',50)

 idnlarx/plot

1-1335

Input Arguments
model — Estimated nonlinear ARX model
idnlarx model

Estimated nonlinear ARX model, specified as an idnlarx model object. Use nlarx to estimate the
model.

color — Color to use
character vector of color name | vector of doubles

Color to use to plot the regressors, specified as one of the following:

• Character vector of color name, specified as one of the following:

• 'b'
• 'y'

1 Functions

1-1336

• 'm'
• 'c'
• 'r'
• 'g'
• 'w'

• 3-element double vector of RGB values

By default, the colors are automatically chosen.
Data Types: double | char

N — Number of points
20 (default) | positive integer

Number of points used on the regressor axis to display the regressor samples, specified as a positive
integer.
Data Types: double

More About
What is a Nonlinear ARX Plot?

A nonlinear ARX plot displays the evaluated model nonlinearity for a chosen model output as a
function of one or two model regressors. For a model M, the model nonlinearity (M.Nonlinearity) is
a nonlinearity estimator function, such as idWaveletNetwork, idSigmoidNetwork, or
idTreePartition, that uses model regressors as its inputs.

To understand what is plotted, suppose that {r1,r2,…,rN} are the N regressors used by a nonlinear
ARX model M with nonlinearity nl corresponding to a model output. You can use getreg(M) to view
these regressors. The expression Nonlin = evaluate(nl,[v1,v2,...,vN]) returns the model

 idnlarx/plot

1-1337

output for given values of these regressors, that is, r1 = v1, r2 = v2, ..., rN = vN. For plotting the
nonlinearities, you select one or two of the N regressors, for example, rsub = {r1,r4}. The
software varies the values of these regressors in a specified range, while fixing the value of the
remaining regressors, and generates the plot of Nonlin vs. rsub. By default, the software sets the
values of the remaining fixed regressors to their estimated means, but you can change these values.
The regressor means are stored in the Nonlinearity.Parameters.RegressorMean property of
the model.

Examining a nonlinear ARX plot can help you gain insight into which regressors have the strongest
effect on the model output. Understanding the relative importance of the regressors on the output
can help you decide which regressors to include in the nonlinear function for that output. If the shape
of the plot looks like a plane for all the chosen regressor values, then the model is probably linear in
those regressors. In this case, you can remove the corresponding regressors from nonlinear block,
and repeat the estimation.

Furthermore, you can create several nonlinear models for the same data using different nonlinearity
estimators, such a idWaveletNetwork network and idTreePartition, and then compare the
nonlinear surfaces of these models. Agreement between plots for various models increases the
confidence that these nonlinear models capture the true dynamics of the system.

To learn more about configuring the plot, see “Configuring a Nonlinear ARX Plot”.

Version History
Introduced in R2014a

See Also
getreg | idnlarx | nlarx | evaluate

Topics
“Structure of Nonlinear ARX Models”
“Validate Nonlinear ARX Models”

1 Functions

1-1338

idnlhw/plot
Plot input and output nonlinearity, and linear responses of Hammerstein-Wiener model

Syntax
plot(model)
plot(model,LineSpec)
plot(model1,...,modelN)
plot(model1,LineSpec1...,modelN,LineSpecN)

plot(___ ,Name,Value)

Description
plot(model) plots the input and output nonlinearity, and linear responses of a Hammerstein-Wiener
model on a Hammerstein-Wiener plot on page 1-1345. The plot shows the responses of the input and
output nonlinearity, and linear blocks that represent the model.

plot(model,LineSpec) specifies the line style.

plot(model1,...,modelN) generates the plot for multiple models.

plot(model1,LineSpec1...,modelN,LineSpecN) specifies the line style for each model. You do
not need to specify the line style for all models.

plot(___ ,Name,Value) specifies plot properties using additional options specified by one or more
Name,Value pair arguments. This syntax can include any of the input argument combinations in the
previous syntaxes.

Examples

Plot Input and Output Nonlinearity and Linear Response of a Hammerstein-Wiener Model

Estimate a Hammerstein-Wiener Model and plot responses of its input and output nonlinearity and
linear blocks.

load iddata3
model1 = nlhw(z3,[4 2 1],'idSigmoidNetwork','idDeadZone');
plot(model1)

 idnlhw/plot

1-1339

Explore the various plots in the plot window by clicking one of the three blocks that represent the
model:

• uNL - Input nonlinearity, representing the static nonlinearity at the input
(model.InputNonlinearity) to the LinearBlock.

• Linear Block - Step, impulse,Bode and pole-zero plots of the embedded linear model
(model.LinearModel). By default, a step plot is displayed.

• yNL - Output nonlinearity, representing the static nonlinearity at the output
(model.OutputNonlinearity) of the Linear Block.

1 Functions

1-1340

Specify Line Style for Multiple Hammerstein-Weiner Models

load iddata3
model1 = nlhw(z3,[4 2 1],'idSigmoidNetwork','idDeadZone');
model2 = nlhw(z3, [4 2 1],[],'idSigmoidNetwork');
plot(model1,'b-',model2,'g')

Specify Number of Samples, Time Samples, and Range of Input Nonlinearity

load iddata3
model1 = nlhw(z3,[4 2 1],idSigmoidNetwork,idDeadZone);

 idnlhw/plot

1-1341

model2 = nlhw(z3, [4 2 1],[],idSigmoidNetwork);
plot(model1,'b-',model2,'g','NumberOfSamples',50,'time',10,'InputRange',[-2 2]);

Specify Time Samples, Frequency, and Range of Output Nonlinearity

load iddata3
model1 = nlhw(z3,[4 2 1],idSigmoidNetwork, idDeadZone);
model2 = nlhw(z3, [4 2 1],[],idSigmoidNetwork);
plot(model1,model2,'time',1:500,'freq',{0.01,100},'OutputRange',[0 1000]);

1 Functions

1-1342

Input Arguments
model — Estimated Hammerstein-Wiener model
idnlhw model

Estimated Hammerstein-Wiener model, specified as an idnlhw model object. Use nlhw to estimate
the model.

LineSpec — Line style, marker symbol, and color
character vector

 idnlhw/plot

1-1343

Line style, marker symbol, and color, specified as a character vector. LineSpec takes values such as
'b', 'b+:'. For more information, see the plot reference page in the MATLAB documentation.
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plot(model,'NumberofSamples',10) specifies to use 10 data points for the input
regressors.

NumberOfSamples — Number of data points to use for input regressors
100 (default) | positive integer

Number of data points to use for the input regressors when evaluating the nonlinearities at individual
input or output channels, specified as a positive integer. This property does not affect the plots of the
linear block.
Data Types: double

InputRange — Minimum and maximum regressor values for evaluating input nonlinearities
range of regressor values used during each model's estimation. (default) | positive integer | vector

Minimum and maximum regressor values to use when evaluating the nonlinearities at each input
channel, specified as positive integers or [min max] vector, where minimum value is less than the
maximum value.

You can use 'uRange' as a shortcut name for this property.
Data Types: double

OutputRange — Minimum and maximum regressor values for evaluating output
nonlinearities
range of regressor values used during each model's estimation (default) | positive integer | vector

Minimum and maximum regressor values to use when evaluating the nonlinearities at each output
channel, specified as positive integers or [min max] vector, where minimum value is less than the
maximum value.

You can use 'yRange' as a shortcut name for this property.
Data Types: double

Time — Time samples to compute transient responses of the linear block
each model's dynamics determine the time samples used (default) | positive scalar | vector

The time samples at which the transient responses (step and impulse) of the linear block of the
idnlhw model must be computed, specified as one of the following values:

• Positive scalar — Denotes end time for transient responses of all models. For example, 10.
• Vector of time instants — A double vector of equi-sampled values denotes the time samples at

which the transient response must be computed. For example, [0:0.1:10].

1 Functions

1-1344

This property takes the same values as the step command on the model.

Frequency — Frequencies at which to compute the Bode response
automatically chosen inside the Nyquist frequency range (default) | [min max] range of positive
scalars | vector of positive integers

Frequencies at which to compute the Bode response, specified as one of the following values:

• [Wmin Wmax] range — Frequency interval between Wmin and Wmax (in units rad/
(model.TimeUnit)) covered using logarithmically placed points.

• Vector of non-negative frequency values — Allows computation of bode response at those
frequencies.

By default, the response is computed at some automatically chosen frequencies inside the Nyquist
frequency range. Frequencies above Nyquist frequency (pi/model.Ts) are ignored.

This property takes the same values as the bode command on the model.

More About
What is a Hammerstein-Wiener Plot?

A Hammerstein-Wiener plot displays the static input and output nonlinearities and linear responses of
a Hammerstein-Wiener model.

Examining a Hammerstein-Wiener plot can help you determine whether you have selected a
complicated nonlinearity for modeling your system. For example, suppose you use a piecewise-linear
input nonlinearity to estimate your model, but the plot indicates saturation behavior. You can estimate
a new model using the simpler saturation nonlinearity instead. For multivariable systems, you can use
the Hammerstein-Wiener plot to determine whether to exclude nonlinearities for specific channels. If
the nonlinearity for a specific input or output channel does not exhibit strong nonlinear behavior, you
can estimate a new model after setting the nonlinearity at that channel to unit gain.

You can generate these plots in the System Identification app and at the command line. In the plot
window, you can view the nonlinearities and linear responses by clicking one of the three blocks that
represent the model:

• uNL (input nonlinearity)— Click this block to view the static nonlinearity at the input to the Linear
Block. The plot displays evaluate(M.InputNonlinearity,u) where M is the Hammerstein-
Wiener model, and u is the input to the input nonlinearity block. For information about the blocks,
see “Structure of Hammerstein-Wiener Models”.

• Linear Block — Click this block to view the Step, impulse, Bode, and pole-zero response plots of
the embedded linear model (M.LinearModel). By default, a step plot of the linear model is
displayed.

• yNL (output nonlinearity) — Click this block to view the static nonlinearity at the output of the
Linear Block. The plot displays evaluate(M.OutputNonlinearity,x), where x is the
output of the linear block.

To learn more about how to configure the linear and nonlinear blocks plots, see “Configuring a
Hammerstein-Wiener Plot”.

 idnlhw/plot

1-1345

Version History
Introduced in R2014a

See Also
idnlhw | nlhw

Topics
“Structure of Hammerstein-Wiener Models”
“Validating Hammerstein-Wiener Models”

1 Functions

1-1346

pole
Poles of dynamic system

Syntax
P = pole(sys)
P = pole(sys,J1,...,JN)

Description
P = pole(sys) returns the poles of the SISO or MIMO dynamic system model sys. The output is
expressed as the reciprocal of the time units specified in sys.TimeUnit. The poles of a dynamic
system determine the stability and response of the system.

An open-loop linear time-invariant system is stable if:

• In continuous-time, all the poles of the transfer function have negative real parts. When the poles
are visualized on the complex s-plane, then they must all lie in the left-half plane (LHP) to ensure
stability.

• In discrete-time, all the poles must have a magnitude strictly smaller than one, that is they must
all lie inside the unit circle.

P = pole(sys,J1,...,JN) returns the poles P of the entries in model array sys with subscripts
(J1,...,JN).

Examples

Poles of Discrete-Time Transfer Function

Compute the poles of the following discrete-time transfer function:

sys z = 0 . 0478z − 0 . 0464
z2− 1 . 81z + 0 . 9048

sys = tf([0.04798 0.0464],[1 -1.81 0.9048],0.1);
P = pole(sys)

P = 2×1 complex

 0.9050 + 0.2929i
 0.9050 - 0.2929i

For stable discrete systems, all their poles must have a magnitude strictly smaller than one, that is
they must all lie inside the unit circle. The poles in this example are a pair of complex conjugates, and
lie inside the unit circle. Hence, the system sys is stable.

 pole

1-1347

Poles of Transfer Function

Calculate the poles of following transfer function:

sys s = 4 . 2s2 + 0 . 25s− 0 . 004
s2 + 9 . 6s + 17

sys = tf([4.2,0.25,-0.004],[1,9.6,17]);
P = pole(sys)

P = 2×1

 -7.2576
 -2.3424

For stable continuous systems, all their poles must have negative real parts. sys is stable since the
poles are negative, that is, they lie in the left half of the complex plane.

Poles of Models in an Array

For this example, load invertedPendulumArray.mat, which contains a 3-by-3 array of inverted
pendulum models. The mass of the pendulum varies as you move from model to model along a single
column of sys, and the length of the pendulum varies as you move along a single row. The mass
values used are 100g, 200g and 300g, and the pendulum lengths used are 3m, 2m and 1m
respectively.

Column 1 Column 2 Column 3
Row 1 100g, 3m 100g, 2m 100g, 1m
Row 2 200g, 3m 200g, 2m 200g, 1m
Row 3 300g, 3m 300g, 2m 300g, 1m

load('invertedPendulumArray.mat','sys');
size(sys)

3x3 array of transfer functions.
Each model has 1 outputs and 1 inputs.

Find poles of the model array.

P = pole(sys);
P(:,:,2,1)

ans = 3×1

 2.1071
 -2.1642
 -0.1426

P(:,:,2,1) corresponds to the poles of the model with 200g pendulum weight and 3m length.

1 Functions

1-1348

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO
dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time
numeric LTI models such as tf, zpk, or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, pole returns
the poles of the current or nominal value of sys. If sys is an array of models, pole returns the poles
of the model corresponding to its subscript J1,...,JN in sys. For more information on model
arrays, see “Model Arrays” (Control System Toolbox).

J1,...,JN — Indices of models in array whose poles you want to extract
positive integer

Indices of models in array whose poles you want to extract, specified as a positive integer. You can
provide as many indices as there are array dimensions in sys. For example, if sys is a 4-by-5 array of
dynamic system models, the following command extracts the poles for entry (2,3) in the array.

P = pole(sys,2,3);

Output Arguments
P — Poles of the dynamic system
column vector | array

Poles of the dynamic system, returned as a scalar or an array. If sys is:

• A single model, then P is a column vector of poles of the dynamic system model sys
• A model array, then P is an array of poles of each model in sys

P is expressed as the reciprocal of the time units specified in sys.TimeUnit. For example, pole is
expressed in 1/minute if sys.TimeUnit = 'minutes'.

Depending on the type of system model, poles are computed in the following way:

• For state-space models, the poles are the eigenvalues of the A matrix, or the generalized
eigenvalues of A – λE in the descriptor case.

• For SISO transfer functions or zero-pole-gain models, the poles are the denominator roots. For
more information, see roots.

• For MIMO transfer functions (or zero-pole-gain models), the poles are returned as the union of the
poles for each SISO entry. If some I/O pairs have a common denominator, the roots of such I/O pair
denominator are counted only once.

Limitations
• Multiple poles are numerically sensitive and cannot be computed with high accuracy. A pole λ with

multiplicity m typically results in a cluster of computed poles distributed on a circle with center λ
and radius of order

ρ ≈ ε1/m,

 pole

1-1349

where ε is the relative machine precision (eps).

For more information on multiple poles, see “Sensitivity of Multiple Roots” (Control System
Toolbox).

• If sys has internal delays, poles are obtained by first setting all internal delays to zero so that the
system has a finite number of poles, thereby creating a zero-order Padé approximation. For some
systems, setting delays to zero creates singular algebraic loops, which result in either improper or
ill-defined, zero-delay approximations. For these systems, pole returns an error.

To assess the stability of models with internal delays, use step or impulse.

Version History
Introduced in R2012a

See Also
damp | pzmap | zero | step | impulse | pzplot

Topics
“Pole and Zero Locations” (Control System Toolbox)
“Sensitivity of Multiple Roots” (Control System Toolbox)

1 Functions

1-1350

polydata
Access polynomial coefficients and uncertainties of identified model

Syntax
[A,B,C,D,F] = polydata(sys)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys)
[___] = polydata(sys,J1,...,JN)
[___] = polydata(___ ,'cell')

Description
[A,B,C,D,F] = polydata(sys) returns the coefficients of the polynomials A, B, C, D, and F that
describe the identified model sys. The polynomials describe the idpoly representation of sys as
follows.

• For discrete-time sys:

A q−1 y t =
B q−1

F q−1 u t − nk +
C q−1

D q−1 e t .

u(t) are the inputs to sys. y(t) are the outputs. e(t) is a white noise disturbance.
• For continuous-time sys:

A s Y s = B s
F s U s e−τs + C s

D s E s .

U(s) are the Laplace transformed inputs to sys. Y(s) are the Laplace transformed outputs. E(s) is
the Laplace transform of a white noise disturbance.

If sys is an identified model that is not an idpoly model, polydata converts sys to idpoly form to
extract the polynomial coefficients.

[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys) also returns the uncertainties dA, dB, dC, dD,
and dF of each of the corresponding polynomial coefficients of sys.

[___] = polydata(sys,J1,...,JN) returns the polynomial coefficients for the J1,...,JN
entry in the array sys of identified models.

[___] = polydata(___ ,'cell') returns all polynomials as cell arrays of double vectors,
regardless of the input and output dimensions of sys.

Input Arguments
sys

Identified model or array of identified models. sys can be continuous-time or discrete-time. sys can
be SISO or MIMO.

 polydata

1-1351

J1,...,JN

Indices selecting a particular model from an N-dimensional array sys of identified models.

Output Arguments
A,B,C,D,F

Polynomial coefficients of the idpoly representation of sys.

• If sys is a SISO model, each of A, B, C, D, and F is a row vector. The length of each row vector is
the order of the corresponding polynomial.

• For discrete-time sys, the coefficients are ordered in ascending powers of q–1. For example, B
= [1 -4 9] means that B(q–1) = 1 – 4q–1 + 9q–2.

• For continuous-time sys, the coefficients are ordered in descending powers of s. For example,
B = [1 -4 9] means that B(s) = s2 – 4s + 9.

• If sys is a MIMO model, each of A, B, C, D, and F is a cell array. The dimensions of the cell arrays
are determined by the input and output dimensions of sys as follows:

• A — Ny-by-Ny cell array
• B, F — Ny-by-Nu cell array
• C, D — Ny-by-1 cell array

Ny is the number of outputs of sys, and Nu is the number of inputs.

Each entry in a cell array is a row vector that contains the coefficients of the corresponding
polynomial. The polynomial coefficients are ordered the same way as the SISO case.

dA,dB,dC,dD,dF

Uncertainties in the estimated polynomial coefficients of sys.

dA, dB, dC, dD, and dF are row vectors or cell arrays whose dimensions exactly match the
corresponding A, B, C, D, and F outputs.

Each entry in dA, dB, dC, dD, and dF gives the standard deviation of the corresponding estimated
coefficient. For example, dA{1,1}(2) gives the standard deviation of the estimated coefficient
returned at A{1,1}(2).

Examples

Extract Polynomial Coefficients and Uncertainties from Identified Model

Load system data and estimate a 2-input, 2-output model.

load iddata1 z1
load iddata2 z2
data = [z1 z2(1:300)];

nk = [1 1; 1 0];
na = [2 2; 1 3];

1 Functions

1-1352

nb = [2 3; 1 4];
nc = [2;3];
nd = [1;2];
nf = [2 2;2 1];

sys = polyest(data,[na nb nc nd nf nk]);

The data loaded into z1 and z2 is discrete-time iddata with a sample time of 0.1 s. Therefore, sys is
a two-input, two-output discrete-time idpoly model of the form:

A q−1 y t =
B q−1

F q−1 u t − nk +
C q−1

D q−1 e t

The inputs to polyest set the order of each polynomial in sys.

Access the estimated polynomial coefficients of sys and the uncertainties in those coefficients.

[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys);

The outputs A, B, C, D, and F are cell arrays of coefficient vectors. The dimensions of the cell arrays
are determined by the input and output dimensions of sys. For example, A is a 2-by-2 cell array
because sys has two inputs and two outputs. Each entry in A is a row vector containing identified
polynomial coefficients. For example, examine the second diagonal entry in A.

A{2,2}

ans = 1×4

 1.0000 -0.8825 -0.2030 0.4364

For discrete-time sys, the coefficients are arranged in order of increasing powers of q−1. Therefore,
A{2,2} corresponds to the polynomial 1− 0 . 8682q−1− 0 . 2244q−2 + 0 . 4467q−3 .

The dimensions of dA match those of A. Each entry in dA gives the standard deviation of the
corresponding estimated polynomial coefficient in A. For example, examine the uncertainties of the
second diagonal entry in A.

dA{2,2}

ans = 1×4

 0 0.2849 0.4269 0.2056

The lead coefficient of A{2,2} is fixed at 1, and therefore has no uncertainty. The remaining entries
in dA{2,2} are the uncertainties in the q−1, q−2, and q−3 coefficients, respectively.

Version History
Introduced before R2006a

 polydata

1-1353

See Also
idpoly | iddata | tfdata | zpkdata | idssdata | polyest

1 Functions

1-1354

polyest
Estimate polynomial model using time- or frequency-domain data

Syntax
sys = polyest(tt,[na nb nc nd nf nk])
sys = polyest(u,y,[na nb nc nd nf nk])
sys = polyest(data,[na nb nc nd nf nk])
sys = polyest(___ ,Name,Value)
sys = polyest(tt,init_sys)
sys = polyest(u,y,init_sys)
sys = polyest(tt,init_sys)
sys = polyest(___ , opt)
[sys,ic] = polyest(___)

Description
sys = polyest(tt,[na nb nc nd nf nk]) estimates a polynomial model sys using the data
contained in the variables of timetable tt. The software uses the first Nu variables as inputs and the
next Ny variables as outputs, where Nu and Ny are determined from the dimensions of the specified
polynomial orders.

sys is of the form

A(q)y(t) = B(q)
F(q)u(t − nk) + C(q)

D(q)e(t)

A(q), B(q), F(q), C(q) and D(q) are polynomial matrices. u(t) is the input, and nk is the input delay. y(t)
is the output and e(t) is the disturbance signal. na ,nb, nc, nd and nf are the orders of the A(q), B(q),
C(q), D(q) and F(q) polynomials, respectively.

To select specific input and output channels from tt, use name-value syntax to set 'InputName' and
'OutputName' to the corresponding timetable variable names.

sys = polyest(u,y,[na nb nc nd nf nk]) uses the time-domain input and output signals in
the comma-separated matrices u,y. The software assumes that the data sample time is 1 second. To
change the sample time, set Ts using name-value syntax.

sys = polyest(data,[na nb nc nd nf nk]) uses the time-domain or frequency-domain data in
the data object data.

sys = polyest(___ ,Name,Value) estimates a polynomial model with additional attributes of the
estimated model structure specified by one or more Name,Value arguments. You can use this syntax
with any of the previous input-argument combinations.

sys = polyest(tt,init_sys) estimates a polynomial model using the linear system init_sys to
configure the initial parameterization for estimation using the timetable tt.

sys = polyest(u,y,init_sys) uses the matrix data u,y for estimation..

sys = polyest(tt,init_sys) uses the data object data, for estimation.

 polyest

1-1355

sys = polyest(___ , opt) estimates a polynomial model using the option set, opt, to specify
estimation behavior.

[sys,ic] = polyest(___) returns the estimated initial conditions as an initialCondition
object. Use this syntax if you plan to simulate or predict the model response using the same
estimation input data and then compare the response with the same estimation output data.
Incorporating the initial conditions yields a better match during the first part of the simulation.

Input Arguments
tt

Estimation data, specified as a timetable that uses a regularly spaced time vector. tt contains
variables representing input and output channels. For multiexperiment data, tt is a cell array of
timetables of length Ne, where Ne is the number of experiments

The software determines the number of input and output channels to use for estimation from the
dimensions of the specified polynomial orders. The input/output channel selection depends on
whether the 'InputName' and 'OutputName' name-value arguments are specified.

• If 'InputName' and 'OutputName' are not specified, then the software uses the first Nu
variables of tt as inputs and the next Ny variables of tt as outputs.

• If 'InputName' and 'OutputName' are specified, then the software uses the specified variables.
The number of specified input and output names must be consistent with Nu and Ny.

• For functions that can estimate a time series model, where there are no inputs, 'InputName'
does not need to be specified.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

For time series data, which contains only outputs and no inputs, specify y only.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data

Estimation data.

For time-domain estimation, data is an iddata object containing the input and output signal values.

1 Functions

1-1356

You can estimate only discrete-time models using time-domain data. For estimating continuous-time
models using time-domain data, see tfest.

For frequency-domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)
• iddata object with its properties specified as follows:

• InputData — Fourier transform of the input signal
• OutputData — Fourier transform of the output signal
• Domain — ‘Frequency’

It may be more convenient to use oe or tfest to estimate a model for frequency-domain data.

na

Order of the polynomial A(q).

na is an Ny-by-Ny matrix of nonnegative integers. Ny is the number of outputs, and Nu is the number
of inputs.

na must be zero if you are estimating a model using frequency-domain data.

nb

Order of the polynomial B(q) + 1.

nb is an Ny-by-Nu matrix of nonnegative integers. Ny is the number of outputs, and Nu is the number
of inputs.

nc

Order of the polynomial C(q).

nc is a column vector of nonnegative integers of length Ny. Ny is the number of outputs.

nc must be zero if you are estimating a model using frequency-domain data.

nd

Order of the polynomial D(q).

nd is a column vector of nonnegative integers of length Ny. Ny is the number of outputs.

nd must be zero if you are estimating a model using frequency-domain data.

nf

Order of the polynomial F(q).

nf is an Ny-by-Nu matrix of nonnegative integers. Ny is the number of outputs, and Nu is the number
of inputs.

nk

Input delay in number of samples, expressed as fixed leading zeros of the B polynomial.

 polyest

1-1357

nk is an Ny-by-Nu matrix of nonnegative integers.

nk must be zero when estimating a continuous-time model.

opt

Estimation options.

opt is an options set, created using polyestOptions, that specifies estimation options including:

• Estimation objective
• Handling of initial conditions
• Numerical search method to be used in estimation

init_sys

Linear system that configures the initial parameterization of sys.

You obtain init_sys by either performing an estimation using measured data or by direct
construction.

If init_sys is an idpoly model, polyest uses the parameters and constraints defined in
init_sys as the initial guess for estimating sys.

Use the Structure property of init_sys to configure initial guesses and constraints for A(q), B(q),
F(q), C(q), and D(q). For example:

• To specify an initial guess for the A(q) term of init_sys, set init_sys.Structure.A.Value as
the initial guess.

• To specify constraints for the B(q) term of init_sys:

• Set init_sys.Structure.B.Minimum to the minimum B(q) coefficient values.
• Set init_sys.Structure.B.Maximum to the maximum B(q) coefficient values.
• Set init_sys.Structure.B.Free to indicate which B(q) coefficients are free for estimation.

If init_sys is not an idpoly model, the software first converts init_sys to a polynomial model.
polyest uses the parameters of the resulting model as the initial guess for estimation.

If opt is not specified, and init_sys is created by estimation, then the estimation options from
init_sys.Report.OptionsUsed are used.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InputName

Input channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets all but the last variable in tt
as input channels. When you want to select a subset of the timetable variables as input channels use

1 Functions

1-1358

'InputName' to identify them. For example, sys = polyest(tt,__,'InputName',["u1"
"u2"]) selects the variables u1 and u2 as the input channels for the estimation.

OutputName

Output channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets the last variable in tt as the
sole output channel. When you want to select a subset of the timetable variables as output channels,
use 'OutputName' to identify them. For example, sys = polyest(tt,__,'OutputName',["y1"
"y3"]) selects the variables y1 and y3 as the output channels for the estimation.

Ts

Sample time, specified as the comma-separated pair consisting of 'Ts' and the sample time in
seconds. When you use matrix-based data (u,y), you must specify 'Ts' if you require a sample time
other than the assumed sample time of 1 second.

To obtain the data sample time for a timetable tt, use the timetable property
tt.Properties.Timestep.
Example: polyest(umat1,ymat1,___,'Ts',0.08) computes a model with sample time of 0.08
seconds.

IODelay

Transport delays. IODelay is a numeric array specifying a separate transport delay for each input/
output pair.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify transport delays in integer multiples of the sample time,
Ts.

For a MIMO system with Ny outputs and Nu inputs, set IODelay to a Ny-by-Nu array. Each entry of
this array is a numerical value that represents the transport delay for the corresponding input/output
pair. You can also set IODelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time
systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sample time Ts. For example, InputDelay =
3 means a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

IntegrateNoise

Logical vector specifying integrators in the noise channel.

 polyest

1-1359

IntegrateNoise is a logical vector of length Ny, where Ny is the number of outputs.

Setting IntegrateNoise to true for a particular output results in the model:

A(q)y(t) = B(q)
F(q)u(t − nk) + C(q)

D(q)
e(t)

1− q−1

Where, 1
1− q−1 is the integrator in the noise channel, e(t).

Use IntegrateNoise to create an ARIMAX model.

For example,

load iddata1 z1;
z1 = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh');
sys = polyest(z1, [2 2 2 0 0 1],'IntegrateNoise',true);

Output Arguments
sys

Polynomial model, returned as an idpoly model. This model is created using the specified model
orders, delays, and estimation options.

If data.Ts is zero, sys is a continuous-time model representing:

Y(s) = B(s)
F(s)U(s) + E(s)

Y(s), U(s) and E(s) are the Laplace transforms of the time-domain signals y(t), u(t) and e(t),
respectively.

Information about the estimation results and options used is stored in the Report property of the
model. Report have the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent estimation

parameters.
• 'backcast' — The initial conditions were estimated using the best least squares
fit.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option set is 'auto'.

1 Functions

1-1360

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See polyestOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

 polyest

1-1361

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information on using Report, see “Estimation Report”.

1 Functions

1-1362

ic

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

• For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x0).

• For a multiple-experiment data set with Ne experiments, ic is an object array of length Ne that
contains one set of initialCondition values for each experiment.

If polyest returns ic values of 0 and the you know that you have non-zero initial conditions, set the
'InitialCondition' option in polyestOptions to 'estimate' and pass the updated option set
to polyest. For example:

opt = polyestOptions('InitialCondition','estimate')
[sys,ic] = polyest(data,[nb nc nd nf nk],opt)

The default 'auto' setting of 'InitialCondition' uses the 'zero' method when the initial
conditions have a negligible effect on the overall estimation-error minimization process. Specifying
'estimate' ensures that the software estimates values for ic.

For more information, see initialCondition. For an example of using this argument, see “Obtain
Initial Conditions” on page 1-1366.

Examples

Estimate Polynomial Model with Redundant Parameterization

Estimate a model with redundant parameterization. That is, a model with all polynomials (A, B, C, D,
and F) active.

Load estimation data.

load iddata2 z2;

Specify the model orders and delays.

na = 2;
nb = 2;
nc = 3;
nd = 3;
nf = 2;
nk = 1;

Estimate the model.

sys = polyest(z2,[na nb nc nd nf nk]);

Estimate Polynomial Model Using Regularization

Estimate a regularized polynomial model by converting a regularized ARX model.

Load estimation data.

 polyest

1-1363

load regularizationExampleData.mat m0simdata;

Estimate an unregularized polynomial model of order 20.

m1 = polyest(m0simdata(1:150),[0 20 20 20 20 1]);

Estimate a regularized polynomial model of the same order. Determine the Lambda value by trial and
error.

opt = polyestOptions;
opt.Regularization.Lambda = 1;
m2 = polyest(m0simdata(1:150),[0 20 20 20 20 1],opt);

Obtain a lower-order polynomial model by converting a regularized ARX model and reducing its
order. Use arxregul to determine the regularization parameters.

[L,R] = arxRegul(m0simdata(1:150),[30 30 1]);
opt1 = arxOptions;
opt1.Regularization.Lambda = L;
opt1.Regularization.R = R;
m0 = arx(m0simdata(1:150),[30 30 1],opt1);
mr = idpoly(balred(idss(m0),7));

Compare the model outputs against the data.

opt2 = compareOptions('InitialCondition','z');
compare(m0simdata(150:end),m1,m2,mr,opt2);

1 Functions

1-1364

Estimate ARIMAX model

Load input/output data and create cumulative sum input and output signals for estimation.

load iddata1 z1
data = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh');

Specify the model polynomial orders. Set the orders of the inactive polynomials, D and F, to 0.

na = 2;
nb = 2;
nc = 2;
nd = 0;
nf = 0;
nk = 1;

Identify an ARIMAX model by setting the 'IntegrateNoise' option to true.

sys = polyest(data,[na nb nc nd nf nk],'IntegrateNoise',true);

Estimate Multi-Output ARMAX Model

Estimate a multi-output ARMAX model for a multi-input, multi-output data set.

Load estimation data.

load iddata1 z1
load iddata2 z2
data = [z1 z2(1:300)];

data is a data set with 2 inputs and 2 outputs. The first input affects only the first output. Similarly,
the second input affects only the second output.

Specify the model orders and delays. The F and D polynomials are inactive.

na = [2 2; 2 2];
nb = [2 2; 3 4];
nk = [1 1; 0 0];
nc = [2;2];
nd = [0;0];
nf = [0 0; 0 0];

Estimate the model.

sys = polyest(data,[na nb nc nd nf nk]);

In the estimated ARMAX model, the cross terms, which model the effect of the first input on the
second output and vice versa, are negligible. If you assigned higher orders to those dynamics, their
estimation would show a high level of uncertainty.

Analyze the results.

h = bodeplot(sys);
showConfidence(h,3)

 polyest

1-1365

The responses from the cross terms show larger uncertainty.

Obtain Initial Conditions

Load the data.

load iddata1ic z1i

Estimate a polynomial model sys and return the initial conditions in ic.

na = 2;
nb = 2;
nc = 3;
nd = 3;
nf = 2;
nk = 1;
[sys,ic] = polyest(z1i,[na nb nc nd nf nk]);
ic

ic =
 initialCondition with properties:

 A: [7x7 double]
 X0: [7x1 double]
 C: [0 0 0 0 0 0 1]

1 Functions

1-1366

 Ts: 0.1000

ic is an initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z1i output signal.

Tips
• In most situations, all the polynomials of an identified polynomial model are not simultaneously

active. Set one or more of the orders na, nc, nd and nf to zero to simplify the model structure.

For example, you can estimate an Output-Error (OE) model by specifying na, nc and nd as zero.

Alternatively, you can use a dedicated estimating function for the simplified model structure.
Linear polynomial estimation functions include oe, bj, arx and armax.

Alternatives
• To estimate a polynomial model using time-series data, use ar.
• Use polyest to estimate a polynomial of arbitrary structure. If the structure of the estimated

polynomial model is known, that is, you know which polynomials will be active, then use the
appropriate dedicated estimating function. For examples, for an ARX model, use arx. Other
polynomial model estimating functions include, oe, armax, and bj.

• To estimate a continuous-time transfer function, use tfest. You can also use oe, but only with
continuous-time frequency-domain data.

Version History
Introduced in R2012a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

See Also
polyestOptions | idpoly | ar | arx | armax | oe | bj | tfest | procest | ssest | iddata | pem |
forecast

 polyest

1-1367

Topics
“Regularized Estimates of Model Parameters”
“Apply Initial Conditions When Simulating Identified Linear Models”

1 Functions

1-1368

polyestOptions
Option set for polyest

Syntax
opt = polyestOptions
opt = polyestOptions(Name,Value)

Description
opt = polyestOptions creates the default option set for polyest.

opt = polyestOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate' | 'backcast'

Handling of initial conditions during estimation, specified as one of the following values:

• 'zero' — The initial condition is set to zero.
• 'estimate' — The initial state is treated as an independent estimation parameter.
• 'backcast' — The initial state is estimated using the best least squares fit.
• 'auto' — The software chooses the method to handle initial states based on the estimation data.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

 polyestOptions

1-1369

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

• Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

This option is not available for multi-output models with a non-diagonal A polynomial array.
Data Types: logical

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

1 Functions

1-1370

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as a structure with the fields in the
following table. For more information on regularization, see “Regularized Estimates of Model
Parameters”.

Field Name Description Default
Lambda Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the
estimation cost.

The default value of 0 implies no regularization.

0

 polyestOptions

1-1371

Field Name Description Default
R Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-
definite matrix. The length must be equal to the number of free
parameters of the model.

For black-box models, using the default value is recommended. For
structured and grey-box models, you can also specify a vector of np
positive numbers such that each entry denotes the confidence in the
value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where
npfree is the number of free parameters.

1

Nominal The nominal value towards which the free parameters are pulled
during estimation.

The default value of 0 implies that the parameter values are pulled
towards zero. If you are refining a model, you can set the value to
'model' to pull the parameters towards the parameter values of the
initial model. The initial parameter values must be finite for this
setting to work.

0

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

1 Functions

1-1372

SearchMethod Description
'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

 polyestOptions

1-1373

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

1 Functions

1-1374

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

 polyestOptions

1-1375

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

1 Functions

1-1376

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

 polyestOptions

1-1377

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight
in the loss function. The standard deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors, divided by 0.7. For more information on
robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic loss function.
When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For
time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
• MaxSize — Specifies the maximum number of elements in a segment when input-output data is

split into segments.

MaxSize must be a positive integer.

Default: 250000
• StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

• s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0
• z — Specifies the maximum distance of all poles from the origin to test stability of discrete-

time models. A model is considered stable if all poles are within the distance z from the origin.

1 Functions

1-1378

Default: 1+sqrt(eps)
• AutoInitThreshold — Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

yp, z − ymeas
yp, e− ymeas

> AutoInitThreshold

• ymeas is the measured output.
• yp,z is the predicted output of a model estimated using zero initial states.
• yp,e is the predicted output of a model estimated using estimated initial states.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output Arguments
opt — Options set for polyest
polyestOptions option set

Option set for polyest, returned as an polyestOptions option set.

Examples

Create Default Option Set for Polynomial Estimation

opt = polyestOptions;

Specify Options for Polynomial Estimation

Create an option set for polyest where you enforce model stability and set the Display to 'on'.

opt = polyestOptions('EnforceStability',true,'Display','on');

Alternatively, use dot notation to set the values of opt.

opt = polyestOptions;
opt.EnforceStability = true;
opt.Display = 'on';

Version History
Introduced in R2012a

Renaming of Estimation and Analysis Options

 polyestOptions

1-1379

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References

[1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates”. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3–8,
2005. Oxford, UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

See Also
polyest

Topics
“Loss Function and Model Quality Metrics”

1 Functions

1-1380

polynomialRegressor
Specify polynomial regressor for nonlinear ARX model

Description
Polynomial regressors are polynomials that are composed of delayed input and output variables. For
example, y(t–1)2 and y(t–1) u(t–1) are both polynomial regressors with orders of 2 and variable delays
of one sample. A polynomialRegressor object encapsulates a set of polynomial regressors. Use
polynomialRegressor objects when you create nonlinear ARX models using idnlarx or nlarx.
You can specify polynomialRegressor objects along with linearRegressor,
periodicRegressor, and customRegressor objects and combine them into a single combined
regressor set.

Creation

Syntax
pReg = polynomialRegressor(Variables,Lags)
pReg = polynomialRegressor(Variables,Lags,Order)
pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute)
pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute,AllowVariableMix)
pReg =
polynomialRegressor(Variables,Lags,Order,UseAbsolute,AllowVariableMix,AllowLa
gMix)

Description

pReg = polynomialRegressor(Variables,Lags) creates a polynomialRegressor object of
order 2 that contains output and input names in Variables and the corresponding lags in Lags. For
example, if Variables contains 'y' and lags contains the corresponding lag vector [2 4], then
the regressors that use 'y' are y(t–2)2 and y(t–4)2.

pReg = polynomialRegressor(Variables,Lags,Order) creates a polynomialRegressor
object of order Order .

pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute) specifies in
UseAbsolute whether to use the absolute values of the variables to create the regressors.

pReg = polynomialRegressor(Variables,Lags,Order,UseAbsolute,AllowVariableMix)
specifies in AllowVariableMix whether to allow multiple variables in the regressor formulas. For
example, if Variables is equal to {'y','u'}, Lags is equal to {1,1}, and Order is equal to 2,
then a value of true for AllowVariableMix results in the inclusion of the mixed-variable regressor
y(t–1)u(t–1), along with the single-variable regressors y(t–1)2 and u(t–1)2.

pReg =
polynomialRegressor(Variables,Lags,Order,UseAbsolute,AllowVariableMix,AllowLa
gMix) specifies in AllowLagMix whether to allow different lags in the regressor formulas. For

 polynomialRegressor

1-1381

example, if Variables is equal to {'y','u'}, Lags is equal to {2,[0 3]}, Order is equal to 2,
and AllowVariableMix is equal to false, then a value of true for AllowLagMix results in the
inclusion of the mixed-lag regressor u(t)u(t–3), along with the unique-lag regressors y(t–2)2, u(t)2, and
u(t–3)2. Note that if you set AllowVariableMix to true, then the regressor set will also include y(t–
2)u(t) and y(t–2)u(t–3).

Properties
Variables — Output and input variable names
cell array of strings | iddata object properties

Output and input variable names, specified as a cell array of strings or a cell array that references the
OutputName and InputName properties of an iddata object. Each entry must be a string with no
special characters other than white space. For an example of using this property, see “Estimate
Nonlinear ARX Model with Polynomial Regressors” on page 1-1383.
Example: {'y1','u1'}
Example: [z.OutputName; z.InputName]'

Lags — Lags in each variable
cell array of non-negative integers

Lags in each variable, specified as a 1-by-nv cell array of non-negative integer row vectors, where nv
is the total number of regressor variables. Each row vector contains nr integers that specify the nr
regressor lags for the corresponding variable. For instance, suppose that you want the following
regressors:

• Output variable y1: y1(t–1)2 and y1(t–2)2

• Input variable u1: u1(t–3)2

To obtain these lags, set Lags to {[1 2],3}.

If a lag corresponds to an output variable of an idnlarx model, the minimum lag must be greater
than or equal to 1.

For an example of using this property, see “Estimate Nonlinear ARX Model with Polynomial
Regressors” on page 1-1383.
Example: {1 1}
Example: {[1 2],[1,3,4]}

UseAbsolute — Absolute value indicator
false (default) | logical vector

Absolute value indicator that determines whether to use the absolute value of a regressor variable
instead of the signed value, specified as a logical vector with a length equal to the number of
variables.

For an example of setting this property, see “Use Absolute Value in Polynomial Regressor Set” on
page 1-1385.
Example: [true,false]

1 Functions

1-1382

AllowVariableMix — Mixed variables indicator
false (default) | logical vector

Mixed variables indicator that determines whether to use multiple variables in regressor formulas
such as y(t–1)u(t–1), specified as a logical vector with a length equal to the number of variables.

For an example of setting this property, see “Use Multiple Variables in Polynomial Regressor Term” on
page 1-1385.
Example: [true,false]

AllowLagMix — Mixed lag indicator
false (default) | logical vector

Mixed lag indicator that determines whether to use different lags in regressor formulas such as
u(t)u(t–3), specified as a logical vector with a length equal to the number of variables.

To set this property for an existing nonlinear ARX model sys, use dot notation, as shown in the
following command.

For an example of setting this property, see “Use Mixed Lags in Polynomial Regressor Term” on page
1-1386.
Example: [true,false]

TimeVariable — Name of time variable
't' (default) | character array | string

Name of the time variable, specified as a valid MATLAB variable name that is distinct from values in
Variables.
Example: 'ClockTime'

Examples

Estimate Nonlinear ARX Model with Polynomial Regressors

Load the data and create an iddata object z with a sample time of 0.1 seconds.

load twotankdata y u
z = iddata(y,u,'Ts',0.1);

Specify polynomial regressors that have the forms u t − 2 2, u t − 4 2, and y t − 1 2.

Use the properties of z to specify the variable names.

Variables = [z.OutputName;z.InputName];

Specify the lags.

Lags = {1,[2 4]};

Create the regressor. The default order is 2.

pReg = polynomialRegressor(Variables,Lags)

 polynomialRegressor

1-1383

pReg =
Order 2 regressors in variables y1, u1
 Order: 2
 Variables: {'y1' 'u1'}
 Lags: {[1] [2 4]}
 UseAbsolute: [0 0]
 AllowVariableMix: 0
 AllowLagMix: 0
 TimeVariable: 't'

 Regressors described by this set

Use pReg to estimate the nonlinear ARX model.

sys = nlarx(z,pReg)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 Order 2 regressors in variables y1, u1

Output function: Wavelet network with 66 units
Sample time: 0.1 seconds

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 95.97% (prediction focus)
FPE: 5.843e-05, MSE: 5.569e-05
More information in model's "Report" property.

View the regressors.

getreg(sys)

ans = 3x1 cell
 {'y1(t-1)^2'}
 {'u1(t-2)^2'}
 {'u1(t-4)^2'}

Specify Order for Polynomial Regressor

Specify the third-order polynomial regressor u1 t − 2 3.

Variables = 'u1';
Lags = 2;
Order = 3;
pReg = polynomialRegressor(Variables,Lags,Order)

pReg =
Order 3 regressors in variables u1
 Order: 3

1 Functions

1-1384

 Variables: {'u1'}
 Lags: {[2]}
 UseAbsolute: 0
 AllowVariableMix: 0
 AllowLagMix: 0
 TimeVariable: 't'

 Regressors described by this set

Use Absolute Value in Polynomial Regressor Set

Create a second-order polynomial regressor set that uses lags of 3, 10, and 100 in variable y1 and
lags of 0 and 4 in variable u1.

vars = {'y1','u1'};
lags = {[3 10 100],[0,4]};

Specify that the y1 regressor use the absolute value of y1.

UseAbs = [true,false];

Create the polynomial regressor.

reg = polynomialRegressor(vars,lags,2,UseAbs)

reg =
Order 2 regressors in variables y1, u1
 Order: 2
 Variables: {'y1' 'u1'}
 Lags: {[3 10 100] [0 4]}
 UseAbsolute: [1 0]
 AllowVariableMix: 0
 AllowLagMix: 0
 TimeVariable: 't'

 Regressors described by this set

Use Multiple Variables in Polynomial Regressor Term

Create a polynomial regressor set that includes the terms y1 t − 1 2, u1 t − 1 2, and y1 t − 1 u1 t − 1 .

Specify the variables and lags.

vars = {'y1','u1'};
lags = {1, 1};

Specify that mixed-variable regressors be created.

mixvar = true;

Create a second-order polynomial regressor using mixvar. Set the fourth position, which represents
the UseAbsolute property, to false.

 polynomialRegressor

1-1385

reg = polynomialRegressor(vars,lags,2,false,mixvar)

reg =
Order 2 regressors in variables y1, u1
 Order: 2
 Variables: {'y1' 'u1'}
 Lags: {[1] [1]}
 UseAbsolute: [0 0]
 AllowVariableMix: 1
 AllowLagMix: 0
 TimeVariable: 't'

 Regressors described by this set

As an alternative, you can create the regressor specification first using the variables and lags and set
the AllowVariableMix property afterward using dot notation.

reg1 = polynomialRegressor(vars,lags);
reg1.AllowVariablemix = true

reg1 =
Order 2 regressors in variables y1, u1
 Order: 2
 Variables: {'y1' 'u1'}
 Lags: {[1] [1]}
 UseAbsolute: [0 0]
 AllowVariableMix: 1
 AllowLagMix: 0
 TimeVariable: 't'

 Regressors described by this set

Use reg1 in a nonlinear ARX model.

load twotankdata y u;
z = iddata(y,u,'Ts',0.1);
sys = nlarx(z,reg1);

View the regressors.

getreg(sys)

ans = 3x1 cell
 {'y1(t-1)^2' }
 {'u1(t-1)^2' }
 {'y1(t-1)*u1(t-1)'}

The regressors include mixed-variable terms.

Use Mixed Lags in Polynomial Regressor Term

Specify a polynomial regressor set that includes a term of the form u t u t − 3 .

Specify the variable names and the lags.

1 Functions

1-1386

vars = {'y1','u1'};
lags = {2,[0 3]};

Initialize a second-order polynomial regressor.

reg = polynomialRegressor(vars,lags);

Specify that the regressor use mixed lags.

reg.AllowLagMix = true;

Use the regressor set in a nonlinear ARX model.

load twotankdata y u;
z = iddata(y,u,'Ts',0.1);
sys = nlarx(z,reg);

View the regressors.

getreg(sys)

ans = 4x1 cell
 {'y1(t-2)^2' }
 {'u1(t)^2' }
 {'u1(t-3)^2' }
 {'u1(t)*u1(t-3)'}

The regressors include the mixed-lag term.

Estimate Nonlinear ARX Model with Polynomial and Linear Regressors

Load the data and create an iddata object z.

load twotankdata y u
z = iddata(y,u,'Ts',0.1);

Specify polynomial regressors that have the forms u t − 2 2 and u t − 4 2. Also specify a linear
regressor of the form y t − 1 .

Specify the input lag.

uLags = {[2 4]};

Specify the polynomial regressors. The default regressor order is 2.

pReg = polynomialRegressor(z.InputName,uLags);

Specify the output lag and specify the linear regressor.

lLags = 1;
lReg = linearRegressor(z.OutputName,lLags);

Estimate a nonlinear ARX model.

reg = [pReg;lReg]

 polynomialRegressor

1-1387

reg =
[2 1] array of polynomialRegressor, linearRegressor objects.

1. Order 2 regressors in variables u1
 Order: 2
 Variables: {'u1'}
 Lags: {[2 4]}
 UseAbsolute: 0
 AllowVariableMix: 0
 AllowLagMix: 0
 TimeVariable: 't'

2. Linear regressors in variables y1
 Variables: {'y1'}
 Lags: {[1]}
 UseAbsolute: 0
 TimeVariable: 't'

Regressors described by this set

sys = nlarx(z,reg)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 1. Linear regressors in variables y1
 2. Order 2 regressors in variables u1

Output function: Wavelet network with 21 units
Sample time: 0.1 seconds

Status:
Estimated using NLARX on time domain data "z".
Fit to estimation data: 96.56% (prediction focus)
FPE: 4.133e-05, MSE: 4.059e-05
More information in model's "Report" property.

View the regressors.

getreg(sys)

ans = 3x1 cell
 {'u1(t-2)^2'}
 {'u1(t-4)^2'}
 {'y1(t-1)' }

1 Functions

1-1388

Specify Linear, Polynomial, and Custom Regressors

Load the estimation data z1, which has one input and one output, and obtain the output and input
names.

load iddata1 z1;
names = [z1.OutputName z1.InputName]

names = 1x2 cell
 {'y1'} {'u1'}

Specify L as the set of linear regressors that represents y1 t − 1 , u1 t − 2 , and u1 t − 5 .

L = linearRegressor(names,{1,[2 5]});

Specify P as the polynomial regressor y1 t − 1 2.

P = polynomialRegressor(names(1),1,2);

Specify C as the custom regressor y1 t − 2 u1 t − 3 . Use an anonymous function handle to define this
function.

C = customRegressor(names,{2 3},@(x,y)x.*y)

C =
Custom regressor: y1(t-2).*u1(t-3)
 VariablesToRegressorFcn: @(x,y)x.*y
 Variables: {'y1' 'u1'}
 Lags: {[2] [3]}
 Vectorized: 1
 TimeVariable: 't'

 Regressors described by this set

Combine the regressors in the column vector R.

R = [L;P;C]

R =
[3 1] array of linearRegressor, polynomialRegressor, customRegressor objects.

1. Linear regressors in variables y1, u1
 Variables: {'y1' 'u1'}
 Lags: {[1] [2 5]}
 UseAbsolute: [0 0]
 TimeVariable: 't'

2. Order 2 regressors in variables y1
 Order: 2
 Variables: {'y1'}
 Lags: {[1]}
 UseAbsolute: 0
 AllowVariableMix: 0
 AllowLagMix: 0
 TimeVariable: 't'

 polynomialRegressor

1-1389

3. Custom regressor: y1(t-2).*u1(t-3)
 VariablesToRegressorFcn: @(x,y)x.*y
 Variables: {'y1' 'u1'}
 Lags: {[2] [3]}
 Vectorized: 1
 TimeVariable: 't'

Regressors described by this set

Estimate a nonlinear ARX model with R.

sys = nlarx(z1,R)

sys =

Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1

Regressors:
 1. Linear regressors in variables y1, u1
 2. Order 2 regressors in variables y1
 3. Custom regressor: y1(t-2).*u1(t-3)

Output function: Wavelet network with 1 units
Sample time: 0.1 seconds

Status:
Estimated using NLARX on time domain data "z1".
Fit to estimation data: 59.73% (prediction focus)
FPE: 3.356, MSE: 3.147
More information in model's "Report" property.

View the full regressor set.

getreg(sys)

ans = 5x1 cell
 {'y1(t-1)' }
 {'u1(t-2)' }
 {'u1(t-5)' }
 {'y1(t-1)^2' }
 {'y1(t-2).*u1(t-3)'}

Version History
Introduced in R2021a

See Also
idnlarx | nlarx | getreg | linearRegressor | periodicRegressor | customRegressor

1 Functions

1-1390

polyreg
(Not recommended) Powers and products of standard regressors

Note polyreg is not recommended. Use polynomialRegressor instead to create polynomial
regressor objects, and them add them direclty to the regressor idnlarx Regressors property. For
more information, see “Compatibility Considerations”.

Syntax
R = polyreg(model)
R = polyreg(model,'MaxPower',n)
R = polyreg(model,'MaxPower',n,'CrossTerm',CrossTermVal)

Description
R = polyreg(model) creates an array R of polynomial regressors up to the power 2. If a model
order has input u and output y, na=nb=2, and delay nk=1, polynomial regressors are y(t−1)2, u(t
−1)2, y(t−2)2, u(t−2)2. model is an idnlarx object. You must add these regressors to the model by
assigning the CustomRegressors model property or by using addreg.

R = polyreg(model,'MaxPower',n) creates an array R of polynomial regressors up to the power
n. Excludes terms of power 1 and cross terms, such as y(t−1)*u(t−1).

R = polyreg(model,'MaxPower',n,'CrossTerm',CrossTermVal) creates an array R of
polynomial regressors up to the power n and includes cross terms (products of standards regressors)
when CrossTermVal is 'on'. By default, CrossTermVal is 'off'.

Examples

Create Polynomial Regressors Up To Power 2

Estimate a nonlinear ARX model with na = 2, nb = 2, and nk = 1, and nonlinearity estimator
wavenet.

load iddata1
m = nlarx(z1,[2 2 1]);

Create polynomial regressors.

R = polyreg(m);

Estimate the model.

m = nlarx(z1,[2 2 1],idWaveletNetwork,'CustomReg',R);

View all model regressors (standard and custom).

getreg(m)

 polyreg

1-1391

ans = 8x1 cell
 {'y1(t-1)' }
 {'y1(t-2)' }
 {'u1(t-1)' }
 {'u1(t-2)' }
 {'y1(t-1).^2'}
 {'y1(t-2).^2'}
 {'u1(t-1).^2'}
 {'u1(t-2).^2'}

Create Polynomial Regressors Up To Power 3

Estimate a nonlinear ARX model with na = 2, nb = 1, and nk = 1, and nonlinearity estimator
wavenet.

load iddata1
m = nlarx(z1,[2 1 1]);

Create polynomial regressors.

R = polyreg(m,'MaxPower',3,'CrossTerm','on')

16x1 array of Custom Regressors with fields: Function, Arguments, Delays, Vectorized

If the model m has three standard regressors a, b and c, then R includes the terms a2, b2, c2, ab, ac,
bc, a2b, a2c, ab2, abc, ac2, b2c, bc2, a3, b3, and c3.

Estimate the model.

m = nlarx(z1,[2 1 1],idWaveletNetwork,'CustomReg',R);

Version History
Introduced in R2007a

polyreg is not recommended
Not recommended starting in R2021a

Starting in R2021a, the polyreg command is not recommended. Use the polynomialRegressor
command instead to construct polynomial regressors. Doing so improves the computation speed and
the accuracy of results, reduces the memory footprint of the idnlarx object, and improves code
generation in Simulink.

After creating a polynomial regressor, add it directly to the idnlarx model Regressor property by
using the syntax model.Regressors(end+1) = new_polymomial_regressor_object.

There are no plans to remove polyreg at this time.

See Also
getreg | idnlarx | nlarx | polynomialRegressor

1 Functions

1-1392

Topics
“Identifying Nonlinear ARX Models”

 polyreg

1-1393

predict
Predict identified model K-step-ahead output

Syntax
yp = predict(sys,data,K)
yp = predict(sys,data,K,opt)
[yp,ic,sys_pred] = predict(___)

predict(sys,data,K, ___)
predict(sys,Linespec,data,K, ___)
predict(sys1,...,sysN,data,K, ___)
predict(sys1,Linespec1,...,sysN,LinespecN,data,K, ___)

Description
This predict command computes the K-step-ahead output of an identified model using measured
input-output data. To identify the model, you first collect all the input-output data and then estimate
the model parameters offline. To perform online state estimation of a nonlinear system using real-
time data, use the predict command for extended and unscented Kalman filters instead.

yp = predict(sys,data,K) predicts the output of an identified model sys, K steps ahead using
the measured input-output data.

predict command predicts the output response over the time span of measured data. In contrast,
forecast performs prediction into the future in a time range beyond the last instant of measured
data. Use predict to validate sys over the time span of measured data.

data can be a timetable, an comma-separated input/output matrix pair, a single matrix, or a data
object such as an iddata object or an idfrd object.

yp = predict(sys,data,K,opt) uses the option set opt to specify additional prediction options
such as handling of initial conditions and data offsets.

[yp,ic,sys_pred] = predict(___) also returns the estimated values for initial conditions ic
and a predictor model sys_pred. Use this syntax with any of the previous input argument
combinations.

predict(sys,data,K, ___) plots the predicted output. Use with any of the previous input
argument combinations. To change display options in the plot, right-click the plot to access the
context menu. For more details about the menu, see “Tips” on page 1-1405.

You can also plot the predicted model response using the compare command. The compare
command compares the prediction results with observed data and displays a quantitative goodness of
fit.

predict(sys,Linespec,data,K, ___) uses Linespec to specify the line type, marker symbol,
and color.

predict(sys1,...,sysN,data,K, ___) plots the predicted outputs for multiple identified
models. predict automatically chooses colors and line styles.

1 Functions

1-1394

predict(sys1,Linespec1,...,sysN,LinespecN,data,K, ___) uses the line type, marker
symbol, and color specified for each model.

Examples

Predict Time Series Model Response

Simulate time-series data.

init_sys = idpoly([1 -0.99],[],[1 -1 0.2]);
opt = simOptions('AddNoise',true);
u = iddata([],zeros(400,0),1);
data = sim(init_sys,u,opt);

data is an iddata object containing the simulated response data of a time series model.

Estimate an ARMAX model by using data as estimation data.

na = 1;
nb = 2;
sys = armax(data(1:200),[na nb]);

Predict the output of the model using a prediction horizon of 4.

K = 4;
yp = predict(sys,data,K);

yp is an iddata object. The predicted output is returned in the OutputData property of the object.

Compare the predicted and estimated data outputs.

plot(data(201:400),yp(201:400));
legend('Estimation data','Predicted data');

 predict

1-1395

Alternatively, to plot the predicted response and estimation data, use compare(sys,data,K).

Plot Predicted Output for Multiple Models

Load the estimation data.

load iddata1;
data = z1;

Estimate an ARX model of order [2 2 1].

sys1 = arx(data,[2 2 1]);

Estimate a transfer function with 2 poles.

 sys2 = tfest(data,2);

Create a predict option set to specify zero initial conditions for prediction.

opt = predictOptions('InitialCondition','z');

Plot the predicted outputs for the estimated models. Use the specified prediction option set, opt, and
specify prediction horizon as 10. Specify line styles for plotting the predicted output of each system.

predict(sys1,'r--',sys2,'b',data,10,opt);

1 Functions

1-1396

To change the display options, right-click the plot to access the context menu. For example, to view
the estimation data, select Show Validation Data from the context menu. To view the prediction
error, select Prediction Error Plot.

You can also plot the predicted response using the compare command. To do so, first create an option
set for compare to specify the use of zero initial conditions.

opt = compareOptions('InitialCondition','z');
compare(data,sys1,'r--',sys2,'b',10,opt);

 predict

1-1397

Reproduce Prediction Results by Simulation

Use estimation data to estimate a model, and then compute the predicted model output and predictor
model using the predict command. Simulate the predictor model to reproduce the predicted output.

Load estimation data.

load iddata3 z3
data = z3;

Estimate a polynomial model from the data.

sys = polyest(z3,[2 2 2 0 0 1]);

Predict the system response using prediction horizon 4.

K = 4;
[yp,ic,sysp] = predict(sys,data,K);

yp is the predicted model response, ic contains the estimated initial conditions, and sysp is the
predictor model.

Simulate the predictor model with inputs [data.OutputData,data.InputData] and initial
conditions ic.

1 Functions

1-1398

opt = simOptions;
opt.InitialCondition = ic;
ys = sim(sysp,[data.OutputData,data.InputData],opt);

Plot the predicted and simulated outputs.

t = yp.SamplingInstants;
plot(t,yp.OutputData,'b',t,ys,'.r');
legend('Predicted Output','Simulated Output')

Predict Model Using Initial Conditions Obtained During Estimation

Incorporate initial conditions that you obtained previously into your model prediction.

Load the data.

load iddata1ic z1i

Specify the ARMAX estimation option to estimate the initial state.

estimOpt = armaxOptions('InitialCondition','estimate');

Estimate an ARMAX model and return an initialCondition object ic that encapsulates the initial
conditions in state-space form.

 predict

1-1399

na = 2;
nb = 2;
nc = 2;
nk = 1;
[sys,ic] = armax(z1i,[na nb nc nk],estimOpt);

Specify the initial conditions for prediction.

predictOpt = predictOptions('InitialCondition',ic);

Predict the model and obtain the model response. Plot the response y with the measured data.

y = predict(sys,z1i,predictOpt);
plot(z1i,y)
legend('Measured Data','Predicted Response')

The measured and predicted responses show good agreement at the start of the prediction.

Understand Use of Historical Data for Model Prediction

Perform model prediction using historical data to specify initial conditions. You first predict using the
predict command and specify the historical data using the predictOptions option set. You then
reproduce the predicted response by manually mapping the historical data to initial states.

Load a two-input, one-output dataset.

1 Functions

1-1400

load iddata7 z7

Identify a fifth-order state-space model using the data.

sys = n4sid(z7,5);

Split the dataset into two parts.

zA = z7(1:15);
zB = z7(16:end);

Suppose that you want to compute the 10-step-ahead prediction of the response of the identified
system for data zB. For initial conditions, use the signal values in zA as the historical record. That is,
the input and output values for the time immediately preceding data in zB.

IO = struct('Input',zA.InputData,'Output',zA.OutputData);
opt = predictOptions('InitialCondition',IO);

Generate the 10-step-ahead prediction for data zB using the specified initial conditions and predict.

[yp,x0,Predictor] = predict(sys,zB,10,opt);

yp is the predicted model response, x0 are the initial states corresponding to the predictor model
Predictor. You can simulate Predictor using x0 as initial conditions to reproduce
yp.OutputData.

Now reproduce the output by manually mapping the historical data to initial states. To do so,
minimize 1-step prediction errors over the time span of zA.

x0est = data2state(sys,zA);

x0est contains the values of the five states of sys at the time instant immediately after the most
recent data sample in zA.

The Predictor has more states than the original system due to the 10-step prediction horizon.
Specify the additional states induced by the horizon to zero initial values, and then append x0est.

x0Predictor = zeros(order(Predictor),1);
x0Predictor(end-4:end) = x0est;

Simulate the predictor using [zB.OutputData,zB.InputData] as the input signal and
x0Predictor as initial conditions.

uData = [zB.OutputData,zB.InputData]; % signals required for prediction
[ysim,t,xsim] = lsim(Predictor,uData,[],x0Predictor);

Plot the predicted output of the predict command yp.OutputData and the manually computed
results ysim.

plot(t,yp.OutputData,t,ysim, '.')

 predict

1-1401

ysim is the same as yp.OutputData.

Input Arguments
sys — Identified model
linear model | nonlinear model

Identified model whose output is to be predicted, specified as one of the following:

• Linear model — idpoly, idproc, idss, idtf, or idgrey
• Nonlinear model — idnlgrey, idnlhw, or idnlarx

When sys is an idnlhw or idnlgrey model, the predicted output yp is the same as the simulated
response computed using data.InputData as input.

If a model is unavailable, estimate sys from data using commands such as ar, armax, tfest,
nlarx, and ssest.

data — Measured input/output data
timetable | numeric matrix pair | single numeric matrix | iddata object

Measured uniformly sampled input/output data, specified as a timetable, a comma-separated pair
of numeric input/output matrices, a single numeric matrix, or an iddata object. The specification for
data depends on the data type.

1 Functions

1-1402

Timetable

Specify data as a timetable that uses a regularly spaced time vector. tt contains variables
representing input and output channels.

Comma-Separated Matrix Pair

Specify data as a comma-separated pair of real-valued matrices that contain the input and output
time-domain signal values (u,y). Specify the input matrix with the dimensions Ns-by-Nu and the
output matrix with the dimensions Ns-by-Ny, where Nu is the number of inputs, Ny is the number of
outputs, and Ns is the number of samples.

For time-series data, specify only the output matrix y.

Single Matrix

Specify data as a single real-valued matrix with Ny+Nu columns that contain the output signal values
followed by the input signal values. Note that this channel order is the opposite of the order used for
the comma-separated matrix pair data form of data.

For time series data, specify data as an Ns-by-Ny matrix.

Data Object

Specify data as an iddata object that contains the input and output data. For time-series data (no
inputs), specify data as an iddata object with no inputs.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

K — Prediction horizon
1 (default) | positive integer | Inf

Prediction horizon, specified as one of the following:

• Positive integer — Output yp is calculated K steps into the future, where K represents a multiple
of data sample time.

The output at time instant t is calculated using previously measured outputs up to time t-K and
inputs up to the time instant t.

• Inf — No previous outputs are used in the computation, and predict returns the same result as
simulation using the sim command.

For Output-Error models, there is no difference between the K step-ahead predictions and the
simulated output. This is because Output-Error models only use past inputs to predict future outputs.

Note For careful model validation, a one-step-ahead prediction (K = 1) is usually not a good test for
validating the model sys over the time span of measured data. Even the trivial one step-ahead
predictor, y (t) = y(t − 1), can give good predictions. So a poor model may look fine for one-step-
ahead prediction of data that has a small sample time. Prediction with K = Inf, which is the same as
performing simulation with sim command, can lead to diverging outputs because low-frequency
disturbances in the data are emphasized, especially for models with integration. Use a K value
between 1 and Inf to capture the mid-frequency behavior of the measured data.

 predict

1-1403

opt — Prediction options
predictOptions option set

Prediction options, specified as a predictOptions option set. Use the option set to specify
prediction options such as handling of initial conditions and data offsets.

Linespec — Line style, marker, and color
character vector

Line style, marker, and color, specified as a character vector. For example, 'b' or 'b+:'.

For more information about configuring Linespec, see the Linespec argument of plot.

Output Arguments
yp — Predicted output response
iddata object | matrix of doubles

Predicted output response, returned as one of the following:

• iddata object — When data is an iddata object. The OutputData property of yp stores the
values of the predicted output. The time variable takes values in the range represented by
data.SamplingInstants.

• Matrix of doubles — When data is a matrix of doubles.

The output at time instant t is calculated using previously measured outputs up to time t-K and
inputs up to the time instant t. In other words, the predicted response at time point r of measured
data is stored in the r+K-1 sample of yp. Note that at time r, the future inputs u(r+1), u(r+2),...,
u(r+K) required for prediction are assumed to be known. For multi-experiment data, yp contains a
predicted data set for each experiment. The time span of the predicted outputs matches that of the
observed data.

When sys is specified using an idnlhw or idnlgrey model, yp is the same as the simulated
response computed using data.InputData as input.

ic — Estimated initial conditions
column vector | initialCondition object | cell array

Estimated initial conditions corresponding to the predictor model sys_pred, returned as a column
vector, an initialCondition object, or a cell array.

• If sys is a linear transfer function or polynomial model, then ic is an initialCondition object.
The initialCondition object encapsulates the free response of sys, in state-space form, with
the corresponding initial state vector.

• If sys is any other type of linear or nonlinear dynamic model, then ic is an initial state vector,
returned as a column vector of size equal to the number of states.

• If data contains multiexperiment data, then ic is a cell array of size Ne, where Ne is the number
of experiments.

To reproduce prediction results, you can simulate sys_pred using ic as the initial conditions. For an
example, see “Reproduce Prediction Results by Simulation” on page 1-1398.

If sys is an idnlarx model, ic is returned empty.

1 Functions

1-1404

sys_pred — Predictor model
dynamic system model | array of models

Predictor model, returned as a dynamic system model. For multi-experiment data, sys_pred is an
array of models, with one entry for each experiment. You can use the predictor model sys_pred and
estimated initial conditions ic to reproduce the results of prediction:

• If sys is a linear model, the predictor model is returned as either a model of the same type as sys
or as a state-space version of the model (idss). To reproduce the results of prediction, simulate
sys_pred using [data.OutputData data.InputData] as the input and ic as the initial
conditions. The simulation output is the same as the predicted output yp.OutputData. For an
example, see “Reproduce Prediction Results by Simulation” on page 1-1398.

• When sys is a nonlinear grey-box model (idnlgrey) or Hammerstein-Wiener model (idnlhw),
the noise-component of the model is trivial, and so the predictor model is the same as the model.
sys_pred is returned empty. To reproduce the results of prediction, simulate sys using initial
conditions ic. For a definition of the states of idnlhw models, see “Definition of idnlhw States” on
page 1-715.

• If sys is a nonlinear ARX model (idnlarx), sys_pred and ic are returned empty. You cannot
reproduce the prediction results by simulation.

For discrete-time data that is time-domain or frequency-domain data with sample time Ts greater
than zero, sys_pred is a discrete-time model, even if sys is a continuous-time model.

Tips
• Right-clicking the plot of the predicted output opens the context menu, where you can access the

following options:

• Systems — Select systems to view predicted response. By default, the response of all systems
is plotted.

• Data Experiment — For multi-experiment data only. Toggle between data from different
experiments.

• Characteristics — View the following data characteristics:

• Peak Value — View the absolute peak value of the data. Applicable for time–domain data
only.

• Peak Response — View peak response of the data. Applicable for frequency-response data
only.

• Mean Value — View mean value of the data. Applicable for time–domain data only.
• Show — For frequency-domain and frequency-response data only.

• Magnitude — View magnitude of frequency response of the system.
• Phase — View phase of frequency response of the system.

• Show Validation Data — Plot data used to predict the model response.
• I/O Grouping — For datasets containing more than one input or output channel. Select

grouping of input and output channels on the plot.

• None — Plot input-output channels in their own separate axes.
• All — Group all input channels together and all output channels together.

 predict

1-1405

• I/O Selector — For datasets containing more than one input or output channel. Select a subset
of the input and output channels to plot. By default, all output channels are plotted.

• Grid — Add grids to the plot.
• Normalize — Normalize the y-scale of all data in the plot.
• Full View — Return to full view. By default, the plot is scaled to full view.
• Prediction Horizon — Set the prediction horizon, or choose simulation.
• Initial Condition — Specify handling of initial conditions. Not applicable for frequency-

response data.

Specify as one of the following:

• Estimate — Treat the initial conditions as estimation parameters.
• Zero — Set all initial conditions to zero.
• Absorb delays and estimate — Absorb nonzero delays into the model coefficients and

treat the initial conditions as estimation parameters. Use this option for discrete-time
models only.

• Predicted Response Plot — Plot the predicted model response. By default, the response plot
is shown.

• Prediction Error Plot — Plot the error between the model response and prediction data.
• Properties — Open the Property Editor dialog box to customize plot attributes.

Version History
Introduced before R2006a

See Also
predictOptions | compare | pe | sim | simsd | iddata | forecast

Topics
“Simulate and Predict Identified Model Output”
“Simulation and Prediction at the Command Line”

1 Functions

1-1406

predict
Predict state and state estimation error covariance at next time step using extended or unscented
Kalman filter, or particle filter

Syntax
[PredictedState,PredictedStateCovariance] = predict(obj)
[PredictedState,PredictedStateCovariance] = predict(obj,Us1,...Usn)

Description
The predict command predicts the state and state estimation error covariance of an
extendedKalmanFilter, unscentedKalmanFilter or particleFilter object at the next time
step. To implement the extended or unscented Kalman filter algorithms, use the predict and
correct commands together. If the current output measurement exists, you can use predict and
correct. If the measurement is missing, you can only use predict. For information about the order
in which to use the commands, see “Using predict and correct Commands” on page 1-1413.

Use this predict command for online state estimation using real-time data. When data is not
available in real time, to compute the K-step ahead output of an identified model, use predict for
offline estimation.

[PredictedState,PredictedStateCovariance] = predict(obj) predicts state estimate and
state estimation error covariance of an extended or unscented Kalman filter, or particle filter object
obj at the next time step.

You create obj using the extendedKalmanFilter, unscentedKalmanFilter or
particleFilter commands. You specify the state transition function and measurement function of
your nonlinear system in obj. You also specify whether the process and measurement noise terms are
additive or nonadditive in these functions. The State property of the object stores the latest
estimated state value. Assume that at time step k, obj.State is x [k k]. This value is the state
estimate for time k, estimated using measured outputs until time k. When you use the predict
command, the software returns x [k + 1 k] in the PredictedState output. Where x [k + 1 k] is the
state estimate for time k+1, estimated using measured output until time k. The command returns the
state estimation error covariance of x [k + 1 k] in the PredictedStateCovariance output. The
software also updates the State and StateCovariance properties of obj with these corrected
values.

Use this syntax if the state transition function f that you specified in obj.StateTransitionFcn has
one of the following forms:

• x(k) = f(x(k-1)) — for additive process noise.
• x(k) = f(x(k-1),w(k-1)) — for nonadditive process noise.

Where x and w are the state and process noise of the system. The only inputs to f are the states and
process noise.

[PredictedState,PredictedStateCovariance] = predict(obj,Us1,...Usn) specifies
additional input arguments, if the state transition function of the system requires these inputs. You
can specify multiple arguments.

 predict

1-1407

Use this syntax if your state transition function f has one of the following forms:

• x(k) = f(x(k-1),Us1,...Usn) — for additive process noise.
• x(k) = f(x(k-1),w(k-1),Us1,...Usn) — for nonadditive process noise.

Examples

Estimate States Online Using Unscented Kalman Filter

Estimate the states of a van der Pol oscillator using an unscented Kalman filter algorithm and
measured output data. The oscillator has two states and one output.

Create an unscented Kalman filter object for the oscillator. Use previously written and saved state
transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. These
functions describe a discrete-approximation to a van der Pol oscillator with nonlinearity parameter,
mu, equal to 1. The functions assume additive process and measurement noise in the system. Specify
the initial state values for the two states as [1;0]. This is the guess for the state value at initial time k,
using knowledge of system outputs until time k-1, x[k |k− 1].

obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[1;0]);

Load the measured output data, y, from the oscillator. In this example, use simulated static data for
illustration. The data is stored in the vdp_data.mat file.

load vdp_data.mat y

Specify the process noise and measurement noise covariances of the oscillator.

obj.ProcessNoise = 0.01;
obj.MeasurementNoise = 0.16;

Initialize arrays to capture results of the estimation.

residBuf = [];
xcorBuf = [];
xpredBuf = [];

Implement the unscented Kalman filter algorithm to estimate the states of the oscillator by using the
correct and predict commands. You first correct x[k |k− 1] using measurements at time k to get
x[k |k]. Then, you predict the state value at next time step, x[k + 1|k], using x[k |k], the state estimate
at time step k that is estimated using measurements until time k.

To simulate real-time data measurements, use the measured data one time step at a time. Compute
the residual between the predicted and actual measurement to assess how well the filter is
performing and converging. Computing the residual is an optional step. When you use residual,
place the command immediately before the correct command. If the prediction matches the
measurement, the residual is zero.

After you perform the real-time commands for the time step, buffer the results so that you can plot
them after the run is complete.

for k = 1:size(y)
 [Residual,ResidualCovariance] = residual(obj,y(k));
 [CorrectedState,CorrectedStateCovariance] = correct(obj,y(k));

1 Functions

1-1408

 [PredictedState,PredictedStateCovariance] = predict(obj);

 residBuf(k,:) = Residual;
 xcorBuf(k,:) = CorrectedState';
 xpredBuf(k,:) = PredictedState';

end

When you use the correct command, obj.State and obj.StateCovariance are updated with
the corrected state and state estimation error covariance values for time step k, CorrectedState
and CorrectedStateCovariance. When you use the predict command, obj.State and
obj.StateCovariance are updated with the predicted values for time step k+1, PredictedState
and PredictedStateCovariance.

In this example, you used correct before predict because the initial state value was x[k |k− 1], a
guess for the state value at initial time k using system outputs until time k-1. If your initial state
value is x[k− 1|k− 1], the value at previous time k-1 using measurement until k-1, then use the
predict command first. For more information about the order of using predict and correct, see
“Using predict and correct Commands” on page 1-1413.

Plot the estimated states, using postcorrection values.

plot(xcorBuf(:,1), xcorBuf(:,2))
title('Estimated States')

Plot the actual measurement, the corrected estimated measurement, and the residual. For the
measurement function in vdpMeasurementFcn, the measurement is the first state.

 predict

1-1409

M = [y,xcorBuf(:,1),residBuf];
plot(M)
grid on
title('Actual and Estimated Measurements, Residual')
legend('Measured','Estimated','Residual')

The estimate tracks the measurement closely. After the initial transient, the residual remains
relatively small throughout the run.

Estimate States Online using Particle Filter

Load the van der Pol ODE data, and specify the sample time.

vdpODEdata.mat contains a simulation of the van der Pol ODE with nonlinearity parameter mu=1,
using ode45, with initial conditions [2;0]. The true state was extracted with sample time dt =
0.05.

load ('vdpODEdata.mat','xTrue','dt')
tSpan = 0:dt:5;

Get the measurements. For this example, a sensor measures the first state with a Gaussian noise with
standard deviation 0.04.

sqrtR = 0.04;
yMeas = xTrue(:,1) + sqrtR*randn(numel(tSpan),1);

1 Functions

1-1410

Create a particle filter, and set the state transition and measurement likelihood functions.

myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);

Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.

initialize(myPF,1000,[2;0],eye(2));

Pick the mean state estimation and systematic resampling methods.

myPF.StateEstimationMethod = 'mean';
myPF.ResamplingMethod = 'systematic';

Estimate the states using the correct and predict commands, and store the estimated states.

xEst = zeros(size(xTrue));
for k=1:size(xTrue,1)
 xEst(k,:) = correct(myPF,yMeas(k));
 predict(myPF);
end

Plot the results, and compare the estimated and true states.

figure(1)
plot(xTrue(:,1),xTrue(:,2),'x',xEst(:,1),xEst(:,2),'ro')
legend('True','Estimated')

 predict

1-1411

Specify State Transition and Measurement Functions with Additional Inputs

Consider a nonlinear system with input u whose state x and measurement y evolve according to the
following state transition and measurement equations:

x[k] = x[k− 1] + u[k− 1] + w[k− 1]

y[k] = x[k] + 2 * u[k] + v[k]2

The process noise w of the system is additive while the measurement noise v is nonadditive.

Create the state transition function and measurement function for the system. Specify the functions
with an additional input u.

f = @(x,u)(sqrt(x+u));
h = @(x,v,u)(x+2*u+v^2);

f and h are function handles to the anonymous functions that store the state transition and
measurement functions, respectively. In the measurement function, because the measurement noise
is nonadditive, v is also specified as an input. Note that v is specified as an input before the
additional input u.

Create an extended Kalman filter object for estimating the state of the nonlinear system using the
specified functions. Specify the initial value of the state as 1 and the measurement noise as
nonadditive.

obj = extendedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);

Specify the measurement noise covariance.

obj.MeasurementNoise = 0.01;

You can now estimate the state of the system using the predict and correct commands. You pass
the values of u to predict and correct, which in turn pass them to the state transition and
measurement functions, respectively.

Correct the state estimate with measurement y[k]=0.8 and input u[k]=0.2 at time step k.

correct(obj,0.8,0.2)

Predict the state at the next time step, given u[k]=0.2.

predict(obj,0.2)

Retrieve the error, or residual, between the prediction and the measurement.

[Residual, ResidualCovariance] = residual(obj,0.8,0.2);

Input Arguments
obj — Extended or unscented Kalman filter, or particle filter object
extendedKalmanFilter object | unscentedKalmanFilter object | particleFilter object

Extended or unscented Kalman filter, or particle filter object for online state estimation, created using
one of the following commands:

1 Functions

1-1412

• extendedKalmanFilter — Uses the extended Kalman filter algorithm.
• unscentedKalmanFilter — Uses the unscented Kalman filter algorithm.
• particleFilter — Uses the particle filter algorithm.

Us1,...Usn — Additional input arguments to state transition function
input arguments of any type

Additional input arguments to state transition function, specified as input arguments of any type. The
state transition function, f, is specified in the StateTransitionFcn property of the object. If the
function requires input arguments in addition to the state and process noise values, you specify these
inputs in the predict command syntax.

For example, suppose that your state transition function calculates the predicted state x at time step
k using system inputs u(k-1) and time k-1, in addition to the state x(k-1):

x(k) = f(x(k-1),u(k-1),k-1)

Then when you perform online state estimation at time step k, specify these additional inputs in the
predict command syntax:

[PredictedState,PredictedStateCovariance] = predict(obj,u(k-1),k-1);

Output Arguments
PredictedState — Predicted state estimate
vector

Predicted state estimate, returned as a vector of size M, where M is the number of states of the
system. If you specify the initial states of obj as a column vector then M is returned as a column
vector, otherwise M is returned as a row vector.

For information about how to specify the initial states of the object, see the
extendedKalmanFilter, unscentedKalmanFilter and particleFilter reference pages.

PredictedStateCovariance — Predicted state estimation error covariance
matrix

Predicted state estimation error covariance, returned as an M-by-M matrix, where M is the number of
states of the system.

More About
Using predict and correct Commands

After you have created an extended or unscented Kalman filter, or particle filter object, obj, to
implement the estimation algorithms, use the correct and predict commands together.

At time step k, correct command returns the corrected value of states and state estimation error
covariance using measured system outputs y[k] at the same time step. If your measurement function
has additional input arguments Um, you specify these as inputs to the correct command. The
command passes these values to the measurement function.

[CorrectedState,CorrectedCovariance] = correct(obj,y,Um)

 predict

1-1413

The correct command updates the State and StateCovariance properties of the object with the
estimated values, CorrectedState and CorrectedCovariance.

The predict command returns the prediction of state and state estimation error covariance at the
next time step. If your state transition function has additional input arguments Us, you specify these
as inputs to the predict command. The command passes these values to the state transition
function.

[PredictedState,PredictedCovariance] = predict(obj,Us)

The predict command updates the State and StateCovariance properties of the object with the
predicted values, PredictedState and PredictedCovariance.

If the current output measurement exists at a given time step, you can use correct and predict. If
the measurement is missing, you can only use predict. For details about how these commands
implement the algorithms, see “Extended and Unscented Kalman Filter Algorithms for Online State
Estimation”.

The order in which you implement the commands depends on the availability of measured data y, Us,
and Um for your system:

• correct then predict — Assume that at time step k, the value of obj.State is x [k k− 1]. This
value is the state of the system at time k, estimated using measured outputs until time k-1. You
also have the measured output y[k] and inputs Us[k] and Um[k] at the same time step.

Then you first execute the correct command with measured system data y[k] and additional
inputs Um[k]. The command updates the value of obj.State to be x [k k], the state estimate for
time k, estimated using measured outputs up to time k. When you then execute the predict
command with input Us[k], obj.State now stores x [k + 1 k]. The algorithm uses this state
value as an input to the correct command in the next time step.

• predict then correct — Assume that at time step k, the value of obj.State is x [k− 1 k− 1].
You also have the measured output y[k] and input Um[k] at the same time step but you have
Us[k-1] from the previous time step.

Then you first execute the predict command with input Us[k-1]. The command updates the
value of obj.State to x [k k− 1]. When you then execute the correct command with input
arguments y[k] and Um[k], obj.State is updated with x [k k]. The algorithm uses this state
value as an input to the predict command in the next time step.

Thus, while in both cases the state estimate for time k, x [k k] is the same, if at time k you do not
have access to the current state transition function inputs Us[k], and instead have Us[k-1], then use
predict first and then correct.

For an example of estimating states using the predict and correct commands, see “Estimate
States Online Using Unscented Kalman Filter” on page 1-1408 or “Estimate States Online using
Particle Filter” on page 1-1410.

Version History
Introduced in R2016b

1 Functions

1-1414

See Also
correct | clone | extendedKalmanFilter | unscentedKalmanFilter | particleFilter |
initialize | residual

Topics
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
“Generate Code for Online State Estimation in MATLAB”
“What Is Online Estimation?”
“Extended and Unscented Kalman Filter Algorithms for Online State Estimation”

 predict

1-1415

predictOptions
Option set for predict

Syntax
opt = predictOptions
opt = predictOptions(Name,Value)

Description
opt = predictOptions creates the default option set for predict. Use dot notation to modify this
option set. Any options that you do not modify retain their default values.

opt = predictOptions(Name,Value) creates an option set with options specified by one or more
Name,Value pair arguments.

Examples

Specify Output Offset for Predicting Model Response

Create a default option set for model prediction.

opt = predictOptions;

Specify the output offsets for a two-output model as 2 and 5, respectively.

opt.OutputOffset = [2;5];

The software subtracts the offset value OutputOffset(i) from the i th output signal before using
the output to predict the model response. The software then adds back these offsets to the predicted
response to give the final response.

Specify Zero Initial Conditions for Model Prediction

Create an option set for predict using zero initial conditions.

opt = predictOptions('InitialCondition','z');

Use Historical Data to Specify Initial Conditions for Model Prediction

Load a two-input, one-output dataset.

load iddata7 z7

Identify a fifth-order state-space model using the data.

1 Functions

1-1416

sys = n4sid(z7,5);

Split the dataset into two parts.

zA = z7(1:15);
zB = z7(16:end);

Suppose that you want to compute the 10-step-ahead prediction of the response of the identified
system for data zB. For initial conditions, use the signal values in zA as the historical record. That is,
the input and output values for the time immediately preceding data in zB.

IO = struct('Input',zA.InputData,'Output',zA.OutputData);
opt = predictOptions('InitialCondition',IO);

Generate the 10-step-ahead prediction for data zB using the specified initial conditions.

[yp,x0,Predictor] = predict(sys,zB,10,opt);

yp is the predicted model response, x0 are the initial states corresponding to the predictor model
Predictor. You can simulate Predictor using x0 as initial conditions to reproduce
yp.OutputData.

To understand how the past data is mapped to the initial states of the model, see “Understand Use of
Historical Data for Model Prediction” on page 1-1400.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: predictOptions('InitialCondition','z') specifies zero initial conditions for the
measured input-output data.

InitialCondition — Handling of initial conditions
'e' (default) | 'z' | 'd' | column vector | matrix | initialCondition object | object array |
structure | idpar object x0Obj

Handling of initial conditions, specified as the comma-separated pair consisting of
'InitialCondition' and one of the following values:

• 'z' — Zero initial conditions.
• 'e' — Estimate initial conditions such that the prediction error for observed output is minimized.

For nonlinear grey-box models, only those initial states i that are designated as free in the model
(sys.InitialStates(i).Fixed = false) are estimated. To estimate all the states of the
model, first specify all the Nx states of the idnlgrey model sys as free.

for i = 1:Nx
sys.InitialStates(i).Fixed = false;
end

 predictOptions

1-1417

Similarly, to fix all the initial states to values specified in sys.InitialStates, first specify all
the states as fixed in the sys.InitialStates property of the nonlinear grey-box model.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model coefficients. The delays are first
converted to explicit model states, and the initial values of those states are also estimated and
returned.

Use this option for linear models only.
• Vector or Matrix — Initial guess for state values, specified as a numerical column vector of length

equal to the number of states. For multi-experiment data, specify a matrix with Ne columns, where
Ne is the number of experiments. Otherwise, use a column vector to specify the same initial
conditions for all experiments. Use this option for state-space (idss and idgrey) and nonlinear
models (idnlarx, idnlhw, and idnlgrey) only.

• initialCondition object — initialCondition object that represents a model of the free
response of the system to initial conditions. For multiexperiment data, specify a 1-by-Ne array of
objects, where Ne is the number of experiments.

Use this option for linear models only.
• Structure with the following fields, which contain the historical input and output values for a time

interval immediately before the start time of the data used in the prediction:

Field Description
Input Input history, specified as a matrix with Nu columns, where Nu is the number of

input channels. For time series models, use []. The number of rows must be
greater than or equal to the model order.

Output Output history, specified as a matrix with Ny columns, where Ny is the number of
output channels. The number of rows must be greater than or equal to the model
order.

For an example, see “Use Historical Data to Specify Initial Conditions for Model Prediction” on
page 1-1416.

For multi-experiment data, configure the initial conditions separately for each experiment by
specifying InitialCondition as a structure array with Ne elements. To specify the same initial
conditions for all experiments, use a single structure.

The software uses data2state to map the historical data to states. If your model is not idss,
idgrey, idnlgrey, or idnlarx, the software first converts the model to its state-space
representation and then maps the data to states. If conversion of your model to idss is not
possible, the estimated states are returned empty.

• x0obj — Specification object created using idpar. Use this object for discrete-time state-space
(idss and idgrey) and nonlinear grey-box (idnlgrey) models only. Use x0obj to impose
constraints on the initial states by fixing their value or specifying minimum or maximum bounds.

InputOffset — Input signal offset
[] (default) | column vector | matrix

Input signal offset for time-domain data, specified as the comma-separated pair consisting of
'InputOffset' and one of the following values:

• [] — No input offsets.

1 Functions

1-1418

• A column vector of length Nu, where Nu is the number of inputs. The software subtracts the offset
value InputOffset(i) from the ith input signal before using the input to predict the model
response.

• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix,
where Ne is the number of experiments. The software subtracts the offset value
InputOffset(i,j) from the ith input signal of the jth experiment before prediction.

If you specify a column vector of length Nu, then the offset value InputOffset(i) is subtracted
from the ith input signal of all the experiments.

OutputOffset — Output signal offset
[] (default) | column vector | matrix

Output signal offset for time-domain data, specified as the comma-separated pair consisting of
'OutputOffset' and one of the following values:

• [] — No output offsets.
• A column vector of length Ny, where Ny is the number of outputs. The software subtracts the
offset value OutputOffset(i) from the ith output signal before using the output to predict the
model response. After prediction, the software adds the offsets to the predicted response to give
the final predicted response.

• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as an Ny-by-Ne matrix,
where Ne is the number of experiments. The software subtracts the offset value
OutputOffset(i,j) from the ith output signal of the jth experiment before prediction.

If you specify a column vector of length Ny, then the offset value OutputOffset(i) is subtracted
from the ith output signal of all the experiments.

After prediction, the software adds the removed offsets to the predicted response to give the final
predicted response.

OutputWeight — Weight of output for initial condition estimation
[] (default) | 'noise' | matrix

Weight of output for initial condition estimation, specified as the comma-separated pair consisting of
'OutputWeight' and one of the following values:

• [] — No weighting is used by the software for initial condition estimation. This option is the same
as using eye(Ny) for the output weight, where Ny is the number of outputs.

• 'noise' — The software uses the inverse of the NoiseVariance property of the model as the
weight.

• A positive, semidefinite matrix of dimension Ny-by-Ny, where Ny is the number of outputs.

OutputWeight is relevant only for multi-output models.

Output Arguments
opt — Option set for predict
predictOptions option set

Option set for predict, retuned as a predictOptions option set.

 predictOptions

1-1419

Version History
Introduced in R2012a

See Also
predict | absorbDelay | idpar

1 Functions

1-1420

present
Display model information, including estimated uncertainty

Syntax
present(m)

Description
present(m) displays the linear or nonlinear identified model m and the following information:

• Estimated one standard deviation of the parameters, which gives 68.27% confidence region
• Termination conditions for iterative estimation algorithms
• Status of the model — whether the model was constructed or estimated
• Fit to estimation data
• Akaike's Final Prediction Error (FPE) criterion
• Mean-square error (MSE)

Examples

Display Information About Identified Model

Estimate a transfer function model.

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

Display model information.

present(sys)

sys =

 From input "u1" to output "y1":
 2.455 (+/- 1.101) s + 177 (+/- 10.73)
 --
 s^2 + 3.163 (+/- 0.2522) s + 23.16 (+/- 1.115)

Name: sys
Continuous-time identified transfer function.

Parameterization:
 Number of poles: 2 Number of zeros: 1
 Number of free coefficients: 4
 Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

 present

1-1421

Termination condition: Near (local) minimum, (norm(g) < tol)..
Number of iterations: 1, Number of function evaluations: 3

Estimated using TFEST on time domain data "z1".
Fit to estimation data: 70.77%
FPE: 1.725, MSE: 1.658
More information in model's "Report" property.

Version History
Introduced before R2006a

See Also
getpvec | getcov | tfdata | ssdata | polydata | frdata | idssdata | zpkdata

Topics
“Estimation Report”
“Loss Function and Model Quality Metrics”

1 Functions

1-1422

procest
Estimate process model using time-domain or frequency-domain data

Syntax
sys = procest(tt,type)
sys = procest(data,type)
sys = procest(___ ,Name,Value)

sys = procest(tt,init_sys)
sys = procest(data,init_sys)

sys = procest(___ ,opt)

[sys,offset] = procest(___)
[sys,offset,ic] = procest(___)

Description
Estimate Process Model

sys = procest(tt,type) estimates the process model sys using all the input and output signals
in the timetable tt. type defines the structure of sys. You can use this syntax for SISO and MISO
systems. The function assumes that the last variable in the timetable is the single output signal.

A simple SISO process model has a gain, a time constant, and a delay:

sys =
Kp

1 + Tp1se−Tds .

Kp is a proportional gain. Tp1 is the time constant of the real pole, and Td is the transport delay (dead
time). More complex process models can include zeroes, additional time constants, complex poles,
and integration. For more information on process models, see idproc.

You cannot use procest to estimate time-series models, which are models that contain no inputs.
Use ar, arx, or armax for time-series models instead.

You cannot reliably estimate accurate process models from matrix-based data as you can with other
model types. Process models are always continuous, and, because numeric matrices contain no
sample time information, estimating continuous models from matrix-based data is generally not
recommended. For information on converting matrices to timetables, see

sys = procest(data,type) uses the time-domain or frequency-domain data in data. Use this
syntax especially when you want to estimate a process model using frequency-domain or frequency
response data, or when you want to take advantage of the additional information, such as intersample
behavior, data sample time, or experiment labeling, that data objects provide.

sys = procest(___ ,Name,Value) incorporates additional options specified by one or more
name-value arguments. For example, sys = procest(tt,P1D,'InputDelay',2) specifies an
input delay of 2. You can use this syntax with any of the previous input-argument combinations

 procest

1-1423

Configure Initial Parameters

sys = procest(tt,init_sys) uses the process model init_sys to configure the initial
parameterization for estimation using the timetable tt.

sys = procest(data,init_sys) uses the uses the data object data for estimation.

Specify Additional Options

sys = procest(___ ,opt) specifies additional model estimation options. Use opt with any of the
input argument combinations in the previous syntaxes.

Return Estimated Offset and Initial Conditions

[sys,offset] = procest(___) returns the estimated value of the offset in input signal.
procest automatically estimates the input offset when the model contains an integrator or when you
set the InputOffset estimation option to 'estimate' using procestOptions.

[sys,offset,ic] = procest(___) returns the estimated initial conditions as an
initialCondition object. Use this syntax if you plan to simulate or predict the model response
using the same estimation input data and then compare the response with the same estimation output
data. Incorporating the initial conditions yields a better match during the first part of the simulation.

Examples

Estimate and Refine Process Model

Estimate a process model and compare its response with the measured output.

Load the input/output data, which is stored in the timetable tt1.

load sdata1 tt1

Estimate a first-order process model sys that contains one pole and no zeroes or delays. This model
structure has type P1.

sys = procest(tt1,'P1');

Compare the simulated model response with the measured output.

compare(tt1,sys)

1 Functions

1-1424

The fit percentage for the model is low. Add a delay to the model and compare the simulated and
measured outputs.

sys = procest(tt1,'P1D');
compare(tt1,sys)

 procest

1-1425

The fit percentage has improved, but is still below 50%. The plot shows that the model output peaks
do not attain the height of the measured output peaks, which indicates that the model needs to
include more dynamics.

Create a second-order process model with complex (underdamped) poles.

sys = procest(tt1,'P2U');
compare(tt1,sys)

1 Functions

1-1426

The fit now exceeds 70%.

You can view more information about the estimation by exploring the idproc property sys.Report.

sys.Report

ans =
 Status: 'Estimated using PROCEST'
 Method: 'PROCEST'
 InitialCondition: 'zero'
 Fit: [1x1 struct]
 Parameters: [1x1 struct]
 OptionsUsed: [1x1 idoptions.procest]
 RandState: []
 DataUsed: [1x1 struct]
 Termination: [1x1 struct]

View the estimated gain Kp.

Kp = sys.Kp

Kp = 7.6818

 procest

1-1427

Specify Parameter Initial Values for Estimated Process Model

Estimate a process model after specifying initial guesses for parameter values and bounding them.

Obtain input/output data.

data = idfrd(idtf([10 2],[1 1.3 1.2],'iod',0.45),logspace(-2,2,256));

Specify the parameters of the estimation initialization model.

type = 'P2UZD';
init_sys = idproc(type);

init_sys.Structure.Kp.Value = 1;
init_sys.Structure.Tw.Value = 2;
init_sys.Structure.Zeta.Value = 0.1;
init_sys.Structure.Td.Value = 0;
init_sys.Structure.Tz.Value = 1;
init_sys.Structure.Kp.Minimum = 0.1;
init_sys.Structure.Kp.Maximum = 10;
init_sys.Structure.Td.Maximum = 1;
init_sys.Structure.Tz.Maximum = 10;

Specify the estimation options.

opt = procestOptions('Display','full','InitialCondition','Zero');
opt.SearchMethod = 'lm';
opt.SearchOptions.MaxIterations = 100;

Estimate the process model.

sys = procest(data,init_sys,opt);

Since the 'Display' option is specified as 'full', the estimation progress is displayed in a
separate Plant Identification Progress window.

Compare the data to the estimated model.

compare(data,sys);

1 Functions

1-1428

Return Input Offsets Estimated During Process Model Estimation

load iddata1
[sys,offset] = procest(z1,'P1DI');
offset

offset = 0.0412

Obtain Initial Conditions

Load the data.

load iddata1ic z1i

Estimate a first-order plus dead time process model sys and return the initial conditions in ic. First
specify 'estimate' for 'InitialCondition' to force the software to estimate ic. The default
'auto' setting uses the 'estimate' method only when the influence of the initial conditions on
the overall model error exceed a threshold. When the initial conditions have a negligible effect on the
overall estimation-error minimization process, the 'auto' setting uses 'zero'.

 procest

1-1429

opt = procestOptions('InitialCondition','estimate');
[sys,offset,ic] = procest(z1i,'P1D',opt);
ic

ic =
 initialCondition with properties:

 A: -3.8997
 X0: -1.0871
 C: 4.5652
 Ts: 0

ic is an initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z1i output signal.

Detect Overparameterization of Estimated Model

Obtain input/output data.

load iddata1 z1
load iddata2 z2
data = [z1 z2(1:300)];

data is a data set with 2 inputs and 2 outputs. The first input affects only the first output. Similarly,
the second input affects only the second output.

In the estimated process model, the cross terms, which model the effect of the first input on the
second output and vice versa, should be negligible. If the estimation process instead assigns higher
orders to the cross dynamics, the degrees of estimation uncertainty for those terms should be high.

Estimate the process model.

type = 'P2UZ';
sys = procest(data,type);

The type variable denotes a model with complex-conjugate pair of poles, a zero, and a delay.

To evaluate the uncertainties, plot the frequency response.

w = linspace(0,20*pi,100);
h = bodeplot(sys,w);
showConfidence(h);

1 Functions

1-1430

The responses from the cross pairs show larger uncertainty, indicating that using a single type for
each input/output pair results in too much energy in the cross pairs.

Estimate Overparameterized Process Model Using Regularization

Use regularization to estimate parameters of an overparameterized process model.

Load the data.

load iddata1 z1;

Construct an initial system sysi by specifying parameter values for a model that includes three
poles, one zero, and underdamped modes. Assume that gain Kp is known with a higher degree of
confidence than the other model parameters.

sysi = idproc('P3UZ','Kp',7.5,'Tw',0.25,'Zeta',0.3,'Tp3',20,'Tz',0.02);

Estimate an unregularized process model sys1 using sysi to initialize the estimation model.

sys1 = procest(z1,sysi);

Estimate a regularized process model sys2 from sysi. Because K has a higher level of confidence,
set the regularization constant R higher than for the other model parameters. This setting causes the
estimation process to place more emphasis on maintaining the initial value of K.

 procest

1-1431

opt = procestOptions;
opt.Regularization.Nominal = 'model';
opt.Regularization.R = [100;1;1;1;1];
opt.Regularization.Lambda = 0.1;
sys2 = procest(z1,sysi,opt);

Compare the model outputs with data.

compare(z1,sys1,sys2);

Regularization helps steer the estimation process towards the correct parameter values, as the better
fit for sys2 shows.

Compare the estimated gain values for sys1 and sys2.

g1 = sys1.Kp

g1 = -0.2320

g2 = sys2.Kp

g2 = 6.6236

The Kp value for the regularized system is much closer to the initial value than for the unregularized
system.

1 Functions

1-1432

Estimate a First Order Plus Dead Time Model

Obtain the measured input-output data.

load iddemo_heatexchanger_data;
data = iddata(pt,ct,Ts);
data.InputName = '\Delta CTemp';
data.InputUnit = 'C';
data.OutputName = '\Delta PTemp';
data.OutputUnit = 'C';
data.TimeUnit = 'minutes';

Estimate a first-order plus dead time process model.

type = 'P1D';
sysP1D = procest(data,type);

Compare the model with the data.

compare(data,sysP1D)

Plot the model residuals.

figure
resid(data,sysP1D);

 procest

1-1433

The figure shows that the residuals are correlated. To account for that, add a first order ARMA
disturbance component to the process model.

opt = procestOptions('DisturbanceModel','ARMA1');
sysP1D_noise = procest(data,'p1d',opt);

Compare the models.

compare(data,sysP1D,sysP1D_noise)

1 Functions

1-1434

Plot the model residuals.

figure
resid(data,sysP1D_noise);

 procest

1-1435

The residues of sysP1D_noise are uncorrelated.

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables

Estimation data, specified as a uniformly sampled timetable that contains both input and output
signal variables or, for multiexperiment data, a cell array of timetables.
Use Entire Timetable

If you want to use all the input and output variables in tt, and the variables are organized so that the
set of input variables is followed by the set of output variables, then:

• For SISO systems, specify tt as an Ns-by-2 timetable, where Ns is the number of samples and
the two timetable variables represent the measured input signal and output signal respectively.

• For MIMO systems, specify tt as an Ns-by-(Nu+Ny) timetable, where Nu is the number of inputs
and Ny is the number of outputs. The first Nu variables must contain the input signals and the
remaining Ny variables must contain the output signals.

When you are estimating state space or transfer function models, you must also explicitly specify
the input and output channels, as the following section describes.

• For multiexperiment data, specify data as an Ne-by-1 cell array of timetables, where Ne is the
number of experiments. The sample times of all the experiments must match.

1 Functions

1-1436

Use Selected Variables from Timetable

If you want to use a subset of variables from the timetable, or if the input and output variables are
intermixed, use the 'InputName' and 'OutputName' name-value arguments to specify which
variables to use.

For example, suppose that tt contains six variables: "u1", "u2", "u3", and "y1", "y2", "y3". For
estimation, you want to use the variables "u1" and "u2" as the inputs and the variables "y1" and
"y3" as the outputs. Use the following command to perform the estimation:

sys = procest(tt,__,'InputName',["u1" "u2"],'OutputName',["y1" "y3"])

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data object
iddata object | frd object | idfrd object

Estimation data object, specified as an iddata object, an frd object, or an idfrd object that
contains uniformly sampled input and output values. By default, the software sets the sample time of
the model to the sample time of the estimation data.

For multiexperiment data, the sample times and intersample behavior of all the experiments must
match.

For time-domain estimation, data must be an iddata object containing the input and output signal
values.

For frequency-domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)
• iddata object with properties specified as follows:

• InputData — Fourier transform of the input signal
• OutputData — Fourier transform of the output signal
• Domain — 'Frequency'

Limitations

You cannot estimate continuous-time models using discrete-time frequency-domain data.

type — Process model structure
character vector | string | cell array of character vectors | string array

Process model structure, specified for SISO models as a string or character vector that represents an
acronym for the model structure, such as 'P1D' or 'P2DZ'. The acronym starts with P and can
contain any combination of the other following components:

• P — Poles. All 'Type' acronyms start with P, because all process modes must have at least one
pole.

• 0, 1, 2, or 3 — Number of time constants (poles) to be modeled. This number does not include
possible integrations (poles in the origin).

• I — Integration is enforced (self-regulating process).

 procest

1-1437

• D — Time delay (dead time).
• Z — Extra numerator term, a zero.
• U — Underdamped modes (complex-valued poles) permitted. If U is not included in type, all poles

must be real. The number of poles must be 2 or 3.

For MIMO models, specify type as an Ny-by-Nu cell array of character vectors or string array, with
one entry for each input-output pair. Here Ny is the number of inputs and Nu is the number of
outputs.

For information regarding how type affects the structure of a process model, see idproc.

init_sys — Process model that configures initial parameterization of sys
idproc object

Process model that configures initial parameterization of sys, specified as an idproc object. You
obtain init_sys by either performing an estimation using measured data or by direct construction
using idproc. The software uses the parameters and constraints defined in init_sys as the initial
guess for estimating sys.

Use the Structure property of init_sys to configure initial guesses and constraints for Kp, Tp1, Tp2,
Tp3, Tw, ζ, Td, and Tz. For example:

• To specify an initial guess for the Tp1 parameter of init_sys, set
init_sys.Structure.Tp1.Value as the initial guess.

• To specify constraints for the Tp2 parameter of init_sys:

• Set init_sys.Structure.Tp2.Minimum to the minimum Tp2 value.
• Set init_sys.Structure.Tp2.Maximum to the maximum Tp2 value.
• Set init_sys.Structure.Tp2.Free to indicate if Tp2 is a free parameter for estimation.

If you do not specify opt, and init_sys was obtained by estimation rather than construction, then
the software uses estimation options from init_sys.Report.OptionsUsed

opt — Estimation options
procestOptions option set

Estimation options, specified as an procestOptions option set. The estimation options include:

• Estimation objective
• Handling on initial conditions and disturbance component
• Numerical search method to be used in estimation
• Intersample behavior

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: sys = procest(tt,'P1D,'InputDelay',2)

1 Functions

1-1438

InputName — Input channel names
" " (default) | string | character vector | array of strings | cell array of character vectors

Input channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets all but the last variable in tt
as input channels. When you want to select a subset of the timetable variables as input channels use
'InputName' to identify them. For example, sys = procest(tt,__,'InputName',["u1"
"u2"]) selects the variables u1 and u2 as the input channels for the estimation.

OutputName — Output signal names
" " (default) | character vector | string | cell array of character vectors or strings

Output channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets the last variable in tt as the
sole output channel. When you want to select a subset of the timetable variables as output channels,
use 'OutputName' to identify them. For example, sys = procest(tt,__,'OutputName',["y1"
"y3"]) selects the variables y1 and y3 as the output channels for the estimation.

InputDelay — Input delays
0 for all input channels (default) | numeric vector

Input delays, specified as a numeric vector specifying a time delay for each input channel. Specify
input delays in the time unit stored in the TimeUnit property.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel. You can also set
InputDelay to a scalar value to apply the same delay to all channels.

The software treats InputDelay as a fixed delay that is separate from any transport delay that the
Td property of the model introduces.

Output Arguments
sys — Identified process model
idproc model

Identified process model, returned as an idproc model of a structure defined by type.

Information about the estimation results and options used is stored in the model's Report property.
Report has the following fields:

Report Field Description
Status Summary of the model status, which indicates whether the model was

created by construction or obtained by estimation.
Method Estimation command used.

 procest

1-1439

Report Field Description
InitialCondition Handling of initial conditions during model estimation, returned as one

of the following values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent

estimation parameters.
• 'backcast' — The initial conditions were estimated using the best

least squares fit.

This field is especially useful to view how the initial conditions were
handled when the InitialCondition option in the estimation option
set is 'auto'.

Fit Quantitative assessment of the estimation, returned as a structure. See
“Loss Function and Model Quality Metrics” for more information on
these quality metrics. The structure has the following fields:

Field Description
FitPerc
ent

Normalized root mean squared error (NRMSE) measure of
how well the response of the model fits the estimation data,
expressed as the percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response

of the model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model

quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameters Estimated values of model parameters.
OptionsUsed Option set used for estimation. If no custom options were configured,

this is a set of default options. See procestOptions for more
information.

RandState State of the random number stream at the start of estimation. Empty, [],
if randomization was not used during estimation. For more information,
see rng.

1 Functions

1-1440

Report Field Description
DataUsed Attributes of the data used for estimation. Structure with the following

fields:

Field Description
Name Name of the data set.
Type Data type. For idnlarx models, this is set to 'Time domain

data'.
Length Number of data samples.
Ts Sample time. This is equivalent to Data.Ts.
InterSa
mple

Input intersample behavior. One of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant
input signal between samples.

• 'foh' — First-order hold maintains a piecewise-linear
input signal between samples.

• 'bl' — Band-limited behavior specifies that the
continuous-time input signal has zero power above the
Nyquist frequency.

The value of Intersample has no effect on estimation results
for discrete-time models.

InputOf
fset

Empty, [], for nonlinear estimation methods.

OutputO
ffset

Empty, [], for nonlinear estimation methods.

 procest

1-1441

Report Field Description
Termination Termination conditions for the iterative search used for prediction error

minimization, returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iterati
ons

Number of search iterations performed by the estimation
algorithm.

FirstOr
derOpti
mality

∞-norm of the gradient search vector when the search
algorithm terminates.

FcnCoun
t

Number of times the objective function was called.

UpdateN
orm

Norm of the gradient search vector in the last iteration.
Omitted when the search method is 'lsqnonlin' or
'fmincon'.

LastImp
rovemen
t

Criterion improvement in the last iteration, expressed as a
percentage. Omitted when the search method is
'lsqnonlin' or 'fmincon'.

Algorit
hm

Algorithm used by 'lsqnonlin' or 'fmincon' search
method. Omitted when other search methods are used.

For estimation methods that do not require numerical search
optimization, the Termination field is omitted.

For more information on using Report, see “Estimation Report”.

offset — Estimated value of input offset
vector

Estimated value of input offset, returned as a vector. When data has multiple experiments, offset is
a matrix where each column corresponds to an experiment.

ic — Initial conditions
initialCondition object | object array of initialCondition values

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

• For a single-experiment data set, ic represents, in state-space form, the free response of the
process model (A and C matrices) to the estimated initial states (x0).

• For a multiple-experiment data set with Ne experiments, ic is an object array of length Ne that
contains one set of initialCondition values for each experiment.

If procest returns ic values of 0 and the you know that you have non-zero initial conditions, set the
'InitialCondition' option in procestOptions to 'estimate' and pass the updated option set
to procest. For example:

opt = procestOptions('InitialCondition','estimate')
[sys,offset,ic] = procest(data,type,opt)

1 Functions

1-1442

The default 'auto' setting of 'InitialCondition' uses the 'zero' method when the initial
conditions have a negligible effect on the overall estimation-error minimization process. Specifying
'estimate' ensures that the software estimates values for ic.

For more information, see initialCondition. For an example of using this argument, see “Obtain
Initial Conditions” on page 1-1429.

Version History
Introduced in R2012a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

See Also
procestOptions | idproc | ssest | tfest | polyest | ar | arx | oe | bj

Topics
“What Is a Process Model?”
“Regularized Estimates of Model Parameters”
“Apply Initial Conditions When Simulating Identified Linear Models”

 procest

1-1443

procestOptions
Options set for procest

Syntax
opt = procestOptions
opt = procestOptions(Name,Value)

Description
opt = procestOptions creates the default options set for procest.

opt = procestOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate' | 'backcast'

Handling of initial conditions during estimation, specified as one of the following values:

• 'zero' — The initial condition is set to zero.
• 'estimate' — The initial condition is treated as an independent estimation parameter.
• 'backcast' — The initial condition is estimated using the best least squares fit.
• 'auto' — The software chooses the method to handle initial condition based on the estimation

data.

DisturbanceModel — Handling of additive noise
'estimate' (default) | 'none' | 'ARMA1' | 'ARMA2' | 'fixed'

Handling of additive noise (H) during estimation for the model

y = G(s)u + H(s)e

e is white noise, u is the input and y is the output.

H(s) is stored in the NoiseTF property of the numerator and denominator of idproc models.

DisturbanceModel is specified as one of the following values:

1 Functions

1-1444

• 'none' — H is fixed to one.
• 'estimate' — H is treated as an estimation parameter. The software uses the value of the

NoiseTF property as the initial guess.
• 'ARMA1' — The software estimates H as a first-order ARMA model

1 + cs
1 + ds

• 'ARMA2' — The software estimates H as a second-order ARMA model

1 + c1s + c2s2

1 + d1s + d2s2

• 'fixed' — The software fixes the value of the NoiseTF property of the idproc model as the
value of H.

Note A noise model cannot be estimated using frequency domain data.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

 procestOptions

1-1445

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

• Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputInterSample — Input-channel intersample behavior
'auto' | 'zoh' | 'foh' | 'bl'

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata
object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

1 Functions

1-1446

InputOffset — Removal of offset from time-domain input data
'auto' (default) | 'estimate' | vector | matrix | object | []

Removal of offset from time-domain input data during estimation, specified as one of the following
values:

• 'estimate' — The software treats the input offsets as an estimation parameter.
• 'auto' — The software chooses the method to handle input offsets based on the estimation data

and the model structure. The estimation either assumes zero input offset or estimates the input
offset.

For example, the software estimates the input offset for a model that contains an integrator.
• A column vector of length Nu, where Nu is the number of inputs.

Use [] to specify no offsets.

In case of multi-experiment data, specify InputOffset as a Nu-by-Ne matrix. Nu is the number of
inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.
• A parameter object, constructed using param.Continuous, that imposes constraints on how the

software estimates the input offset.

For example, create a parameter object for a 2-input model estimation. Specify the first input
offset as fixed to zero and the second input offset as an estimation parameter.

opt = procestOptions;
u0 = param.Continuous('u0',[0;NaN]);
u0.Free(1) = false;
opt.Inputoffset = u0;

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weighting of prediction errors in multi-output estimations
[] (default) | 'noise' | positive semidefinite symmetric matrix

Weighting of prediction errors in multi-output estimations, specified as one of the following values:

• 'noise' — Minimize det(E′ * E/N), where E represents the prediction error and N is the number
of data samples. This choice is optimal in a statistical sense and leads to maximum likelihood
estimates if nothing is known about the variance of the noise. It uses the inverse of the estimated
noise variance as the weighting function.

Note OutputWeight must not be 'noise' if SearchMethod is 'lsqnonlin'.

 procestOptions

1-1447

• Positive semidefinite symmetric matrix (W) — Minimize the trace of the weighted prediction error
matrix trace(E'*E*W/N), where:

• E is the matrix of prediction errors, with one column for each output, and W is the positive
semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-output models, or the reliability of corresponding
data.

• N is the number of data samples.
• [] — The software chooses between 'noise' and using the identity matrix for W.

This option is relevant for only multi-output models.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as a structure with the fields in the
following table. For more information on regularization, see “Regularized Estimates of Model
Parameters”.

Field Name Description Default
Lambda Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the
estimation cost.

The default value of 0 implies no regularization.

0

R Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-
definite matrix. The length must be equal to the number of free
parameters of the model.

For black-box models, using the default value is recommended. For
structured and grey-box models, you can also specify a vector of np
positive numbers such that each entry denotes the confidence in the
value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where
npfree is the number of free parameters.

1

Nominal The nominal value towards which the free parameters are pulled
during estimation.

The default value of 0 implies that the parameter values are pulled
towards zero. If you are refining a model, you can set the value to
'model' to pull the parameters towards the parameter values of the
initial model. The initial parameter values must be finite for this
setting to work.

0

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

1 Functions

1-1448

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.

 procestOptions

1-1449

SearchMethod Description
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

1 Functions

1-1450

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

 procestOptions

1-1451

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

1 Functions

1-1452

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

 procestOptions

1-1453

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

1 Functions

1-1454

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight
in the loss function. The standard deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors, divided by 0.7. For more information on
robust norm choices, see section 15.2 of [1].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic loss function.
When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For
time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
• MaxSize — Specifies the maximum number of elements in a segment when input-output data is

split into segments.

MaxSize must be a positive integer.

Default: 250000
• StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

• s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0
• z — Specifies the maximum distance of all poles from the origin to test stability of discrete-

time models. A model is considered stable if all poles are within the distance z from the origin.

 procestOptions

1-1455

Default: 1+sqrt(eps)
• AutoInitThreshold — Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

yp, z − ymeas
yp, e− ymeas

> AutoInitThreshold

• ymeas is the measured output.
• yp,z is the predicted output of a model estimated using zero initial states.
• yp,e is the predicted output of a model estimated using estimated initial states.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output Arguments
opt — Option set for procest
procestOptions option set

Option set for procest, returned as a procestOptions option set.

Examples

Create Default Option Set for Process Model Estimation

opt = procestOptions;

Specify Options for Process Model Estimation

Create an option set for procest setting Focus to 'simulation' and turning on the Display.

opt = procestOptions('Focus','simulation','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = procestOptions;
opt.Focus = 'simulation';
opt.Display = 'on';

Version History
Introduced in R2012a

InputInterSample option allows intersample behavior specification for continuous models
estimated from timetables or matrices.

1 Functions

1-1456

iddata objects contain an InterSample property that describes the behavior of the signal between
sample points. The InputInterSample option implements a version of that property in
procestOptions so that intersample behavior can be specified also when estimation data is stored
in timetables or matrices.

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References

[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

[2] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates”. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3–8,
2005. Oxford, UK: Elsevier Ltd., 2005.

See Also
procest | idproc | idfilt

Topics
“Loss Function and Model Quality Metrics”

 procestOptions

1-1457

pzmap
Pole-zero plot of dynamic system

Syntax
pzmap(sys)
pzmap(sys1,sys2,...,sysN)

[p,z] = pzmap(sys)

Description
pzmap(sys) creates a pole-zero plot of the continuous or discrete-time dynamic system model sys. x
and o indicates the poles and zeros respectively, as shown in the following figure.

From the figure above, an open-loop linear time-invariant system is stable if:

• In continuous-time, all the poles on the complex s-plane must be in the left-half plane (blue region)
to ensure stability. The system is marginally stable if distinct poles lie on the imaginary axis, that
is, the real parts of the poles are zero.

• In discrete-time, all the poles in the complex z-plane must lie inside the unit circle (blue region).
The system is marginally stable if it has one or more poles lying on the unit circle.

pzmap(sys1,sys2,...,sysN) creates the pole-zero plot of multiple models on a single figure. The
models can have different numbers of inputs and outputs and can be a mix of continuous and discrete
systems. For SISO systems, pzmap plots the system poles and zeros. For MIMO systems, pzmap plots
the system poles and transmission zeros.

[p,z] = pzmap(sys) returns the system poles and transmission zeros as column vectors p and z.
The pole-zero plot is not displayed on the screen.

Examples

Pole-Zero Plot of Dynamic System

Plot the poles and zeros of the continuous-time system represented by the following transfer function:

H s = 2s2 + 5s + 1
s2 + 3s + 5

.

1 Functions

1-1458

H = tf([2 5 1],[1 3 5]);
pzmap(H)
grid on

Turning on the grid displays lines of constant damping ratio (zeta) and lines of constant natural
frequency (wn). This system has two real zeros, marked by o on the plot. The system also has a pair of
complex poles, marked by x.

Pole-Zero Plot of Identified System

Plot the pole-zero map of a discrete time identified state-space (idss) model. In practice you can
obtain an idss model by estimation based on input-output measurements of a system. For this
example, create one from state-space data.

A = [0.1 0; 0.2 -0.9];
B = [.1 ; 0.1];
C = [10 5];
D = [0];
sys = idss(A,B,C,D,'Ts',0.1);

Examine the pole-zero map.

pzmap(sys)

 pzmap

1-1459

System poles are marked by x, and zeros are marked by o.

Pole-Zero Map of Multiple Models

For this example, load a 3-by-1 array of transfer function models.

load('tfArray.mat','sys');
size(sys)

3x1 array of transfer functions.
Each model has 1 outputs and 1 inputs.

Plot the poles and zeros of each model in the array with distinct colors. For this example, use red for
the first model, green for the second and blue for the third model in the array.

pzmap(sys(:,:,1),'r',sys(:,:,2),'g',sys(:,:,3),'b')
sgrid

1 Functions

1-1460

sgrid plots lines of constant damping ratio and natural frequency in the s-plane of the pole-zero plot.

Poles and Zeros of Transfer Function

Use pzmap to calculate the poles and zeros of the following transfer function:

sys s = 4 . 2s2 + 0 . 25s− 0 . 004
s2 + 9 . 6s + 17

sys = tf([4.2,0.25,-0.004],[1,9.6,17]);
[p,z] = pzmap(sys)

p = 2×1

 -7.2576
 -2.3424

z = 2×1

 -0.0726
 0.0131

 pzmap

1-1461

Identify Near-Cancelling Pole-Zero Pairs

This example uses a model of a building with eight floors, each with three degrees of freedom: two
displacements and one rotation. The I/O relationship for any one of these displacements is
represented as a 48-state model, where each state represents a displacement or its rate of change
(velocity).

Load the building model.

load('building.mat');
size(G)

State-space model with 1 outputs, 1 inputs, and 48 states.

Plot the poles and zeros of the system.

pzmap(G)

From the plot, observe that there are numerous near-canceling pole-zero pairs that could be
potentially eliminated to simplify the model, with no effect on the overall model response. pzmap is
useful to visually identify such near-canceling pole-zero pairs to perform pole-zero simplification.

1 Functions

1-1462

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a dynamic system model or model array. Dynamic systems that you can
use include continuous-time or discrete-time numeric LTI models such as tf, zpk, or ss models.

If sys is an array of models, pzmap plots all the poles and zeros of every model in the array on the
same plot.

Output Arguments
p — Poles of the system
column vector

Poles of the system, returned as a column vector, in order of its increasing natural frequency. p is the
same as the output of pole(sys), except for the order.

z — Transmission zeros of the system
column vector

Transmission zeros of the system, returned as a column vector. z is the same as the output of
tzero(sys).

Tips
• Use the functions sgrid or zgrid to plot lines of constant damping ratio and natural frequency in

the s- or z-plane on the pole-zero plot.
• For MIMO models, pzmap displays all system poles and transmission zeros on a single plot. To

map poles and zeros for individual I/O pairs, use iopzmap.
• For additional options to customize the appearance of the pole-zero plot, use pzplot.

Version History
Introduced before R2006a

See Also
damp | esort | dsort | pole | rlocus | sgrid | zgrid | zero | iopzmap | pzplot

 pzmap

1-1463

pzoptions
Create list of pole/zero plot options

Description
Use the pzoptions command to create a PZOptions object to customize your pole/zero plot
appearance. You can also use the command to override the plot preference settings in the MATLAB
session in which you create the pole/zero plots.

Creation

Syntax
plotoptions = pzoptions
plotoptions = pzoptions('cstprefs')

Description

plotoptions = pzoptions returns a default set of plot options for use with the pzplot and
iopzplot commands. You can use these options to customize the pole/zero plot appearance using
the command line. This syntax is useful when you want to write a script to generate plots that look
the same regardless of the preference settings of the MATLAB session in which you run the script.

plotoptions = pzoptions('cstprefs') initializes the plot options with the options you
selected in the Control System Toolbox and System Identification Toolbox Preferences Editor. For
more information about the editor, see “Toolbox Preferences Editor”. This syntax is useful when you
want to change a few plot options but otherwise use your default preferences. A script that uses this
syntax may generate results that look different when run in a session with different preferences.

Properties
FreqUnits — Frequency units
'rad/s' (default)

Frequency units, specified as one of the following values:

• 'Hz'
• 'rad/second'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'

1 Functions

1-1464

• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

TimeUnits — Time units
'seconds' (default)

Time units, specified as one of the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

You can also specify 'auto' which uses time units specified in the TimeUnit property of the input
system. For multiple systems with different time units, the units of the first system is used.

ConfidenceRegionNumberSD — Number of standard deviations to use to plot the confidence
region
1 (default) | scalar

Number of standard deviations to use to plot the confidence region, specified as a scalar. This is
applicable to identified models only.

IOGrouping — Grouping of input-output pairs
'none' (default) | 'inputs' | 'outputs' | 'all'

Grouping of input-output (I/O) pairs, specified as one of the following:

 pzoptions

1-1465

• 'none' — No input-output grouping.
• 'inputs' — Group only the inputs.
• 'outputs' — Group only the outputs.
• 'all' — Group all the I/O pairs.

InputLabels — Input label style
structure (default)

Input label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet
[0.4,0.4,0.4].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

OutputLabels — Output label style
structure (default)

Output label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet
[0.4,0.4,0.4].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

InputVisible — Toggle display of inputs
{'on'} (default) | {'off'} | cell array

1 Functions

1-1466

Toggle display of inputs, specified as either {'on'}, {'off'} or a cell array with multiple elements.

OutputVisible — Toggle display of outputs
{'on'} (default) | {'off'} | cell array

Toggle display of outputs, specified as either {'on'}, {'off'} or a cell array with multiple
elements.

Title — Title text and style
structure (default)

Title text and style, specified as a structure with the following fields:

• String — Label text, specified as a character vector. By default, the plot is titled 'Pole-Zero Map'.
• FontSize — Font size, specified as a scalar value greater than zero in point units. The default

font size depends on the specific operating system and locale. One point equals 1/72 inch.
• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the

FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

XLabel — X-axis label text and style
structure (default)

X-axis label text and style, specified as a structure with the following fields:

• String — Label text, specified as a character vector. By default, the axis is titled based on the
time units TimeUnits.

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

 pzoptions

1-1467

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

YLabel — Y-axis label text and style
structure (default)

Y-axis label text and style, specified as a structure with the following fields:

• String — Label text, specified as a cell array of character vectors. By default, the axis is titled
based on the time units TimeUnits.

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TickLabel — Tick label style
structure (default)

Tick label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

Grid — Toggle grid display
'off' (default) | 'on'

Toggle grid display on the plot, specified as either 'off' or 'on'.

GridColor — Color of the grid lines
[0.15,0.15,0.15] (default) | RGB triplet

Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB
triplet [0.15,0.15,0.15].

1 Functions

1-1468

XLimMode — X-axis limit selection mode
'auto' (default) | 'manual' | cell array

Selection mode for the x-axis limits, specified as one of these values:

• 'auto' — Enable automatic limit selection, which is based on the total span of the plotted data.
• 'manual' — Manually specify the axis limits. To specify the axis limits, set the XLim property.

YLimMode — Y-axis limit selection mode
'auto' (default) | 'manual' | cell array

Selection mode for the y-axis limits, specified as one of these values:

• 'auto' — Enable automatic limit selection, which is based on the total span of the plotted data.
• 'manual' — Manually specify the axis limits. To specify the axis limits, set the YLim property.

XLim — X-axis limits
'{[1,10]}' (default) | cell array of two-element vector of the form [min,max] | cell array

X-axis limits, specified as a cell array of two-element vector of the form [min,max].

YLim — Y-axis limits
'{[1,10]}' (default) | cell array of two-element vector of the form [min,max] | cell array

Y-axis limits, specified as a cell array of two-element vector of the form [min,max].

Object Functions
iopzplot Plot pole-zero map for I/O pairs with additional plot customization options
pzplot Pole-zero plot of dynamic system model with additional plot customization options

Examples

Pole-Zero Plot with Custom Options

Plot the poles and zeros of the continuous-time system represented by the following transfer function
with a custom option set:

sys s = 2s2 + 5s + 1
s2 + 3s + 5

.

Create the custom option set using pzoptions.

plotoptions = pzoptions;

For this example, specify the grid to be visible.

plotoptions.Grid = 'on';

Use the specified options to create a pole-zero map of the transfer function.

h = pzplot(tf([2 5 1],[1 3 5]),plotoptions);

 pzoptions

1-1469

Turning on the grid displays lines of constant damping ratio (zeta) and lines of constant natural
frequency (wn). This system has two real zeros, marked by o on the plot. The system also has a pair
of complex poles, marked by x.

Version History
Introduced in R2012a

See Also
getoptions | iopzplot | pzplot | setoptions

Topics
“Toolbox Preferences Editor”

1 Functions

1-1470

pzplot
Pole-zero plot of dynamic system model with additional plot customization options

Syntax
h = pzplot(sys)
h = pzplot(sys1,sys2,...,sysN)
h = pzplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = pzplot(ax,...)
h = pzplot(...,plotoptions)

Description
pzplot lets you plot pole-zero maps with a broader range of plot customization options than pzmap.
You can use pzplot to obtain the plot handle and use it to customize the plot, such as modify the
axes labels, limits and units. You can also use pzplot to draw a pole-zero plot on an existing set of
axes represented by an axes handle. To customize an existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox). To create pole-zero maps with default options or to extract pole-zero data, use pzmap.

h = pzplot(sys) plots the poles and transmission zeros of the dynamic system model sys and
returns the plot handle h to the plot. x and o indicates poles and zeros respectively.

h = pzplot(sys1,sys2,...,sysN) displays the poles and transmission zeros of multiple models
on a single plot. You can specify distinct colors for each model individually.

h = pzplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and color
for the plot of each system. All systems must have the same number of inputs and outputs to use this
syntax.

h = pzplot(ax,...) plots into the axes specified by ax instead of the current axis gca.

h = pzplot(...,plotoptions) plots the poles and transmission zeros with the options specified
in plotoptions. For more information on the ways to change properties of your plots, see “Ways to
Customize Plots” (Control System Toolbox).

Examples

Pole-Zero Plot with Custom Plot Title

Plot the poles and zeros of the continuous-time system represented by the following transfer function:

sys s = 2s2 + 5s + 1
s2 + 3s + 5

.

 pzplot

1-1471

sys = tf([2 5 1],[1 3 5]);
h = pzplot(sys);
grid on

Turning on the grid displays lines of constant damping ratio (zeta) and lines of constant natural
frequency (wn). This system has two real zeros, marked by o on the plot. The system also has a pair of
complex poles, marked by x.

Change the color of the plot title. To do so, use the plot handle, h.

p = getoptions(h);
p.Title.Color = [1,0,0];
setoptions(h,p);

1 Functions

1-1472

Pole-Zero Plot of Multiple Models

For this example, load a 3-by-1 array of transfer function models.

load('tfArrayMargin.mat','sys');
size(sys)

3x1 array of transfer functions.
Each model has 1 outputs and 1 inputs.

Plot the poles and zeros of the model array. Define the colors for each model. For this example, use
red for the first model, green for the second and blue for the third model in the array.

pzplot(sys(:,:,1),'r',sys(:,:,2),'g',sys(:,:,3),'b');

 pzplot

1-1473

Pole-Zero Plot with Custom Options

Plot the poles and zeros of the continuous-time system represented by the following transfer function
with a custom option set:

sys s = 2s2 + 5s + 1
s2 + 3s + 5

.

Create the custom option set using pzoptions.

plotoptions = pzoptions;

For this example, specify the grid to be visible.

plotoptions.Grid = 'on';

Use the specified options to create a pole-zero map of the transfer function.

h = pzplot(tf([2 5 1],[1 3 5]),plotoptions);

1 Functions

1-1474

Turning on the grid displays lines of constant damping ratio (zeta) and lines of constant natural
frequency (wn). This system has two real zeros, marked by o on the plot. The system also has a pair
of complex poles, marked by x.

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO
dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time
numeric LTI models such as tf, zpk, or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, pzplot
returns the poles and transmission zeros of the current or nominal value of sys. If sys is an array of
models, pzplot plots the poles and zeros of each model in the array on the same diagram.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.

 pzplot

1-1475

Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Pentagram
'h' Hexagram

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ax — Axes handle
axes object

Axes handle, specified as an axes object. If you do not specify the axes object, then pzplot uses the
current axes gca to plot the poles and zeros of the system.

1 Functions

1-1476

plotoptions — Pole-zero plot options
options object

Pole-zero plot options, specified as an options object. See pzoptions for a list of available plot
options.

Output Arguments
h — Pole-zero plot options handle
scalar

Pole-zero plot options handle, returned as a scalar. Use h to query and modify properties of your pole-
zero plot. You can use this handle to customize the plot with the getoptions and setoptions
commands.

Tips
• Use sgrid or zgrid to plot lines of constant damping ratio and natural frequency in the s- or z-

plane.

Version History
Introduced before R2006a

See Also
getoptions | pzmap | setoptions | iopzplot | pzoptions

Topics
“Ways to Customize Plots” (Control System Toolbox)

 pzplot

1-1477

rarmax
(To be removed) Estimate recursively parameters of ARMAX or ARMA models

Note rarmax will be removed in a future release. Use recursiveARMA or recursiveARMAX
instead.

Syntax
thm = rarmax(z,nn,adm,adg)

[thm,yhat,P,phi,psi] = rarmax(z,nn,adm,adg,th0,P0,phi0,psi0)

Description
The parameters of the ARMAX model structure

A(q)y(t) = B(q)u(t − nk) + C(q)e(t)

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a matrix z = [y u]
where y and u are column vectors. nn is given as

nn = [na nb nc nk]

where na, nb, and nc are the orders of the ARMAX model, and nk is the delay. Specifically,

na: A(q) = 1 + a1q−1 + ... + anaq−na

nb: B(q) = b1 + b2q−1 + ... + bnbq−nb + 1

nc: C(q) = 1 + c1q−1 + ... + cncq−nc

See “What Are Polynomial Models?” for more information.

If z represents a time series y and nn = [na nc], rarmax estimates the parameters of an ARMA
model for y.

A(q)y(t) = C(q)e(t)

Only single-input, single-output models are handled by rarmax. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the
parameters associated with time k; that is, they are based on the data in the rows up to and including
row k in z. Each row of thm contains the estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,c1,...,cnc]

yhat is the predicted value of the output, according to the current model; that is, row k of yhat
contains the predicted value of y(k) based on all past data.

1 Functions

1-1478

The actual algorithm is selected with the two arguments adm and adg. These are described under
rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the
rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix
of the parameters. See rarx. The default value of P0 is 104 times the unit matrix. The arguments
phi0, psi0, phi, and psi contain initial and final values of the data vector and the gradient vector,
respectively. The sizes of these depend on the chosen model orders. The normal choice of phi0 and
psi0 is to use the outputs from a previous call to rarmax with the same model orders. (This call
could be a dummy call with default input arguments.) The default values of phi0 and psi0 are all
zeros.

Note that the function requires that the delay nk be larger than 0. If you want nk = 0, shift the input
sequence appropriately and use nk = 1.

Examples
Compute and plot, as functions of time, the four parameters in a second-order ARMA model of a time
series given in the vector y. The forgetting factor algorithm with a forgetting factor of 0.98 is applied.

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)

Algorithms
The general recursive prediction error algorithm (11.44), (11.47) through (11.49) of Ljung (1999) is
implemented. See “Recursive Algorithms for Online Parameter Estimation” for more information.

Version History
Introduced before R2006a

See Also
nkshift | recursiveARMA | recursiveARMAX | rpem | rplr

Topics
“Recursive Algorithms for Online Parameter Estimation”

 rarmax

1-1479

rarx
(To be removed) Estimate parameters of ARX or AR models recursively

Note rarx will be removed in a future release. Use recursiveAR or recursiveARX instead.

Syntax
thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0)

Description
thm = rarx(z,nn,adm,adg) estimates the parameters thm of single-output ARX model from input-
output data z and model orders nn using the algorithm specified by adm and adg. If z is a time series
y and nn = na, rarx estimates the parameters of a single-output AR model.

[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0) estimates the parameters thm, the
predicted output yhat, final values of the scaled covariance matrix of the parameters P, and final
values of the data vector phi of single-output ARX model from input-output data z and model orders
nn using the algorithm specified by adm and adg. If z is a time series y and nn = na, rarx estimates
the parameters of a single-output AR model.

Input Arguments
z

Name of the matrix iddata object that represents the input-output data or a matrix z = [y u],
where y and u are column vectors.

For multiple-input models, the u matrix contains each input as a column vector:

u = [u1 ... unu]

nn
For input-output models, specifies the structure of the ARX model as:

nn = [na nb nk]

where na and nb are the orders of the ARX model, and nk is the delay.

For multiple-input models, nb and nk are row vectors that define orders and delays for each
input.

For time-series models, nn = na, where na is the order of the AR model.

Note The delay nk must be larger than 0. If you want nk = 0, shift the input sequence
appropriately and use nk = 1 (see nkshift).

1 Functions

1-1480

adm and adg
adm = 'ff' and adg = lam specify the forgetting factor algorithm with the forgetting factor
λ=lam. This algorithm is also known as recursive least squares (RLS). In this case, the matrix P
has the following interpretation: R2/2 * P is approximately equal to the covariance matrix of the
estimated parameters.R2 is the variance of the innovations (the true prediction errors e(t)).

adm ='ug' and adg = gam specify the unnormalized gradient algorithm with gain gamma =
gam. This algorithm is also known as the normalized least mean squares (LMS).

adm ='ng' and adg = gam specify the normalized gradient or normalized least mean squares
(NLMS) algorithm. In these cases, P is not applicable.

adm ='kf' and adg =R1 specify the Kalman filter based algorithm with R2=1 and R1 = R1. If the
variance of the innovations e(t) is not unity but R2; then R2* P is the covariance matrix of the
parameter estimates, while R1 = R1 /R2 is the covariance matrix of the parameter changes.

th0
Initial value of the parameters in a row vector, consistent with the rows of thm.

Default: All zeros.
P0

Initial values of the scaled covariance matrix of the parameters.

Default: 104 times the identity matrix.
phi0

The argument phi0 contains the initial values of the data vector:

φ(t) = [y(t–1),...,y(t–na),u(t–1),...,u(t–nb–nk+1)]

If z = [y(1),u(1); ... ;y(N),u(N)], phi0 = φ(1) and phi = φ(N). For online use of rarx,
use phi0, th0, and P0 as the previous outputs phi, thm (last row), and P.

Default: All zeros.

Output Arguments
thm

Estimated parameters of the model. The kth row of thm contains the parameters associated with
time k; that is, the estimate parameters are based on the data in rows up to and including row k
in z. Each row of thm contains the estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

For a multiple-input model, the b are grouped by input. For example, the b parameters associated
with the first input are listed first, and the b parameters associated with the second input are
listed next.

yhat
Predicted value of the output, according to the current model; that is, row k of yhat contains the
predicted value of y(k) based on all past data.

P
Final values of the scaled covariance matrix of the parameters.

 rarx

1-1481

phi
phi contains the final values of the data vector:

φ(t) = [y(t–1),...,y(t–na),u(t–1),...,u(t–nb–nk+1)]

Examples
Adaptive noise canceling: The signal y contains a component that originates from a known signal r.
Remove this component by recursively estimating the system that relates r to y using a sixth-order
FIR model and the NLMS algorithm.

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)

If this is an online application, you can plot the best estimate of the signal y - noise at the same
time as the data y and u become available, use the following code:

phi = zeros(6,1);
P=1000*eye(6);
th = zeros(1,6);
axis([0 100 -2 2]);
plot(0,0,'*'), hold on
% Use a while loop
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'*')
time = time + Dt
end

This example uses a forgetting factor algorithm with a forgetting factor of 0.98. readAD is a function
that reads the value of an A/D converter at the indicated time instant.

More About
ARX Model Structure

The general ARX model structure is:

A(q)y(t) = B(q)u(t − nk) + e(t)

The orders of the ARX model are:

na: A(q) = 1 + a1q−1 + ... + anaq−na

nb: B(q) = b1 + b2q−1 + ... + bnbq−nb + 1

Models with several inputs are defined, as follows:

A(q)y(t) = B1(q)u1(t–nk1)+...+Bnuunu(t–nknu)+e(t)

1 Functions

1-1482

Version History
Introduced before R2006a

See Also
nkshift | recursiveAR | recursiveARX | rpem | rplr

Topics
“Recursive Algorithms for Online Parameter Estimation”

 rarx

1-1483

rbj
(To be removed) Estimate recursively parameters of Box-Jenkins models

Note rbj will be removed in a future release. Use recursiveBJ instead.

Syntax
thm = rbj(z,nn,adm,adg)

[thm,yhat,P,phi,psi] = rbj(z,nn,adm,adg,th0,P0,phi0,psi0)

Description
The parameters of the Box-Jenkins model structure

y(t) = B(q)
F(q)u(t − nk) + C(q)

D(q)e(t)

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a matrix z = [y u]
where y and u are column vectors. nn is given as

nn = [nb nc nd nf nk]

where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and nk is the delay. Specifically,

nb: B(q) = b1 + b2q−1 + ... + bnbq−nb + 1

nc: C(q) = 1 + c1q−1 + ... + cncq−nc

nd: D(q) = 1 + d1q−1 + ... + dndq−nd

nf : F(q) = 1 + f1q−1 + ... + fnfq−nf

See “What Are Polynomial Models?” for more information.

Only single-input, single-output models are handled by rbj. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the
parameters associated with time k; that is, they are based on the data in the rows up to and including
row k in z. Each row of thm contains the estimated parameters in the following order.

thm(k,:) = [b1,...,bnb,c1,...,cnc,d1,...,dnd,f1,...,fnf]

yhat is the predicted value of the output, according to the current model; that is, row k of yhat
contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These are described under
rarx.

1 Functions

1-1484

The input argument th0 contains the initial value of the parameters, a row vector consistent with the
rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix
of the parameters. See rarx. The default value of P0 is 104 times the unit matrix. The arguments
phi0, psi0, phi, and psi contain initial and final values of the data vector and the gradient vector,
respectively. The sizes of these depend on the chosen model orders. The normal choice of phi0 and
psi0 is to use the outputs from a previous call to rbj with the same model orders. (This call could be
a dummy call with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want nk = 0, shift the input
sequence appropriately and use nk = 1.

Algorithms
The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also
“Recursive Algorithms for Online Parameter Estimation”.

Version History
Introduced before R2006a

See Also
nkshift | recursiveBJ | rpem | rplr

Topics
“Recursive Algorithms for Online Parameter Estimation”

 rbj

1-1485

realdata
Determine whether iddata is based on real-valued signals

Syntax
realdata(data)

Description
realdata returns 1 if

• data contains only real-valued signals.
• data contains frequency-domain signals, obtained by Fourier transformation of real-valued

signals.

Otherwise realdata returns 0.

Examples

Determine if Data is Based on Real-Valued Signals

Load data.

load iddata1

Transform the data to frequency domain.

zf = fft(z1);

Determine if the time-domain data values are real.

isreal(z1)

ans = 1

Determine if the transformed data values are real.

isreal(zf)

ans = 0

Determine if the data is based on real-valued signals.

realdata(zf)

ans = logical
 1

Add negative frequencies to zf and rerun the command.

1 Functions

1-1486

zf = complex(zf);
realdata(zf)

ans = logical
 1

The command still returns 1.

Version History
Introduced before R2006a

 realdata

1-1487

recursiveAR
Create System object for online parameter estimation of AR model

Syntax
obj = recursiveAR
obj = recursiveAR(na)
obj = recursiveAR(na,A0)
obj = recursiveAR(___ ,Name,Value)

Description
Use the recursiveAR command for parameter estimation with real-time data. If all data necessary
for estimation is available at once, and you are estimating a time-invariant model, use the offline
estimation command, ar.

obj = recursiveAR creates a System object for online parameter estimation of a default single
output AR model structure on page 1-1497. The default model structure has a polynomial of order 1
and initial polynomial coefficient value eps.

After creating the object, use the step command to update model parameter estimates using
recursive estimation algorithms and real-time data.

obj = recursiveAR(na) specifies the polynomial order of the AR model to be estimated.

obj = recursiveAR(na,A0) specifies the polynomial order and initial values of the polynomial
coefficients.

obj = recursiveAR(___ ,Name,Value) specifies additional attributes of the AR model structure
and recursive estimation algorithm using one or more Name,Value pair arguments.

Object Description
recursiveAR creates a System object for online parameter estimation of single output AR models
using a recursive estimation algorithm.

A System object is a specialized MATLAB object designed specifically for implementing and
simulating dynamic systems with inputs that change over time. System objects use internal states to
store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain information from or
about the object. System objects use a minimum of two commands to process data — a constructor to
create the object and the step command to update object parameters using real-time data. This
separation of declaration from execution lets you create multiple, persistent, reusable objects, each
with different settings.

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

1 Functions

1-1488

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-time
data.

step puts the object into a locked state. In a
locked state, you cannot change any nontunable
properties or input specifications, such as model
order, data type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this command to
enable setting of nontunable parameters.

reset Reset the internal states of a locked System
object to the initial values, and leave the object
locked.

clone Create another System object with the same
object property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created this way
(obj2) also change the properties of the original
object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Use the recursiveAR command to create an online estimation System object. Then estimate the AR
model parameter, A, and output using the step command with output data y.

[A,EstimatedOutput] = step(obj,y)

For recursiveAR object properties, see “Properties” on page 1-1491.

Examples

Estimate AR Model Online

Create a System object™ for online parameter estimation of an AR model using recursive estimation
algorithms.

obj = recursiveAR;

The AR model has a default structure with polynomial of order 1 and initial polynomial coefficient
values, eps.

Load the time-series estimation data. In this example, use a static data set for illustration.

load iddata9 z9;
output = z9.y;

 recursiveAR

1-1489

Estimate AR model parameters online using step.

for i = 1:numel(output)
[A,EstimatedOutput] = step(obj,output(i));
end

View the current estimated values of polynomial A coefficients.

obj.A

ans = 1×2

 1.0000 -0.9592

View the current covariance estimate of the parameters.

obj.ParameterCovariance

ans = 1.6204e-04

View the current estimated output.

EstimatedOutput

EstimatedOutput = 0.7830

Create Online Estimation System Object for AR Model With Known Polynomial Order

Specify AR model polynomial order.

na = 2;

Create a System object™ for online estimation of an AR model with the specified polynomial order.

obj = recursiveAR(na);

Create Online Estimation System Object for AR Model With Known Initial Parameters

Specify AR model order.

na = 2;

Create a System object for online estimation of AR model with known initial polynomial coefficients.

A0 = [1 0.5 0.3];
obj = recursiveAR(na,A0);

Specify the initial parameter covariance.

obj.InitialParameterCovariance = 0.1;

InitialParameterCovariance represents the uncertainty in your guess for the initial parameters.
Typically, the default InitialParameterCovariance (10000) is too large relative to the parameter

1 Functions

1-1490

values. This results in initial guesses being given less importance during estimation. If you have
confidence in the initial parameter guesses, specify a smaller initial parameter covariance.

Specify Estimation Method for Online Estimation of AR Model

Create a System object that uses the normalized gradient algorithm for online parameter estimation
of an AR model.

obj = recursiveAR(2,'EstimationMethod','NormalizedGradient');

Input Arguments
na — Model order
positive integer

Model order of the polynomial A(q) of an AR model on page 1-1497, specified as a positive integer.

A0 — Initial value of polynomial coefficients
row vector of real values | []

Initial value of coefficients of the polynomial A(q), specified as a 1-by-(na+1) row vector of real values
with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

Specifying as [], uses the default value of eps for the polynomial coefficients.

Note If the initial parameter values are much smaller than InitialParameterCovariance, these
initial values are given less importance during estimation. Specify a smaller initial parameter
covariance if you have high confidence in the initial parameter values. This statement applies only for
infinite-history estimation. Finite-history estimation does not use InitialParameterCovariance.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify writable properties on page 1-1491 of recursiveAR System
object during object creation. For example, obj =
recursiveAR(2,'EstimationMethod','Gradient') creates a System object to estimate an AR
model using the 'Gradient' recursive estimation algorithm.

Properties
recursiveAR System object properties consist of read-only and writable properties. The writable
properties are tunable and nontunable properties. The nontunable properties cannot be changed
when the object is locked, that is, after you use the step command.

 recursiveAR

1-1491

Use Name,Value arguments to specify writable properties of recursiveAR objects during object
creation. After object creation, use dot notation to modify the tunable properties.

obj = recursiveAR;
obj.ForgettingFactor = 0.99;

A

Estimated coefficients of polynomial A(q), returned as a row vector of real values specified in order of
ascending powers of q-1.

A is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

InitialA

Initial values for the coefficients of polynomial A(q) of order na, specified as a row vector of length na
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialA is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

InitialOutputs

Initial values of the outputs buffer in finite-history estimation, specified as 0 or as a (W+na)-by-1
vector, where W is the window length and na is the polynomial order you specify during object
construction.

The InitialOutputs property provides a means of controlling the initial behavior of the algorithm.

When InitialOutputs is set to 0, the object populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Specify InitialOutputs only when History is Finite.

InitialOutputs is a tunable property. You can change InitialOutputs when the object is in a
locked state.

Default: 0

ParameterCovariance

Estimated covariance P of the parameters, returned as an N-by-N symmetric positive-definite matrix.
N is the number of parameters to be estimated. The software computes P assuming that the residuals
(difference between estimated and measured outputs) are white noise, and the variance of these
residuals is 1.

1 Functions

1-1492

ParameterCovariance is applicable only when EstimationMethod is 'ForgettingFactor' or
'KalmanFilter' or when History is Finite.

The interpretation of P depends on your settings for the History and EstimationMethod
properties.

• If History is Infinite, then your EstimationMethod selection results in one of the following:

• 'ForgettingFactor' — (R2/2)P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals.

• 'KalmanFilter' — R2P is the covariance matrix of the estimated parameters, and R1 /R2 is
the covariance matrix of the parameter changes. Here, R1 is the covariance matrix that you
specify in ProcessNoiseCovariance.

• If History is Finite (sliding-window estimation) — R2P is the covariance of the estimated
parameters. The sliding-window algorithm does not use this covariance in the parameter-
estimation process. However, the algorithm does compute the covariance for output so that you
can use it for statistical evaluation.

ParameterCovariance is a read-only property and is initially empty after you create the object. It is
populated after you use the step command for online parameter estimation.

InitialParameterCovariance

Covariance of the initial parameter estimates, specified as one of the following:

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements. N is the number of parameters to be estimated.

• Vector of real positive scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix, with
[α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive-definite matrix.

InitialParameterCovariance represents the uncertainty in the initial parameter estimates. For
large values of InitialParameterCovariance, less importance is placed on the initial parameter
values and more on the measured data during beginning of estimation using step.

Use only when EstimationMethod is 'ForgettingFactor' or 'KalmanFilter'.

InitialParameterCovariance is a tunable property. You can change it when the object is in a
locked state.

Default: 10000

EstimationMethod

Recursive estimation algorithm used for online estimation of model parameters, specified as one of
the following values:

• 'ForgettingFactor' — Algorithm used for parameter estimation
• 'KalmanFilter' — Algorithm used for parameter estimation
• 'NormalizedGradient' — Algorithm used for parameter estimation
• 'Gradient' — Unnormalized gradient algorithm used for parameter estimation

 recursiveAR

1-1493

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
unnormalized gradient methods. However, they have better convergence properties. For information
about these algorithms, see “Recursive Algorithms for Online Parameter Estimation”.

These methods all use an infinite data history, and are available only when History is 'Infinite'.

EstimationMethod is a nontunable property. You cannot change it during execution, that is, after
the object is locked using the step command.

Default: Forgetting Factor

ForgettingFactor

Forgetting factor, λ, relevant for parameter estimation, specified as a scalar in the range (0,1].

Suppose that the system remains approximately constant over T0 samples. You can choose λ such
that:

T0 = 1
1− λ

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.
• Setting λ < 1 implies that past measurements are less significant for parameter estimation and

can be “forgotten”. Set λ < 1 to estimate time-varying coefficients.

Typical choices of λ are in the range [0.98 0.995].

Use only when EstimationMethod is 'ForgettingFactor'.

ForgettingFactor is a tunable property. You can change it when the object is in a locked state.

Default: 1

EnableAdapation

Enable or disable parameter estimation, specified as one of the following:

• true or 1— The step command estimates the parameter values for that time step and updates
the parameter values.

• false or 0 — The step command does not update the parameters for that time step and instead
outputs the last estimated value. You can use this option when your system enters a mode where
the parameter values do not vary with time.

Note If you set EnableAdapation to false, you must still execute the step command. Do not
skip step to keep parameter values constant, because parameter estimation depends on current
and past I/O measurements. step ensures past I/O data is stored, even when it does not update
the parameters.

EnableAdapation is a tunable property. You can change it when the object is in a locked state.

Default: true

DataType

Floating point precision of parameters, specified as one of the following values:

1 Functions

1-1494

• 'double' — Double-precision floating point
• 'single' — Single-precision floating point

Setting DataType to 'single' saves memory, but leads to loss of precision. Specify DataType
based on the precision required by the target processor where you will deploy generated code.

DataType is a nontunable property. It can only be set during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'double'

ProcessNoiseCovariance

Covariance matrix of parameter variations, specified as one of the following:

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive semidefinite matrix.

N is the number of parameters to be estimated.

ProcessNoiseCovariance is applicable when EstimationMethod is 'KalmanFilter'.

Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. ProcessNoiseCovariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to estimating
constant coefficients. Values larger than 0 correspond to time-varying parameters. Use large values
for rapidly changing parameters. However, the larger values result in noisier parameter estimates.

ProcessNoiseCovariance is a tunable property. You can change it when the object is in a locked
state.

Default: 0.1

AdaptationGain

Adaptation gain, γ, used in gradient recursive estimation algorithms, specified as a positive scalar.

AdaptationGain is applicable when EstimationMethod is 'Gradient' or
'NormalizedGradient'.

Specify a large value for AdaptationGain when your measurements have a high signal-to-noise
ratio.

AdaptationGain is a tunable property. You can change it when the object is in a locked state.

Default: 1

NormalizationBias

Bias in adaptation gain scaling used in the 'NormalizedGradient' method, specified as a
nonnegative scalar.

 recursiveAR

1-1495

NormalizationBias is applicable when EstimationMethod is 'NormalizedGradient'.

The normalized gradient algorithm divides the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, this can cause jumps in the estimated
parameters. NormalizationBias is the term introduced in the denominator to prevent these jumps.
Increase NormalizationBias if you observe jumps in estimated parameters.

NormalizationBias is a tunable property. You can change it when the object is in a locked state.

Default: eps

History

Data history type defining which type of recursive algorithm you use, specified as:

• 'Infinite' — Use an algorithm that aims to minimize the error between the observed and
predicted outputs for all time steps from the beginning of the simulation.

• 'Finite' — Use an algorithm that aims to minimize the error between the observed and
predicted outputs for a finite number of past time steps.

Algorithms with infinite history aim to produce parameter estimates that explain all data since the
start of the simulation. These algorithms still use a fixed amount of memory that does not grow over
time. The object provides multiple algorithms of the 'Infinite' History type. Specifying this
option activates the EstimationMethod property with which you specify an algorithm.

Algorithms with finite history aim to produce parameter estimates that explain only a finite number of
past data samples. This method is also called sliding-window estimation. The object provides one
algorithm of the 'Finite' type. Specifying this option activates the WindowLength property that
sizes the window.

For more information on recursive estimation methods, see “Recursive Algorithms for Online
Parameter Estimation”.

History is a nontunable property. It can be set only during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'Infinite'

WindowLength

Window size determining the number of time samples to use for the sliding-window estimation
method, specified as a positive integer. Specify WindowLength only when History is Finite.

Choose a window size that balances estimation performance with computational and memory burden.
Sizing factors include the number and time variance of the parameters in your model. Always specify
Window Length in samples, even if you are using frame-based input processing.

WindowLength must be greater than or equal to the number of estimated parameters.

Suitable window length is independent of whether you are using sample-based or frame-based input
processing (see InputProcessing). However, when using frame-based processing, your window
length must be greater than or equal to the number of samples (time steps) contained in the frame.

WindowLength is a nontunable property. It can be set only during object construction using
Name,Value arguments and cannot be changed afterward.

1 Functions

1-1496

Default: 200

InputProcessing

Option for sample-based or frame-based input processing, specified as a character vector or string.

• Sample-based processing operates on signals streamed one sample at a time.
• Frame-based processing operates on signals containing samples from multiple time steps. Many

machine sensor interfaces package multiple samples and transmit these samples together in
frames. Frame-based processing allows you to input this data directly without having to first
unpack it.

Your InputProcessing specification impacts the dimensions for the input and output signals when
using the step command:

[theta,EstimatedOutput] = step(obj,y)

• Sample-based

• y and EstimatedOutput are scalars.
• • Frame-based with M samples per frame

• y and EstimatedOutput are M-by-1 vectors.

InputProcessing is a nontunable property. It can be set only during object construction using
Name,Value arguments and cannot be changed afterward.

Default: 'Sample-based'

Output Arguments
obj — System object for online parameter estimation of AR model
recursiveAR System object

System object for online parameter estimation of AR model, returned as a recursiveAR System
object. This object is created using the specified model orders and properties. Use step command to
estimate the coefficients of the AR model polynomials. You can then access the estimated coefficients
and parameter covariance using dot notation. For example, type obj.A to view the estimated A
polynomial coefficients.

More About
AR Model Structure

The AR model structure is:

A(q)y(t) = e(t)

where,

A(q) = 1 + a1q−1 + … + anaq−na

Here,

 recursiveAR

1-1497

• y(t)— Output at time t. Data is a time series that has no input channels and one output channel.
• na — Number of A polynomial coefficients.
• e(t) — White-noise disturbance value at time t.
• q-1 — Time-shift operator.

Tips
• Starting in R2016b, instead of using the step command to update model parameter estimates,

you can call the System object with input arguments, as if it were a function. For example,
[A,EstimatedOutput] = step(obj,y) and [A,EstimatedOutput] = obj(y) perform
equivalent operations.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For Simulink based workflows, use Recursive Polynomial Model Estimator.
• For limitations, see “Generate Code for Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No

See Also
step | release | reset | clone | isLocked | Recursive Polynomial Model Estimator | ar |
recursiveARMA | recursiveARX | recursiveARMAX | recursiveBJ | recursiveOE |
recursiveLS

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

1 Functions

1-1498

recursiveARMA
Create System object for online parameter estimation of ARMA model

Syntax
obj = recursiveARMA
obj = recursiveARMA(Orders)
obj = recursiveARMA(Orders,A0,C0)
obj = recursiveARMA(___ ,Name,Value)

Description
Use recursiveARMA command for parameter estimation with real-time data. If all data necessary for
estimation is available at once, and you are estimating a time-invariant model, use the offline
estimation command, armax.

obj = recursiveARMA creates a System object for online parameter estimation of a default single
output ARMA model structure on page 1-1508. The default model structure has polynomials of order
1 and initial polynomial coefficient values eps.

After creating the object, use the step command to update model parameter estimates using
recursive estimation algorithms and real-time data.

obj = recursiveARMA(Orders) specifies the polynomial orders of the ARMA model to be
estimated.

obj = recursiveARMA(Orders,A0,C0) specifies the polynomial orders and initial values of the
polynomial coefficients. Specify initial values to potentially avoid local minima during estimation. If
the initial values are small compared to the default InitialParameterCovariance property value,
and you have confidence in your initial values, also specify a smaller
InitialParameterCovariance.

obj = recursiveARMA(___ ,Name,Value) specifies additional attributes of the ARMA model
structure and recursive estimation algorithm using one or more Name,Value pair arguments.

Object Description
recursiveARMA creates a System object for online parameter estimation of single output ARMA
models using a recursive estimation algorithm.

A System object is a specialized MATLAB object designed specifically for implementing and
simulating dynamic systems with inputs that change over time. System objects use internal states to
store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain information from or
about the object. System objects use a minimum of two commands to process data — a constructor to
create the object and the step command to update object parameters using real-time data. This
separation of declaration from execution lets you create multiple, persistent, reusable objects, each
with different settings.

 recursiveARMA

1-1499

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-time
data.

step puts the object into a locked state. In a
locked state, you cannot change any nontunable
properties or input specifications, such as model
order, data type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this command to
enable setting of nontunable parameters.

reset Reset the internal states of a locked System
object to the initial values, and leave the object
locked.

clone Create another System object with the same
object property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created this way
(obj2) also change the properties of the original
object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Use the recursiveARMA command to create an online estimation System object. Then estimate the
ARMA model parameters (A and C) and output using the step command with output data y.

[A,C,EstimatedOutput] = step(obj,y)

For recursiveARMA object properties, see “Properties” on page 1-1503.

Examples

Estimate ARMA Model Online

Create a System object for online parameter estimation of an ARMA model.

obj = recursiveARMA;

The ARMA model has a default structure with polynomials of order 1 and initial polynomial coefficient
values, eps.

Load the time-series estimation data. In this example, use a static data set for illustration.

1 Functions

1-1500

load iddata9 z9;
output = z9.y;

Estimate ARMA model parameters online using step.

for i = 1:numel(output)
[A,C,EstimatedOutput] = step(obj,output(i));
end

View the current estimated values of polynomial C coefficients.

obj.C

ans = 1×2

 1.0000 0.2315

View the current covariance estimate of the parameters.

obj.ParameterCovariance

ans = 2×2
10-3 ×

 0.6372 -0.0257
 -0.0257 0.0017

View the current estimated output.

EstimatedOutput

EstimatedOutput = 11.8121

Create Online Estimation System Object for ARMA Model With Known Orders

Specify ARMA model orders.

na = 2;
nc = 1;

Create a System object for online estimation of an ARMA model with the specified orders.

obj = recursiveARMA([na nc]);

Create Online Estimation System Object for ARMA Model With Known Initial Parameters

Specify ARMA model orders.

na = 2;
nc = 1;

 recursiveARMA

1-1501

Create a System object for online estimation of ARMA model with known initial polynomial
coefficients.

A0 = [1 0.5 0.3];
C0 = [1 0.7];
obj = recursiveARMA([na nc],A0,C0);

Specify the initial parameter covariance.

obj.InitialParameterCovariance = 0.1;

InitialParameterCovariance represents the uncertainty in your guess for the initial parameters.
Typically, the default InitialParameterCovariance (10000) is too large relative to the parameter
values. This results in initial guesses being given less importance during estimation. If you have
confidence in the initial parameter guesses, specify a smaller initial parameter covariance.

Specify Estimation Method for Online Estimation of ARMA Model

Create a System object that uses the unnormalized gradient algorithm for online parameter
estimation of an ARMA model.

obj = recursiveARMA([2 1],'EstimationMethod','Gradient');

Input Arguments
Orders — Model orders
1-by-2 vector of integers

Model orders of an ARMA model on page 1-1508, specified as a 1-by-2 vector of integers, [na nc].

• na — Order of the polynomial A(q), specified as a nonnegative integer.
• nc — Order of the polynomial C(q), specified as a nonnegative integer.

A0,C0 — Initial value of polynomial coefficients
row vectors of real values | []

Initial value of polynomial coefficients, specified as row vectors of real values with elements in order
of ascending powers of q-1.

• A0 — Initial guess for the coefficients of the polynomial A(q), specified as a 1-by-(na+1) vector
with 1 as the first element.

• C0 — Initial guess for the coefficients of the polynomial C(q), specified as a 1-by-(nc+1) vector
with 1 as the first element.

The coefficients in C0 must define a stable discrete-time polynomial with roots within a unit disk.
For example,

C0 = [1 0.5 0.5];
all(abs(roots(C0))<1)

1 Functions

1-1502

ans =

 1

Specifying as [], uses the default value of eps for the polynomial coefficients.

Note If the initial guesses are much smaller than the default InitialParameterCovariance,
10000, the initial guesses are given less importance during estimation. In that case, specify a smaller
initial parameter covariance.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify writable properties on page 1-1503 of recursiveARMA
System object during object creation. For example, obj = recursiveARMA([2
1],'EstimationMethod','Gradient') creates a System object to estimate an ARMA model
using the 'Gradient' recursive estimation algorithm.

Properties
recursiveARMA System object properties consist of read-only and writable properties. The writable
properties are tunable and nontunable properties. The nontunable properties cannot be changed
when the object is locked, that is, after you use the step command.

Use Name,Value arguments to specify writable properties of recursiveARMA objects during object
creation. After object creation, use dot notation to modify the tunable properties.

obj = recursiveARMA;
obj.ForgettingFactor = 0.99;

A

Estimated coefficients of polynomial A(q), returned as a row vector of real values specified in order of
ascending powers of q-1.

A is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

C

Estimated coefficients of polynomial C(q), returned as a vector of real values specified in order of
ascending powers of q-1.

C is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

 recursiveARMA

1-1503

InitialA

Initial values for the coefficients of polynomial A(q) of order na, specified as a row vector of length na
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialA is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

InitialC

Initial values for the coefficients of polynomial C(q) of order nc, specified as a row vector of length nc
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

The coefficients in InitialC must define a stable discrete-time polynomial with roots within a unit
circle. For example,

InitialC = [1 0.5 0.5];
all(abs(roots(InitialC))<1)

ans =

 1

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialC is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

ParameterCovariance

Estimated covariance P of the parameters, returned as an N-by-N symmetric positive-definite matrix.
N is the number of parameters to be estimated. The software computes P assuming that the residuals
(difference between estimated and measured outputs) are white noise, and the variance of these
residuals is 1. ParameterCovariance is applicable only when EstimationMethod is
'ForgettingFactor' or 'KalmanFilter'.

The interpretation of P depends on the estimation method:

• 'ForgettingFactor' — R2/2 * P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals.

• 'KalmanFilter' — R2* P is the covariance matrix of the estimated parameters, and R1 /R2 is the
covariance matrix of the parameter changes. Where, R1 is the covariance matrix that you specify
in ProcessNoiseCovariance.

ParameterCovariance is a read-only property and is initially empty after you create the object. It is
populated after you use the step command for online parameter estimation.

1 Functions

1-1504

InitialParameterCovariance

Covariance of the initial parameter estimates, specified as one of the following:

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements. N is the number of parameters to be estimated.

• Vector of real positive scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix, with
[α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive-definite matrix.

InitialParameterCovariance represents the uncertainty in the initial parameter estimates. For
large values of InitialParameterCovariance, less importance is placed on the initial parameter
values and more on the measured data during beginning of estimation using step.

Use only when EstimationMethod is 'ForgettingFactor' or 'KalmanFilter'.

InitialParameterCovariance is a tunable property. You can change it when the object is in a
locked state.

Default: 10000

EstimationMethod

Recursive estimation algorithm used for online estimation of model parameters, specified as one of
the following values:

• 'ForgettingFactor' — Algorithm used for parameter estimation
• 'KalmanFilter' — Algorithm used for parameter estimation
• 'NormalizedGradient' — Algorithm used for parameter estimation
• 'Gradient' — Unnormalized gradient algorithm used for parameter estimation

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
unnormalized gradient methods. However, they have better convergence properties. For information
about these algorithms, see “Recursive Algorithms for Online Parameter Estimation”.

EstimationMethod is a nontunable property. You cannot change it during execution, that is after
the object is locked using the step command. If you want to deploy code using MATLAB Coder,
EstimationMethod can only be assigned once.

Default: 'ForgettingFactor'

ForgettingFactor

Forgetting factor, λ, relevant for parameter estimation, specified as a scalar in the range (0,1].

Suppose that the system remains approximately constant over T0 samples. You can choose λ such
that:

T0 = 1
1− λ

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.
• Setting λ < 1 implies that past measurements are less significant for parameter estimation and

can be “forgotten”. Set λ < 1 to estimate time-varying coefficients.

 recursiveARMA

1-1505

Typical choices of λ are in the range [0.98 0.995].

Use only when EstimationMethod is 'ForgettingFactor'.

ForgettingFactor is a tunable property. You can change it when the object is in a locked state.

Default: 1

EnableAdapation

Enable or disable parameter estimation, specified as one of the following:

• true or 1— The step command estimates the parameter values for that time step and updates
the parameter values.

• false or 0 — The step command does not update the parameters for that time step and instead
outputs the last estimated value. You can use this option when your system enters a mode where
the parameter values do not vary with time.

Note If you set EnableAdapation to false, you must still execute the step command. Do not
skip step to keep parameter values constant, because parameter estimation depends on current
and past I/O measurements. step ensures past I/O data is stored, even when it does not update
the parameters.

EnableAdapation is a tunable property. You can change it when the object is in a locked state.

Default: true

DataType

Floating point precision of parameters, specified as one of the following values:

• 'double' — Double-precision floating point
• 'single' — Single-precision floating point

Setting DataType to 'single' saves memory, but leads to loss of precision. Specify DataType
based on the precision required by the target processor where you will deploy generated code.

DataType is a nontunable property. It can only be set during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'double'

ProcessNoiseCovariance

Covariance matrix of parameter variations, specified as one of the following:

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive semidefinite matrix.

N is the number of parameters to be estimated.

1 Functions

1-1506

ProcessNoiseCovariance is applicable when EstimationMethod is 'KalmanFilter'.

Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. ProcessNoiseCovariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to estimating
constant coefficients. Values larger than 0 correspond to time-varying parameters. Use large values
for rapidly changing parameters. However, the larger values result in noisier parameter estimates.

ProcessNoiseCovariance is a tunable property. You can change it when the object is in a locked
state.

Default: 0.1

AdaptationGain

Adaptation gain, γ, used in gradient recursive estimation algorithms, specified as a positive scalar.

AdaptationGain is applicable when EstimationMethod is 'Gradient' or
'NormalizedGradient'.

Specify a large value for AdaptationGain when your measurements have a high signal-to-noise
ratio.

AdaptationGain is a tunable property. You can change it when the object is in a locked state.

Default: 1

NormalizationBias

Bias in adaptation gain scaling used in the 'NormalizedGradient' method, specified as a
nonnegative scalar.

NormalizationBias is applicable when EstimationMethod is 'NormalizedGradient'.

The normalized gradient algorithm divides the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, this can cause jumps in the estimated
parameters. NormalizationBias is the term introduced in the denominator to prevent these jumps.
Increase NormalizationBias if you observe jumps in estimated parameters.

NormalizationBias is a tunable property. You can change it when the object is in a locked state.

Default: eps

Output Arguments
obj — System object for online parameter estimation of ARMA model
recursiveARMA System object

System object for online parameter estimation of ARMA model, returned as a recursiveARMA
System object. This object is created using the specified model orders and properties. Use step
command to estimate the coefficients of the ARMA model polynomials. You can then access the
estimated coefficients and parameter covariance using dot notation. For example, type obj.A to view
the estimated A polynomial coefficients.

 recursiveARMA

1-1507

More About
ARMA Model Structure

The ARMA model structure is:

A(q)y(t) = C(q)e(t)

where,

A(q) = 1 + a1q−1 + … + anaq−na

C(q) = 1 + c1q−1 + … + cncq
−nc

Here,

• y(t)— Output at time t. Data is a time series that has no input channels and one output channel.
• na — Number of A polynomial coefficients
• nc — Number of C polynomial coefficients
• e(t) — White-noise disturbance value at time t
• q-1 — Time-shift operator

Tips
• Starting in R2016b, instead of using the step command to update model parameter estimates,

you can call the System object with input arguments, as if it were a function. For example,
[A,C,EstimatedOutput] = step(obj,y) and [A,C,EstimatedOutput] = obj(y)
perform equivalent operations.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For Simulink-based workflows, use Recursive Polynomial Model Estimator.
• For limitations, see “Generate Code for Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No

See Also
step | release | reset | clone | isLocked | Recursive Polynomial Model Estimator | armax |
recursiveAR | recursiveARX | recursiveARMAX | recursiveBJ | recursiveOE | recursiveLS

1 Functions

1-1508

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

 recursiveARMA

1-1509

recursiveARMAX
Create System object for online parameter estimation of ARMAX model

Syntax
obj = recursiveARMAX
obj = recursiveARMAX(Orders)
obj = recursiveARMAX(Orders,A0,B0,C0)
obj = recursiveARMAX(___ ,Name,Value)

Description
Use recursiveARMAX command for parameter estimation with real-time data. If all data necessary
for estimation is available at once, and you are estimating a time-invariant model, use the offline
estimation command, armax.

obj = recursiveARMAX creates a System object for online parameter estimation of default single-
input single-output (SISO) ARMAX model structure on page 1-1519. The default model structure has
polynomials of order 1 and initial polynomial coefficient values eps.

After creating the object, use the step command to update model parameter estimates using
recursive estimation algorithms and real-time data.

obj = recursiveARMAX(Orders) specifies the polynomial orders of the ARMAX model to be
estimated.

obj = recursiveARMAX(Orders,A0,B0,C0) specifies the polynomial orders and initial values of
the polynomial coefficients. Specify initial values to potentially avoid local minima during estimation.
If the initial values are small compared to the default InitialParameterCovariance property
value, and you have confidence in your initial values, also specify a smaller
InitialParameterCovariance.

obj = recursiveARMAX(___ ,Name,Value) specifies additional attributes of the ARMAX model
structure and recursive estimation algorithm using one or more Name,Value pair arguments.

Object Description
recursiveARMAX creates a System object for online parameter estimation of SISO ARMAX models
using a recursive estimation algorithm.

A System object is a specialized MATLAB object designed specifically for implementing and
simulating dynamic systems with inputs that change over time. System objects use internal states to
store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain information from or
about the object. System objects use a minimum of two commands to process data — a constructor to
create the object and the step command to update object parameters using real-time data. This
separation of declaration from execution lets you create multiple, persistent, reusable objects, each
with different settings.

1 Functions

1-1510

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-time
data.

step puts the object into a locked state. In a
locked state, you cannot change any nontunable
properties or input specifications, such as model
order, data type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this command to
enable setting of nontunable parameters.

reset Reset the internal states of a locked System
object to the initial values, and leave the object
locked.

clone Create another System object with the same
object property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created this way
(obj2) also change the properties of the original
object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Use the recursiveARMAX command to create an online estimation System object. Then estimate the
ARMAX model parameters (A, B, and C) and output using the step command with incoming input and
output data, u, and y.

[A,B,C,EstimatedOutput] = step(obj,y,u)

For recursiveARMAX object properties, see “Properties” on page 1-1514.

Examples

Estimate an ARMAX Model Online

Create a System object for online parameter estimation of an ARMAX model.

obj = recursiveARMAX;

The ARMAX model has a default structure with polynomials of order 1 and initial polynomial
coefficient values, eps.

Load the estimation data. In this example, use a static data set for illustration.

 recursiveARMAX

1-1511

load iddata1 z1;
output = z1.y;
input = z1.u;

Estimate ARMAX model parameters online using step.

for i = 1:numel(input)
[A,B,C,EstimatedOutput] = step(obj,output(i),input(i));
end

View the current estimated values of polynomial A coefficients.

obj.A

ans = 1×2

 1.0000 -0.8298

View the current covariance estimate of the parameters.

obj.ParameterCovariance

ans = 3×3

 0.0001 0.0001 0.0001
 0.0001 0.0032 0.0000
 0.0001 0.0000 0.0001

View the current estimated output.

EstimatedOutput

EstimatedOutput = -4.5595

Create System Object for ARMAX Model With Known Polynomial Orders

Specify ARMAX model orders and delays.

na = 1;
nb = 2;
nc = 1;
nk = 1;

Create a System object for online estimation of ARMAX model with the specified orders and delays.

obj = recursiveARMAX([na nb nc nk]);

Create Online Estimation System Object for ARMAX Model With Known Initial Parameters

Specify ARMAX model orders and delays.

na = 1;
nb = 2;

1 Functions

1-1512

nc = 1;
nk = 1;

Create a System object for online estimation of ARMAX model with known initial polynomial
coefficients.

A0 = [1 0.5];
B0 = [0 1 1];
C0 = [1 0.5];
obj = recursiveARMAX([na nb nc nk],A0,B0,C0);

Specify the initial parameter covariance.

obj.InitialParameterCovariance = 0.1;

InitialParameterCovariance represents the uncertainty in your guess for the initial parameters.
Typically, the default InitialParameterCovariance (10000) is too large relative to the parameter
values. This results in initial guesses being given less importance during estimation. If you have
confidence in the initial parameter guesses, specify a smaller initial parameter covariance.

Specify Estimation Method for Online Estimation of ARMAX Model

Create a System object that uses the Kalman filter algorithm for online parameter estimation of an
ARMAX model.

obj = recursiveARMAX([1 2 1 1],'EstimationMethod','KalmanFilter');
obj.ProcessNoiseCovariance = 0.01;

The ProcessNoiseCovariance property of obj is applicable only when the Kalman filter
algorithm is used for estimation.

Input Arguments
Orders — Model orders and delays
1-by-4 vector of integers

Model orders and delays of an ARMAX model on page 1-1519, specified as a 1-by-4 vector of integers,
[na nb nc nk].

• na — Order of the polynomial A(q), specified as a nonnegative integer. na represents the number
of poles in your system.

• nb — Order of the polynomial B(q) + 1, specified as a positive integer. nb represents the number
of zeroes in your system plus 1.

• nc — Order of the polynomial C(q), specified as a nonnegative integer.
• nk — Input-output delay, specified as a nonnegative integer. nk is number of input samples that

occur before the input affects the output. nk is expressed as fixed leading zeros of the B
polynomial.

A0,B0,C0 — Initial value of polynomial coefficients
row vectors of real values | []

 recursiveARMAX

1-1513

Initial value of polynomial coefficients, specified as row vectors of real values with elements in order
of ascending powers of q-1.

• A0 — Initial guess for the coefficients of the polynomial A(q), specified as a 1-by-(na+1) vector
with 1 as the first element.

• B0 — Initial guess for the coefficients of the polynomial B(q), specified as a 1-by-(nb+nk) vector
with nk leading zeros.

• C0 — Initial guess for the coefficients of the polynomial C(q), specified as a 1-by-(nc+1) vector
with 1 as the first element.

The coefficients in C0 must define a stable discrete-time polynomial with roots within a unit disk.
For example,

C0 = [1 0.5 0.5];
all(abs(roots(C0))<1)

ans =

 1

Specifying as [], uses the default value of eps for the polynomial coefficients.

Note If the initial guesses are much smaller than the default InitialParameterCovariance,
10000, the initial guesses are given less importance during estimation. In that case, specify a smaller
initial parameter covariance.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify writable properties on page 1-1514 of recursiveARMAX
System object during object creation. For example, obj = recursiveARMAX([2 2 1
1],'EstimationMethod','Gradient') creates a System object to estimate an ARMAX model
using the 'Gradient' recursive estimation algorithm.

Properties
recursiveARMAX System object properties consist of read-only and writable properties. The writable
properties are tunable and nontunable properties. The nontunable properties cannot be changed
when the object is locked, that is, after you use the step command.

Use Name,Value arguments to specify writable properties of recursiveARMAX objects during
object creation. After object creation, use dot notation to modify the tunable properties.

obj = recursiveARMAX;
obj.ForgettingFactor = 0.99;

1 Functions

1-1514

A

Estimated coefficients of polynomial A(q), returned as a row vector of real values specified in order of
ascending powers of q-1.

A is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

B

Estimated coefficients of polynomial B(q), returned as a vector of real values specified in order of
ascending powers of q-1.

B is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

C

Estimated coefficients of polynomial C(q), returned as a vector of real values specified in order of
ascending powers of q-1.

C is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

InitialA

Initial values for the coefficients of polynomial A(q) of order na, specified as a row vector of length na
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialA is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

InitialB

Initial values for the coefficients of polynomial B(q) of order nb-1, specified as a row vector of length
nb+nk, with nk leading zeros. nk is the input-output delay. Specify the coefficients in order of
ascending powers of q-1.

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialB is a tunable property. You can change it when the object is in a locked state.

Default: [0 eps]

InitialC

Initial values for the coefficients of polynomial C(q) of order nc, specified as a row vector of length nc
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

 recursiveARMAX

1-1515

The coefficients in InitialC must define a stable discrete-time polynomial with roots within a unit
circle. For example,

InitialC = [1 0.5 0.5];
all(abs(roots(InitialC))<1)

ans =

 1

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialC is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

ParameterCovariance

Estimated covariance P of the parameters, returned as an N-by-N symmetric positive-definite matrix.
N is the number of parameters to be estimated. The software computes P assuming that the residuals
(difference between estimated and measured outputs) are white noise, and the variance of these
residuals is 1. ParameterCovariance is applicable only when EstimationMethod is
'ForgettingFactor' or 'KalmanFilter'.

The interpretation of P depends on the estimation method:

• 'ForgettingFactor' — R2/2 * P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals.

• 'KalmanFilter' — R2* P is the covariance matrix of the estimated parameters, and R1 /R2 is the
covariance matrix of the parameter changes. Where, R1 is the covariance matrix that you specify
in ProcessNoiseCovariance.

ParameterCovariance is a read-only property and is initially empty after you create the object. It is
populated after you use the step command for online parameter estimation.

InitialParameterCovariance

Covariance of the initial parameter estimates, specified as one of the following:

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements. N is the number of parameters to be estimated.

• Vector of real positive scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix, with
[α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive-definite matrix.

InitialParameterCovariance represents the uncertainty in the initial parameter estimates. For
large values of InitialParameterCovariance, less importance is placed on the initial parameter
values and more on the measured data during beginning of estimation using step.

Use only when EstimationMethod is 'ForgettingFactor' or 'KalmanFilter'.

InitialParameterCovariance is a tunable property. You can change it when the object is in a
locked state.

1 Functions

1-1516

Default: 10000

EstimationMethod

Recursive estimation algorithm used for online estimation of model parameters, specified as one of
the following values:

• 'ForgettingFactor' — Algorithm used for parameter estimation
• 'KalmanFilter' — Algorithm used for parameter estimation
• 'NormalizedGradient' — Algorithm used for parameter estimation
• 'Gradient' — Unnormalized gradient algorithm used for parameter estimation

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
unnormalized gradient methods. However, they have better convergence properties. For information
about these algorithms, see “Recursive Algorithms for Online Parameter Estimation”.

EstimationMethod is a nontunable property. You cannot change it during execution, that is after
the object is locked using the step command. If you want to deploy code using MATLAB Coder,
EstimationMethod can only be assigned once.

Default: 'ForgettingFactor'

ForgettingFactor

Forgetting factor, λ, relevant for parameter estimation, specified as a scalar in the range (0,1].

Suppose that the system remains approximately constant over T0 samples. You can choose λ such
that:

T0 = 1
1− λ

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.
• Setting λ < 1 implies that past measurements are less significant for parameter estimation and

can be “forgotten”. Set λ < 1 to estimate time-varying coefficients.

Typical choices of λ are in the range [0.98 0.995].

Use only when EstimationMethod is 'ForgettingFactor'.

ForgettingFactor is a tunable property. You can change it when the object is in a locked state.

Default: 1

EnableAdapation

Enable or disable parameter estimation, specified as one of the following:

• true or 1— The step command estimates the parameter values for that time step and updates
the parameter values.

• false or 0 — The step command does not update the parameters for that time step and instead
outputs the last estimated value. You can use this option when your system enters a mode where
the parameter values do not vary with time.

 recursiveARMAX

1-1517

Note If you set EnableAdapation to false, you must still execute the step command. Do not
skip step to keep parameter values constant, because parameter estimation depends on current
and past I/O measurements. step ensures past I/O data is stored, even when it does not update
the parameters.

EnableAdapation is a tunable property. You can change it when the object is in a locked state.

Default: true

DataType

Floating point precision of parameters, specified as one of the following values:

• 'double' — Double-precision floating point
• 'single' — Single-precision floating point

Setting DataType to 'single' saves memory, but leads to loss of precision. Specify DataType
based on the precision required by the target processor where you will deploy generated code.

DataType is a nontunable property. It can only be set during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'double'

ProcessNoiseCovariance

Covariance matrix of parameter variations, specified as one of the following:

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive semidefinite matrix.

N is the number of parameters to be estimated.

ProcessNoiseCovariance is applicable when EstimationMethod is 'KalmanFilter'.

Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. ProcessNoiseCovariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to estimating
constant coefficients. Values larger than 0 correspond to time-varying parameters. Use large values
for rapidly changing parameters. However, the larger values result in noisier parameter estimates.

ProcessNoiseCovariance is a tunable property. You can change it when the object is in a locked
state.

Default: 0.1

AdaptationGain

Adaptation gain, γ, used in gradient recursive estimation algorithms, specified as a positive scalar.

AdaptationGain is applicable when EstimationMethod is 'Gradient' or
'NormalizedGradient'.

1 Functions

1-1518

Specify a large value for AdaptationGain when your measurements have a high signal-to-noise
ratio.

AdaptationGain is a tunable property. You can change it when the object is in a locked state.

Default: 1

NormalizationBias

Bias in adaptation gain scaling used in the 'NormalizedGradient' method, specified as a
nonnegative scalar.

NormalizationBias is applicable when EstimationMethod is 'NormalizedGradient'.

The normalized gradient algorithm divides the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, this can cause jumps in the estimated
parameters. NormalizationBias is the term introduced in the denominator to prevent these jumps.
Increase NormalizationBias if you observe jumps in estimated parameters.

NormalizationBias is a tunable property. You can change it when the object is in a locked state.

Default: eps

Output Arguments
obj — System object for online parameter estimation of ARMAX model
recursiveARMAX System object

System object for online parameter estimation of ARMAX model, returned as a recursiveARMAX
System object. This object is created using the specified model orders and properties. Use step
command to estimate the coefficients of the ARMAX model polynomials. You can then access the
estimated coefficients and parameter covariance using dot notation. For example, type obj.A to view
the estimated A polynomial coefficients.

More About
ARMAX Model Structure

The ARMAX (Autoregressive Moving Average with Extra Input) model structure is:

y(t) + a1y(t − 1) + … + anay(t − na) =

 b1u(t − nk) + … + bnbu(t − nk− nb + 1) +

 c1e(t − 1) + … + cnce(t − nc) + e(t)

A more compact way to write the difference equation is

A(q)y(t) = B(q)u(t − nk) + C(q)e(t)

where

• y(t) — Output at time t
• na — Number of poles

 recursiveARMAX

1-1519

• nb — Number of zeroes plus 1
• nc — Number of C coefficients
• nk — Number of input samples that occur before the input affects the output, also called the dead

time in the system
• y(t − 1)…y(t − na) — Previous outputs on which the current output depends
• u(t − nk)…u(t − nk− nb + 1) — Previous and delayed inputs on which the current output depends
• e(t − 1)…e(t − nc) — White-noise disturbance value

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is the delay. q is the delay
operator. Specifically,

A(q) = 1 + a1q−1 + … + anaq−na

B(q) = b1 + b2q−1 + … + bnbq−nb + 1

C(q) = 1 + c1q−1 + … + cncq
−nc

Tips
• Starting in R2016b, instead of using the step command to update model parameter estimates,

you can call the System object with input arguments, as if it were a function. For example,
[A,B,C,EstimatedOutput] = step(obj,y,u) and [A,B,C,EstimatedOutput] =
obj(y,u) perform equivalent operations.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For Simulink-based workflows, use Recursive Polynomial Model Estimator.
• For limitations, see “Generate Code for Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No

See Also
step | release | reset | clone | isLocked | Recursive Polynomial Model Estimator | armax |
recursiveAR | recursiveARX | recursiveARMA | recursiveBJ | recursiveOE | recursiveLS

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”

1 Functions

1-1520

“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

 recursiveARMAX

1-1521

recursiveARX
Create System object for online parameter estimation of ARX model

Syntax
obj = recursiveARX
obj = recursiveARX(Orders)
obj = recursiveARX(Orders,A0,B0)
obj = recursiveARX(___ ,Name,Value)

Description
Use recursiveARX command for parameter estimation with real-time data. If all data necessary for
estimation is available at once, and you are estimating a time-invariant model, use the offline
estimation command, arx.

obj = recursiveARX creates a System object for online parameter estimation of a default ARX
model structure on page 1-1533. The default model structure has polynomials of order 1 and initial
polynomial coefficient values eps.

After creating the object, use the step command to update model parameter estimates using
recursive estimation algorithms and real-time data.

obj = recursiveARX(Orders) specifies the polynomial orders of the ARX model to be estimated.

obj = recursiveARX(Orders,A0,B0) specifies the polynomial orders and initial values of the
polynomial coefficients.

obj = recursiveARX(___ ,Name,Value) specifies additional attributes of the ARX model
structure and recursive estimation algorithm using one or more Name,Value pair arguments.

Object Description
recursiveARX creates a System object for online parameter estimation of single-input single-output
(SISO) or multiple-input single-output (MISO) ARX models using a recursive estimation algorithm.

A System object is a specialized MATLAB object designed specifically for implementing and
simulating dynamic systems with inputs that change over time. System objects use internal states to
store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain information from or
about the object. System objects use a minimum of two commands to process data — a constructor to
create the object and the step command to update object parameters using real-time data. This
separation of declaration from execution lets you create multiple, persistent, reusable objects, each
with different settings.

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

1 Functions

1-1522

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-time
data.

step puts the object into a locked state. In a
locked state, you cannot change any nontunable
properties or input specifications, such as model
order, data type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this command to
enable setting of nontunable parameters.

reset Reset the internal states of a locked System
object to the initial values, and leave the object
locked.

clone Create another System object with the same
object property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created this way
(obj2) also change the properties of the original
object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Use the recursiveARX command to create an online estimation System object. Then estimate the
ARX model parameters (A and B) and output using the step command with incoming input and
output data, u and y.

[A,B,EstimatedOutput] = step(obj,y,u)

For recursiveARX object properties, see “Properties” on page 1-1526.

Examples

Estimate a SISO ARX Model Online

Create a System object for online parameter estimation of a SISO ARX model.

obj = recursiveARX;

The ARX model has a default structure with polynomials of order 1 and initial polynomial coefficient
values, eps.

Load the estimation data. In this example, use a static data set for illustration.

load iddata1 z1;
output = z1.y;
input = z1.u;

 recursiveARX

1-1523

Estimate ARX model parameters online using step.

for i = 1:numel(input)
[A,B,EstimatedOutput] = step(obj,output(i),input(i));
end

View the current estimated values of polynomial B coefficients.

obj.B

ans = 1×2

 0 0.7974

View the current covariance estimate of the parameters.

obj.ParameterCovariance

ans = 2×2

 0.0002 0.0001
 0.0001 0.0034

View the current estimated output.

EstimatedOutput

EstimatedOutput = -4.7766

Create System Object for SISO ARX Model With Known Initial Parameters

Specify ARX model orders and delays.

na = 1;
nb = 2;
nk = 1;

Create a System object for online estimation of SISO ARX model with known initial polynomial
coefficients.

A0 = [1 0.5];
B0 = [0 1 1];
obj = recursiveARX([na nb nk],A0,B0);

Specify the initial parameter covariance.

obj.InitialParameterCovariance = 0.1;

InitialParameterCovariance represents the uncertainty in your guess for the initial parameters.
Typically, the default InitialParameterCovariance (10000) is too large relative to the parameter
values. This results in initial guesses being given less importance during estimation. If you have
confidence in the initial parameter guesses, specify a smaller initial parameter covariance.

1 Functions

1-1524

Create System Object for MISO ARX Model With Known Initial Parameters

Specify orders and delays for ARX model with two inputs and one output.

na = 1;
nb = [2 1];
nk = [1 3];

nb and nk are specified as row vectors of length equal to number of inputs, Nu.

Specify initial polynomial coefficients.

A0 = [1 0.5];
B0 = [0 1 1 0; 0 0 0 0.8];

B0 has Nu rows and max(nb+nk) columns. The i-th row corresponds to i-th input and is specified as
having nk(i) zeros, followed by nb(i) initial values. Values after nb(i)+nk(i) are ignored.

Create a System object for online estimation of ARX model with known initial polynomial coefficients.

obj = recursiveARX([na nb nk],A0,B0);

Specify Estimation Method for Online Estimation of ARX Model

Create a System object that uses the normalized gradient algorithm for online parameter estimation
of an ARX model.

obj = recursiveARX([1 2 1],'EstimationMethod','NormalizedGradient');

Input Arguments
Orders — Model orders and delays
1-by-3 vector of integers | 1-by-3 vector of vectors

Model orders and delays of an ARX model on page 1-1533, specified as a 1-by-3 vector of integers or
vectors, [na nb nk].

• na — Order of the polynomial A(q), specified as a nonnegative integer.
• nb — Order of the polynomial B(q) + 1, specified as 1–by-Nu vector of positive integers. Nu is the

number of inputs.

For MISO models, there are as many B(q) polynomials as the number of inputs. nb(i) is the order
of ith polynomial Bi(q)+1 for the ith input.

• nk — Input-output delay, specified as a 1–by-Nu vector of nonnegative integers. Nu is the number
of inputs.

For MISO models, there are as many B(q) polynomials as the number of inputs. nk(i) is the
input-output delay time corresponding to the ith input.

A0,B0 — Initial value of polynomial coefficients
row vector and matrix of real values | []

 recursiveARX

1-1525

Initial value of coefficients of A(q) and B(q) polynomials, specified as row vector and matrix or real
values, respectively. Specify the elements in order of ascending powers of q-1.

• A0 — Initial value for the coefficients of the polynomial A(q), specified as a 1-by-(na+1) row vector
with 1 as the first element.

• B0 — Initial value for the coefficients of the polynomial B(q), specified as Nu-by-max(nb+nk)
matrix. Nu is the number of inputs.

For MISO models, there are as many B(q) polynomials as the number of inputs. The ith row of B0
corresponds to the ith input and must contain nk(i) leading zeros, followed by nb(i) initial
parameter values. Entries beyond nk(i)+nb(i) are ignored.

na, nb, and nk are the Orders of the model.

Specifying as [], uses the default value of eps for the polynomial coefficients.

If the initial parameter values are much smaller than InitialParameterCovariance, these initial
values are given less importance during estimation. Specify a smaller initial parameter covariance if
you have high confidence in the initial parameter values. This statement applies only for infinite-
history estimation. Finite-history estimation does not use InitialParameterCovariance.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify writable properties on page 1-1526 of recursiveARX System
object during object creation. For example, obj = recursiveARX([2 2
1],'EstimationMethod','Gradient') creates a System object to estimate an ARX model using
the 'Gradient' recursive estimation algorithm.

Properties
recursiveARX System object properties consist of read-only and writable properties. The writable
properties are tunable and nontunable properties. The nontunable properties cannot be changed
when the object is locked, that is, after you use the step command.

Use Name,Value arguments to specify writable properties of recursiveARX objects during object
creation. After object creation, use dot notation to modify the tunable properties.

obj = recursiveARX;
obj.ForgettingFactor = 0.99;

A

Estimated coefficients of polynomial A(q), returned as a row vector of real values specified in order of
ascending powers of q-1.

A is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

1 Functions

1-1526

B

Estimated coefficients of polynomial B(q), returned as a Nu-by-max(nb+nk) matrix of real values. Nu
is the number of inputs.

The ith row of B corresponds to the ith input and contains nk(i) leading zeros, followed by nb(i)
estimated parameters, specified in order of ascending powers of q-1. Ignore zero entries beyond
nk(i)+nb(i).

B is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

InitialA

Initial values for the coefficients of polynomial A(q) of order na, specified as a row vector of length na
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialA is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

InitialB

Initial values for the coefficients of polynomial B(q), specified as an Nu-by-max(nb+nk) matrix. Nu is
the number of inputs.

For MISO models, there are as many B(q) polynomials as the number of inputs. The ith row of B0
corresponds to the ith input and must contain nk(i) zeros, followed by nb(i) initial parameter
values. Entries beyond nk(i)+nb(i) are ignored.

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialB is a tunable property. You can change it when the object is in a locked state.

Default: [0 eps]

InitialOutputs

Initial values of the measured outputs buffer in finite-history estimation, specified as 0 or as a (W
+na)-by-1 vector, where W is the window length and na is the order of the polynomial A(q) that you
specify when constructing the object.

The InitialOutputs property provides a means of controlling the initial behavior of the algorithm.

When InitialOutputs is set to 0, the object populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

 recursiveARX

1-1527

Specify InitialOutputs only when History is Finite.

InitialOutputs is a tunable property. You can change InitialOutputs when the object is in a
locked state.

Default: 0

InitialInputs

Initial values of the inputs in the finite history window, specified as 0 or as a (W-1+max(nb)
+max(nk))-by-nu matrix, where W is the window length and nu is the number of inputs. nb is the
vector of B(q) polynomial orders and nk is vector of input delays that you specify when constructing
the recursiveARX object.

The InitialInputs property provides a means of controlling the initial behavior of the algorithm.

When the InitialInputs is set to 0, the object populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Specify InitialInputs only when History is Finite.

InitialInputs is a tunable property. You can change InitialInputs when the object is in a
locked state.

Default: 0

ParameterCovariance

Estimated covariance P of the parameters, returned as an N-by-N symmetric positive-definite matrix.
N is the number of parameters to be estimated. The software computes P assuming that the residuals
(difference between estimated and measured outputs) are white noise, and the variance of these
residuals is 1.

ParameterCovariance is applicable only when EstimationMethod is 'ForgettingFactor' or
'KalmanFilter' or when History is Finite.

The interpretation of P depends on your settings for the History and EstimationMethod
properties.

• If History is Infinite, then your EstimationMethod selection results in one of the following:

• 'ForgettingFactor' — (R2/2)P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals.

• 'KalmanFilter' — R2P is the covariance matrix of the estimated parameters, and R1 /R2 is
the covariance matrix of the parameter changes. Here, R1 is the covariance matrix that you
specify in ProcessNoiseCovariance.

• If History is Finite (sliding-window estimation) — R2P is the covariance of the estimated
parameters. The sliding-window algorithm does not use this covariance in the parameter-
estimation process. However, the algorithm does compute the covariance for output so that you
can use it for statistical evaluation.

1 Functions

1-1528

ParameterCovariance is a read-only property and is initially empty after you create the object. It is
populated after you use the step command for online parameter estimation.

InitialParameterCovariance

Covariance of the initial parameter estimates, specified as one of the following:

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements. N is the number of parameters to be estimated.

• Vector of real positive scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix, with
[α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive-definite matrix.

InitialParameterCovariance represents the uncertainty in the initial parameter estimates. For
large values of InitialParameterCovariance, less importance is placed on the initial parameter
values and more on the measured data during beginning of estimation using step.

Use only when EstimationMethod is 'ForgettingFactor' or 'KalmanFilter'.

InitialParameterCovariance is a tunable property. You can change it when the object is in a
locked state.

Default: 10000

EstimationMethod

Recursive estimation algorithm used for online estimation of model parameters, specified as one of
the following values:

• 'ForgettingFactor' — Algorithm used for parameter estimation
• 'KalmanFilter' — Algorithm used for parameter estimation
• 'NormalizedGradient' — Algorithm used for parameter estimation
• 'Gradient' — Unnormalized gradient algorithm used for parameter estimation

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
unnormalized gradient methods. However, they have better convergence properties. For information
about these algorithms, see “Recursive Algorithms for Online Parameter Estimation”.

These methods all use an infinite data history, and are available only when History is 'Infinite'.

EstimationMethod is a nontunable property. You cannot change it during execution, that is, after
the object is locked using the step command.

Default: Forgetting Factor

ForgettingFactor

Forgetting factor, λ, relevant for parameter estimation, specified as a scalar in the range (0,1].

Suppose that the system remains approximately constant over T0 samples. You can choose λ such
that:

T0 = 1
1− λ

 recursiveARX

1-1529

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.
• Setting λ < 1 implies that past measurements are less significant for parameter estimation and

can be “forgotten”. Set λ < 1 to estimate time-varying coefficients.

Typical choices of λ are in the range [0.98 0.995].

Use only when EstimationMethod is 'ForgettingFactor'.

ForgettingFactor is a tunable property. You can change it when the object is in a locked state.

Default: 1

EnableAdapation

Enable or disable parameter estimation, specified as one of the following:

• true or 1— The step command estimates the parameter values for that time step and updates
the parameter values.

• false or 0 — The step command does not update the parameters for that time step and instead
outputs the last estimated value. You can use this option when your system enters a mode where
the parameter values do not vary with time.

Note If you set EnableAdapation to false, you must still execute the step command. Do not
skip step to keep parameter values constant, because parameter estimation depends on current
and past I/O measurements. step ensures past I/O data is stored, even when it does not update
the parameters.

EnableAdapation is a tunable property. You can change it when the object is in a locked state.

Default: true

DataType

Floating point precision of parameters, specified as one of the following values:

• 'double' — Double-precision floating point
• 'single' — Single-precision floating point

Setting DataType to 'single' saves memory, but leads to loss of precision. Specify DataType
based on the precision required by the target processor where you will deploy generated code.

DataType is a nontunable property. It can only be set during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'double'

ProcessNoiseCovariance

Covariance matrix of parameter variations, specified as one of the following:

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

1 Functions

1-1530

• N-by-N symmetric positive semidefinite matrix.

N is the number of parameters to be estimated.

ProcessNoiseCovariance is applicable when EstimationMethod is 'KalmanFilter'.

Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. ProcessNoiseCovariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to estimating
constant coefficients. Values larger than 0 correspond to time-varying parameters. Use large values
for rapidly changing parameters. However, the larger values result in noisier parameter estimates.

ProcessNoiseCovariance is a tunable property. You can change it when the object is in a locked
state.

Default: 0.1

AdaptationGain

Adaptation gain, γ, used in gradient recursive estimation algorithms, specified as a positive scalar.

AdaptationGain is applicable when EstimationMethod is 'Gradient' or
'NormalizedGradient'.

Specify a large value for AdaptationGain when your measurements have a high signal-to-noise
ratio.

AdaptationGain is a tunable property. You can change it when the object is in a locked state.

Default: 1

NormalizationBias

Bias in adaptation gain scaling used in the 'NormalizedGradient' method, specified as a
nonnegative scalar.

NormalizationBias is applicable when EstimationMethod is 'NormalizedGradient'.

The normalized gradient algorithm divides the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, this can cause jumps in the estimated
parameters. NormalizationBias is the term introduced in the denominator to prevent these jumps.
Increase NormalizationBias if you observe jumps in estimated parameters.

NormalizationBias is a tunable property. You can change it when the object is in a locked state.

Default: eps

History

Data history type defining which type of recursive algorithm you use, specified as:

• 'Infinite' — Use an algorithm that aims to minimize the error between the observed and
predicted outputs for all time steps from the beginning of the simulation.

• 'Finite' — Use an algorithm that aims to minimize the error between the observed and
predicted outputs for a finite number of past time steps.

 recursiveARX

1-1531

Algorithms with infinite history aim to produce parameter estimates that explain all data since the
start of the simulation. These algorithms still use a fixed amount of memory that does not grow over
time. The object provides multiple algorithms of the 'Infinite' History type. Specifying this
option activates the EstimationMethod property with which you specify an algorithm.

Algorithms with finite history aim to produce parameter estimates that explain only a finite number of
past data samples. This method is also called sliding-window estimation. The object provides one
algorithm of the 'Finite' type. Specifying this option activates the WindowLength property that
sizes the window.

For more information on recursive estimation methods, see “Recursive Algorithms for Online
Parameter Estimation”.

History is a nontunable property. It can be set only during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'Infinite'

WindowLength

Window size determining the number of time samples to use for the sliding-window estimation
method, specified as a positive integer. Specify WindowLength only when History is Finite.

Choose a window size that balances estimation performance with computational and memory burden.
Sizing factors include the number and time variance of the parameters in your model. Always specify
Window Length in samples, even if you are using frame-based input processing.

WindowLength must be greater than or equal to the number of estimated parameters.

Suitable window length is independent of whether you are using sample-based or frame-based input
processing (see InputProcessing). However, when using frame-based processing, your window
length must be greater than or equal to the number of samples (time steps) contained in the frame.

WindowLength is a nontunable property. It can be set only during object construction using
Name,Value arguments and cannot be changed afterward.

Default: 200

InputProcessing

Option for sample-based or frame-based input processing, specified as a character vector or string.

• Sample-based processing operates on signals streamed one sample at a time.
• Frame-based processing operates on signals containing samples from multiple time steps. Many

machine sensor interfaces package multiple samples and transmit these samples together in
frames. Frame-based processing allows you to input this data directly without having to first
unpack it.

Your InputProcessing specification impacts the dimensions for the input and output signals when
using the step command:

[theta,EstimatedOutput] = step(obj,y,u)

• Sample-based

1 Functions

1-1532

• y and EstimatedOutput are scalars.
• u is a 1-by-Nu vector, where Nu is the number of inputs.

• • Frame-based with M samples per frame

• y and EstimatedOutput are M-by-1 vectors.
• u is an M-by-Nu matrix.

InputProcessing is a nontunable property. It can be set only during object construction using
Name,Value arguments and cannot be changed afterward.

Default: 'Sample-based'

Output Arguments
obj — System object for online parameter estimation of ARX model
recursiveARX System object

System object for online parameter estimation of ARX model, returned as a recursiveARX System
object. This object is created using the specified model orders and properties. Use step command to
estimate the coefficients of the ARX model polynomials. You can then access the estimated
coefficients and parameter covariance using dot notation. For example, type obj.A to view the
estimated A polynomial coefficients.

More About
ARX Model Structure

The ARX model structure is :

y(t) + a1y(t − 1) + ... + anay(t − na) =
b1u(t − nk) + ... + bnbu(t − nb− nk + 1) + e(t)

The parameters na and nb are the orders of the ARX model, and nk is the delay.

• y(t)— Output at time t.
• na — Number of poles.
• nb — Number of zeroes plus 1.
• nk — Number of input samples that occur before the input affects the output, also called the dead

time in the system.
• y(t − 1)…y(t − na) — Previous outputs on which the current output depends.
• u(t − nk)…u(t − nk− nb + 1) — Previous and delayed inputs on which the current output depends.
• e(t) — White-noise disturbance value.

A more compact way to write the difference equation is

A(q)y(t) = B(q)u(t − nk) + e(t)

q is the delay operator. Specifically,

 recursiveARX

1-1533

A(q) = 1 + a1q−1 + … + anaq−na

B(q) = b1 + b2q−1 + … + bnbq−nb + 1

Tips
• Starting in R2016b, instead of using the step command to update model parameter estimates,

you can call the System object with input arguments, as if it were a function. For example,
[A,B,EstimatedOutput] = step(obj,y,u) and [A,B,EstimatedOutput] = obj(y,u)
perform equivalent operations.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For Simulink based workflows, use Recursive Polynomial Model Estimator.
• For limitations, see “Generate Code for Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No

See Also
step | release | reset | clone | isLocked | Recursive Polynomial Model Estimator | arx |
recursiveAR | recursiveARMAX | recursiveARMA | recursiveBJ | recursiveOE |
recursiveLS

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics”
“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

1 Functions

1-1534

recursiveBJ
Create System object for online parameter estimation of Box-Jenkins polynomial model

Syntax
obj = recursiveBJ
obj = recursiveBJ(Orders)
obj = recursiveBJ(Orders,B0,C0,D0,F0)
obj = recursiveBJ(___ ,Name,Value)

Description
Use recursiveBJ command for parameter estimation with real-time data. If all data necessary for
estimation is available at once, and you are estimating a time-invariant model, use the offline
estimation command, bj.

obj = recursiveBJ creates a System object for online parameter estimation of a default single-
input single-output (SISO) Box-Jenkins polynomial model structure on page 1-1545. The default model
structure has polynomials of order 1 and initial polynomial coefficient values eps.

After creating the object, use the step command to update model parameter estimates using
recursive estimation algorithms and real-time data.

obj = recursiveBJ(Orders) specifies the polynomial orders of the Box-Jenkins model to be
estimated.

obj = recursiveBJ(Orders,B0,C0,D0,F0) specifies the polynomial orders and initial values of
the polynomial coefficients. Specify initial values to potentially avoid local minima during estimation.
If the initial values are small compared to the default InitialParameterCovariance property
value, and you have confidence in your initial values, also specify a smaller
InitialParameterCovariance.

obj = recursiveBJ(___ ,Name,Value) specifies additional attributes of the Box-Jenkins model
structure and recursive estimation algorithm using one or more Name,Value pair arguments.

Object Description
recursiveBJ creates a System object for online parameter estimation of SISO Box-Jenkins
polynomial models using a recursive estimation algorithm.

A System object is a specialized MATLAB object designed specifically for implementing and
simulating dynamic systems with inputs that change over time. System objects use internal states to
store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain information from or
about the object. System objects use a minimum of two commands to process data — a constructor to
create the object and the step command to update object parameters using real-time data. This
separation of declaration from execution lets you create multiple, persistent, reusable objects, each
with different settings.

 recursiveBJ

1-1535

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-time
data.

step puts the object into a locked state. In a
locked state, you cannot change any nontunable
properties or input specifications, such as model
order, data type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this command to
enable setting of nontunable parameters.

reset Reset the internal states of a locked System
object to the initial values, and leave the object
locked.

clone Create another System object with the same
object property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created this way
(obj2) also change the properties of the original
object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Use the recursiveBJ command to create an online estimation System object. Then estimate the
Box-Jenkins polynomial model parameters (B, C, D, and F) and output using the step command with
incoming input and output data, u and y.

[B,C,D,F,EstimatedOutput] = step(obj,y,u)

For recursiveBJ object properties, see “Properties” on page 1-1540.

Examples

Estimate Box-Jenkins Polynomial Model Online

Create a System object for online parameter estimation of a Box-Jenkins polynomial model.

obj = recursiveBJ;

The Box-Jenkins model has a default structure with polynomials of order 1 and initial polynomial
coefficient values, eps.

Load the estimation data. In this example, use a static data set for illustration.

1 Functions

1-1536

load iddata1 z1;
output = z1.y;
input = z1.u;

Estimate Box-Jenkins model parameters online using step.

for i = 1:numel(input)
[B,C,D,F,EstimatedOutput] = step(obj,output(i),input(i));
end

View the current estimated values of polynomial D coefficients.

obj.D

ans = 1×2

 1.0000 -0.6876

View the current covariance estimate of the parameters.

obj.ParameterCovariance

ans = 4×4

 0.0020 -0.0004 -0.0001 0.0002
 -0.0004 0.0007 0.0006 -0.0001
 -0.0001 0.0006 0.0007 -0.0000
 0.0002 -0.0001 -0.0000 0.0001

View the current estimated output.

EstimatedOutput

EstimatedOutput = -4.1905

Create System Object for Box-Jenkins Model With Known Orders and Delays

Specify Box-Jenkins polynomial model orders and delays.

nb = 1;
nc = 1;
nd = 2;
nf = 1;
nk = 1;

Create a System object for online estimation of Box-Jenkins model with the specified orders and
delays.

obj = recursiveBJ([nb nc nd nf nk]);

 recursiveBJ

1-1537

Create System Object for Box-Jenkins Model With Known Initial Parameters

Specify Box-Jenkins polynomial model orders and delays.

nb = 1;
nc = 1;
nd = 1;
nf = 2;
nk = 1;

Create a System object for online estimation of Box-Jenkins model with known initial polynomial
coefficients.

B0 = [0 1];
C0 = [1 0.5];
D0 = [1 0.9];
F0 = [1 0.7 0.8];
obj = recursiveBJ([nb nc nd nf nk],B0,C0,D0,F0);

Specify the initial parameter covariance.

obj.InitialParameterCovariance = 0.1;

InitialParameterCovariance represents the uncertainty in your guess for the initial parameters.
Typically, the default InitialParameterCovariance (10000) is too large relative to the parameter
values. This results in initial guesses being given less importance during estimation. If you have
confidence in the initial parameter guesses, specify a smaller initial parameter covariance.

Specify Estimation Method for Online Estimation of Box-Jenkins Model

Create a System object that uses the normalized gradient algorithm for online parameter estimation
of a Box-Jenkins model.

obj = recursiveBJ([1 1 1 2 1],'EstimationMethod','NormalizedGradient');

Input Arguments
Orders — Model orders and delays
1-by-5 vector of integers

Model orders and delays of a Box-Jenkins polynomial model on page 1-1545, specified as a 1-by-5
vector of integers, [nb nc nd nf nk].

• nb — Order of the polynomial B(q) + 1, specified as a positive integer.
• nc — Order of the polynomial C(q), specified as a nonnegative integer.
• nd — Order of the polynomial D(q), specified as a nonnegative integer.
• nf — Order of the polynomial F(q), specified as a nonnegative integer.
• nk — Input-output delay, specified as a positive integer. nk is number of input samples that occur

before the input affects the output. nk is expressed as fixed leading zeros of the B polynomial.

1 Functions

1-1538

B0,C0,D0,F0 — Initial value of polynomial coefficients
row vectors of real values | []

Initial value of polynomial coefficients, specified as row vectors of real values with elements in order
of ascending powers of q-1.

• B0 — Initial guess for the coefficients of the polynomial B(q), specified as a 1-by-(nb+nk) vector
with nk leading zeros.

• C0 — Initial guess for the coefficients of the polynomial C(q), specified as a 1-by-(nc+1) vector
with 1 as the first element.

The coefficients in C0 must define a stable discrete-time polynomial with roots within a unit disk.
For example,

C0 = [1 0.5 0.5];
all(abs(roots(C0))<1)

ans =

 1
• D0 — Initial guess for the coefficients of the polynomial D(q), specified as a 1-by-(nd+1) vector

with 1 as the first element.

The coefficients in D0 must define a stable discrete-time polynomial with roots within a unit disk.
For example,

D0 = [1 0.9 0.8];
all(abs(roots(D0))<1)

ans =

 1
• F0 — Initial guess for the coefficients of the polynomial F(q), specified as a 1-by-(nf+1) vector

with 1 as the first element.

The coefficients in F0 must define a stable discrete-time polynomial with roots within a unit disk.
For example,

F0 = [1 0.5 0.5];
all(abs(roots(F0))<1)

ans =

 1

Specifying as [], uses the default value of eps for the polynomial coefficients.

Note If the initial guesses are much smaller than the default InitialParameterCovariance,
10000, the initial guesses are given less importance during estimation. In that case, specify a smaller
initial parameter covariance.

 recursiveBJ

1-1539

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify writable properties on page 1-1540 of recursiveBJ System
object during object creation. For example, obj = recursiveBJ([1 1 1 2
1],'EstimationMethod','Gradient') creates a System object to estimate a Box-Jenkins
polynomial model using the 'Gradient' recursive estimation algorithm.

Properties
recursiveBJ System object properties consist of read-only and writable properties. The writable
properties are tunable and nontunable properties. The nontunable properties cannot be changed
when the object is locked, that is, after you use the step command.

Use Name,Value arguments to specify writable properties of recursiveBJ objects during object
creation. After object creation, use dot notation to modify the tunable properties.

obj = recursiveBJ;
obj.ForgettingFactor = 0.99;

B

Estimated coefficients of polynomial B(q), returned as a vector of real values specified in order of
ascending powers of q-1.

B is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

C

Estimated coefficients of polynomial C(q), returned as a vector of real values specified in order of
ascending powers of q-1.

C is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

D

Estimated coefficients of polynomial D(q), returned as a vector of real values specified in order of
ascending powers of q-1.

D is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

F

Estimated coefficients of polynomial F(q), returned as a vector of real values specified in order of
ascending powers of q-1.

1 Functions

1-1540

F is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

InitialB

Initial values for the coefficients of polynomial B(q) of order nb-1, specified as a row vector of length
nb+nk, with nk leading zeros. nk is the input-output delay. Specify the coefficients in order of
ascending powers of q-1.

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialB is a tunable property. You can change it when the object is in a locked state.

Default: [0 eps]

InitialC

Initial values for the coefficients of polynomial C(q) of order nc, specified as a row vector of length nc
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

The coefficients in InitialC must define a stable discrete-time polynomial with roots within a unit
circle. For example,

InitialC = [1 0.5 0.5];
all(abs(roots(InitialC))<1)

ans =

 1

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialC is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

InitialD

Initial values for the coefficients of polynomial D(q) of order nd, specified as a row vector of length nd
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

The coefficients in InitialD must define a stable discrete-time polynomial with roots within a unit
circle. For example,

InitialD = [1 0.9 0.8];
all(abs(roots(InitialD))<1)

ans =

 1

 recursiveBJ

1-1541

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialD is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

InitialF

Initial values for the coefficients of polynomial F(q) of order nf, specified as a row vector of length nf
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

The coefficients in InitialF must define a stable discrete-time polynomial with roots within a unit
circle. For example,

InitialF = [1 0.9 0.8];
all(abs(roots(InitialF))<1)

ans =

 1

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialF is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

ParameterCovariance

Estimated covariance P of the parameters, returned as an N-by-N symmetric positive-definite matrix.
N is the number of parameters to be estimated. The software computes P assuming that the residuals
(difference between estimated and measured outputs) are white noise, and the variance of these
residuals is 1. ParameterCovariance is applicable only when EstimationMethod is
'ForgettingFactor' or 'KalmanFilter'.

The interpretation of P depends on the estimation method:

• 'ForgettingFactor' — R2/2 * P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals.

• 'KalmanFilter' — R2* P is the covariance matrix of the estimated parameters, and R1 /R2 is the
covariance matrix of the parameter changes. Where, R1 is the covariance matrix that you specify
in ProcessNoiseCovariance.

ParameterCovariance is a read-only property and is initially empty after you create the object. It is
populated after you use the step command for online parameter estimation.

InitialParameterCovariance

Covariance of the initial parameter estimates, specified as one of the following:

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements. N is the number of parameters to be estimated.

1 Functions

1-1542

• Vector of real positive scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix, with
[α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive-definite matrix.

InitialParameterCovariance represents the uncertainty in the initial parameter estimates. For
large values of InitialParameterCovariance, less importance is placed on the initial parameter
values and more on the measured data during beginning of estimation using step.

Use only when EstimationMethod is 'ForgettingFactor' or 'KalmanFilter'.

InitialParameterCovariance is a tunable property. You can change it when the object is in a
locked state.

Default: 10000

EstimationMethod

Recursive estimation algorithm used for online estimation of model parameters, specified as one of
the following values:

• 'ForgettingFactor' — Algorithm used for parameter estimation
• 'KalmanFilter' — Algorithm used for parameter estimation
• 'NormalizedGradient' — Algorithm used for parameter estimation
• 'Gradient' — Unnormalized gradient algorithm used for parameter estimation

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
unnormalized gradient methods. However, they have better convergence properties. For information
about these algorithms, see “Recursive Algorithms for Online Parameter Estimation”.

EstimationMethod is a nontunable property. You cannot change it during execution, that is after
the object is locked using the step command. If you want to deploy code using MATLAB Coder,
EstimationMethod can only be assigned once.

Default: 'ForgettingFactor'

ForgettingFactor

Forgetting factor, λ, relevant for parameter estimation, specified as a scalar in the range (0,1].

Suppose that the system remains approximately constant over T0 samples. You can choose λ such
that:

T0 = 1
1− λ

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.
• Setting λ < 1 implies that past measurements are less significant for parameter estimation and

can be “forgotten”. Set λ < 1 to estimate time-varying coefficients.

Typical choices of λ are in the range [0.98 0.995].

Use only when EstimationMethod is 'ForgettingFactor'.

ForgettingFactor is a tunable property. You can change it when the object is in a locked state.

 recursiveBJ

1-1543

Default: 1

EnableAdapation

Enable or disable parameter estimation, specified as one of the following:

• true or 1— The step command estimates the parameter values for that time step and updates
the parameter values.

• false or 0 — The step command does not update the parameters for that time step and instead
outputs the last estimated value. You can use this option when your system enters a mode where
the parameter values do not vary with time.

Note If you set EnableAdapation to false, you must still execute the step command. Do not
skip step to keep parameter values constant, because parameter estimation depends on current
and past I/O measurements. step ensures past I/O data is stored, even when it does not update
the parameters.

EnableAdapation is a tunable property. You can change it when the object is in a locked state.

Default: true

DataType

Floating point precision of parameters, specified as one of the following values:

• 'double' — Double-precision floating point
• 'single' — Single-precision floating point

Setting DataType to 'single' saves memory, but leads to loss of precision. Specify DataType
based on the precision required by the target processor where you will deploy generated code.

DataType is a nontunable property. It can only be set during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'double'

ProcessNoiseCovariance

Covariance matrix of parameter variations, specified as one of the following:

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive semidefinite matrix.

N is the number of parameters to be estimated.

ProcessNoiseCovariance is applicable when EstimationMethod is 'KalmanFilter'.

Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. ProcessNoiseCovariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to estimating

1 Functions

1-1544

constant coefficients. Values larger than 0 correspond to time-varying parameters. Use large values
for rapidly changing parameters. However, the larger values result in noisier parameter estimates.

ProcessNoiseCovariance is a tunable property. You can change it when the object is in a locked
state.

Default: 0.1

AdaptationGain

Adaptation gain, γ, used in gradient recursive estimation algorithms, specified as a positive scalar.

AdaptationGain is applicable when EstimationMethod is 'Gradient' or
'NormalizedGradient'.

Specify a large value for AdaptationGain when your measurements have a high signal-to-noise
ratio.

AdaptationGain is a tunable property. You can change it when the object is in a locked state.

Default: 1

NormalizationBias

Bias in adaptation gain scaling used in the 'NormalizedGradient' method, specified as a
nonnegative scalar.

NormalizationBias is applicable when EstimationMethod is 'NormalizedGradient'.

The normalized gradient algorithm divides the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, this can cause jumps in the estimated
parameters. NormalizationBias is the term introduced in the denominator to prevent these jumps.
Increase NormalizationBias if you observe jumps in estimated parameters.

NormalizationBias is a tunable property. You can change it when the object is in a locked state.

Default: eps

Output Arguments
obj — System object for online parameter estimation of Box-Jenkins polynomial model
recursiveBJ System object

System object for online parameter estimation of Box-Jenkins polynomial model, returned as a
recursiveBJ System object. This object is created using the specified model orders and properties.
Use step command to estimate the coefficients of the Box-Jenkins model polynomials. You can then
access the estimated coefficients and parameter covariance using dot notation. For example, type
obj.F to view the estimated F polynomial coefficients.

More About
Box-Jenkins Polynomial Model Structure

The general Box-Jenkins model structure is:

 recursiveBJ

1-1545

y(t) = ∑
i = 1

nu Bi(q)
Fi(q)ui t − nki + C(q)

D(q)e(t)

where nu is the number of input channels.

The orders of Box-Jenkins model are defined as follows:

nb: B(q) = b1 + b2q−1 + ... + bnbq−nb + 1

nc: C(q) = 1 + c1q−1 + ... + cncq−nc

nd: D(q) = 1 + d1q−1 + ... + dndq−nd

nf : F(q) = 1 + f1q−1 + ... + fnfq−nf

Tips
• Starting in R2016b, instead of using the step command to update model parameter estimates,

you can call the System object with input arguments, as if it were a function. For example,
[B,C,D,F,EstimatedOutput] = step(obj,y,u) and [B,C,D,F,EstimatedOutput] =
obj(y,u) perform equivalent operations.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For Simulink-based workflows, use Recursive Polynomial Model Estimator.
• For limitations, see “Generate Code for Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No

See Also
step | release | reset | clone | isLocked | Recursive Polynomial Model Estimator | bj |
recursiveAR | recursiveARX | recursiveARMA | recursiveARMAX | recursiveOE |
recursiveLS

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

1 Functions

1-1546

recursiveLS
Create System object for online parameter estimation using recursive least squares algorithm

Syntax
obj = recursiveLS
obj = recursiveLS(Np)
obj = recursiveLS(Np,theta0)
obj = recursiveLS(___ ,Name,Value)

Description
Use the recursiveLS command for parameter estimation with real-time data. If all data necessary
for estimation is available at once and you are estimating a time-invariant model, use mldivide, \.

obj = recursiveLS creates a System object for online parameter estimation of a default single
output system that is linear in estimated parameters. Such a system can be represented as:

y(t) = H(t)θ(t)+e(t).

Here, y is the output, θ are the parameters, H are the regressors, and e is the white-noise
disturbance. The default system has one parameter with initial parameter value 1.

After creating the object, use the step command to update model parameter estimates using
recursive least squares algorithms and real-time data. Alternatively, you can call the object directly.
For more information, see “Tips” on page 1-1561.

obj = recursiveLS(Np) also specifies the number of parameters to be estimated.

obj = recursiveLS(Np,theta0) also specifies the number of parameters and initial values of the
parameters.

obj = recursiveLS(___ ,Name,Value) specifies additional attributes of the system and
recursive estimation algorithm using one or more Name,Value pair arguments.

Object Description
recursiveLS creates a System object for online parameter estimation of a single output system that
is linear in its parameters.

A System object is a specialized MATLAB object designed specifically for implementing and
simulating dynamic systems with inputs that change over time. System objects use internal states to
store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain information from or
about the object. System objects use a minimum of two commands to process data — a constructor to
create the object and the step command to update object parameters using real-time data. This
separation of declaration from execution lets you create multiple, persistent, reusable objects, each
with different settings.

 recursiveLS

1-1547

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-time
data.

step puts the object into a locked state. In a
locked state, you cannot change any nontunable
properties or input specifications, such as model
order, data type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this command to
enable setting of nontunable parameters.

reset Reset the internal states of a locked System
object to the initial values, and leave the object
locked.

clone Create another System object with the same
object property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created this way
(obj2) also change the properties of the original
object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Use the recursiveLS command to create an online estimation System object. Then estimate the
system parameters (theta) and output using the step command with regressors and incoming
output data, H and y.

[theta,EstimatedOutput] = step(obj,y,H)

For recursiveLS object properties, see “Properties” on page 1-1555.

Examples

Create System Object for Online Estimation Using Recursive Least Squares Algorithm

obj = recursiveLS

obj =
 recursiveLS with properties:

 NumberOfParameters: 1
 Parameters: []
 InitialParameters: 1
 ParameterCovariance: []

1 Functions

1-1548

 InitialParameterCovariance: 10000
 EstimationMethod: 'ForgettingFactor'
 ForgettingFactor: 1
 EnableAdaptation: true
 History: 'Infinite'
 InputProcessing: 'Sample-based'
 DataType: 'double'

Estimate Parameters of System Using Recursive Least Squares Algorithm

The system has two parameters and is represented as:

y t = a1u t + a2u t − 1

Here,

• u and y are the real-time input and output data, respectively.
• u t and u t − 1 are the regressors, H, of the system.
• a1 and a2 are the parameters, theta, of the system.

Create a System object for online estimation using the recursive least squares algorithm.

obj = recursiveLS(2);

Load the estimation data, which for this example is a static data set.

load iddata3
input = z3.u;
output = z3.y;

Create a variable to store u(t-1). This variable is updated at each time step.

oldInput = 0;

Estimate the parameters and output using step and input-output data, maintaining the current
regressor pair in H. Invoke the step function implicitly by calling the obj system object with input
arguments.

for i = 1:numel(input)
 H = [input(i) oldInput];
 [theta, EstimatedOutput] = obj(output(i),H);
 estimatedOut(i)= EstimatedOutput;
 theta_est(i,:) = theta;
 oldInput = input(i);
end

Plot the measured and estimated output data.

numSample = 1:numel(input);
plot(numSample,output,'b',numSample,estimatedOut,'r--');
legend('Measured Output','Estimated Output');

 recursiveLS

1-1549

Plot the parameters.

plot(numSample,theta_est(:,1),numSample,theta_est(:,2))
title('Parameter Estimates for Recursive Least Squares Estimation')
legend("theta1","theta2")

1 Functions

1-1550

View the final estimates.

theta_final = theta

theta_final = 2×1

 -1.5322
 -0.0235

Use Frame-Based Data for Recursive Least Squares Estimation

Use frame-based signals with the recursiveLS command. Machine interfaces often provide sensor
data in frames containing multiple samples, rather than in individual samples. The recursiveLS
object accepts these frames directly when you set InputProcessing to Frame-based.

The object uses the same estimation algorithms for sample-based and frame-based input processing.
The estimation results are identical. There are some special considerations, however, for working
with frame-based inputs.

This example is the frame-based version of the sample-based recursiveLS example in “Estimate
Parameters of System Using Recursive Least Squares Algorithm” on page 1-1549.

The system has two parameters and is represented as:

 recursiveLS

1-1551

y t = a1u t + a2u t − 1

Here,

• u and y are the real-time input and output data, respectively.
• u t and u t − 1 are the regressors, H, of the system.
• a1 and a2 are the parameters,θ, of the system.

Create a System object for online estimation using the recursive least squares algorithm.

obj_f = recursiveLS(2,'InputProcessing','Frame-Based');

Load the data, which contains input and output time series signals. Each signal consists of 30 frames
and each frame contains ten individual time samples.

load iddata3_frames input_sig_frame output_sig_frame
input = input_sig_frame.data;
output = output_sig_frame.data;
numframes = size(input,3)

numframes = 30

mframe = size(input,1)

mframe = 10

Initialize the regressor frame, which for a given frame, is of the form

Hf =

u1 u0
u2 u1

⋮ ⋮
u10 u9

,

where the most recent point in the frame is u10.

Hframe = zeros(10,2);

For this first-order example, the regressor frame includes one point from the previous frame.
Initialize this point.

oldInput = 0;

Estimate the parameters and output using step and input-output data, maintaining the current
regressor frame in Hframe.

• The input and output arrays have three dimensions. The third dimension is the frame index, and
the first two dimensions represent the contents of individual frames.

• Use the circshift function to populate the second column of Hframe with the past input value
for each regressor pair by shifting the input vector by one position.

• Populate the Hframe element holding the oldest value, Hframe(1,2), with the regressor value
stored from the previous frame.

• Invoke the step function implicitly by calling the obj system object with input arguments. The
step function is compatible with frames, so no loop function within the frame is necessary.

1 Functions

1-1552

• Save the most recent input value to use for the next frame calculation.

EstimatedOutput = zeros(10,1,30);
theta = zeros(2,30);
for i = 1:numframes
 Hframe = [input(:,:,i) circshift(input(:,:,i),1)];
 Hframe(1,2) = oldInput;
 [theta(:,i), EstimatedOutput(:,:,i)] = obj_f(output(:,:,i),Hframe);
 oldInput = input(10,:,i);
end

Plot the parameters.

theta1 = theta(1,:);
theta2 = theta(2,:);
iframe = 1:numframes;
plot(iframe,theta1,iframe,theta2)
title('Frame-Based Recursive Least Squares Estimation')
legend('theta1','theta2','location','best')

View the final estimates.

theta_final = theta(:,numframes)

theta_final = 2×1

 -1.5322
 -0.0235

 recursiveLS

1-1553

The final estimates are identical to the sample-based estimation.

Specify Initial Parameters for Online Estimation Using Recursive Least Squares Algorithm

Create System object for online parameter estimation using recursive least squares algorithm of a
system with two parameters and known initial parameter values.

obj = recursiveLS(2,[0.8 1],'InitialParameterCovariance',0.1);

InitialParameterCovariance represents the uncertainty in your guess for the initial parameters.
Typically, the default InitialParameterCovariance (10000) is too large relative to the parameter
values. This results in initial guesses being given less importance during estimation. If you have
confidence in the initial parameter guesses, specify a smaller initial parameter covariance.

Input Arguments
Np — Number of parameters
positive integer

Number of parameters in the system, specified as a positive integer.

theta0 — Initial value of parameters
scalar | vector of real values

Initial value of parameters, specified as one of the following:

• Scalar — All the parameters have the same initial value.
• Vector of real values of length Np— The ith parameter has initial value theta0(i).

The default initial value for all parameters is 1.

Note If the initial parameter values are much smaller than InitialParameterCovariance, these
initial values are given less importance during estimation. Specify a smaller initial parameter
covariance if you have high confidence in the initial parameter values. This statement applies only for
infinite-history estimation. Finite-history estimation does not use InitialParameterCovariance.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify writable properties on page 1-1555 of recursiveLS System
object during object creation. For example, obj =
recursiveLS(2,'EstimationMethod','Gradient') creates a System object to estimate the
system parameters using the 'Gradient' recursive estimation algorithm.

1 Functions

1-1554

Properties
recursiveLS System object properties consist of read-only and writable properties. The writable
properties are tunable and nontunable properties. The nontunable properties cannot be changed
when the object is locked, that is, after you use the step command.

Use Name,Value arguments to specify writable properties of recursiveLS objects during object
creation. After object creation, use dot notation to modify the tunable properties.

obj = recursiveLS;
obj.ForgettingFactor = 0.99;

NumberOfParameters

Number of parameters to be estimated, returned as a positive integer.

NumberOfParameters is a read-only property. If Np is specified during object construction,
NumberOfParameters takes the value assigned to Np.

Default: 1

Parameters

Estimated parameters, returned as a column vector of real values.

Parameters is a read-only property and is initially empty after you create the object. It is populated
after you use the step command for online parameter estimation.

InitialParameters

Initial values of parameters, specified as one of the following:

• Scalar — All the parameters have the same initial value.
• Vector of real values of length Np— The ith parameter has initial value InitialParameters(i).

If the initial parameter values are much smaller than InitialParameterCovariance, these initial
values are given less importance during estimation. Specify a smaller initial parameter covariance if
you have high confidence in initial parameter values. This statement applies only for infinite-history
estimation. Finite-history estimation does not use InitialParameterCovariance.

InitialParameters is a tunable property. You can change InitialParameters when the object is
in a locked state.

Default: 1

InitialOutputs

Initial values of the outputs buffer in finite-history estimation, specified as 0 or as a W-by-1 vector,
where W is the window length.

The InitialOutputs property provides a means of controlling the initial behavior of the algorithm.

When InitialOutputs is set to 0, the object populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number

 recursiveLS

1-1555

of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Specify InitialOutputs only when History is Finite.

InitialOutputs is a tunable property. You can change InitialOutputs when the object is in a
locked state.

Default: 0

InitialRegressors

Initial values of the regressors buffer in finite-history estimation, specified as 0 or as a W-by-Np
matrix, where W is the window length and Np is the number of parameters.

The InitialRegressors property provides a means of controlling the initial behavior of the
algorithm.

When the InitialRegressors is set to 0, the object populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Specify InitialRegressors only when History is Finite.

InitialRegressors is a tunable property. You can change InitialRegressors when the object is
in a locked state.

Default: 0

ParameterCovariance

Estimated covariance P of the parameters, returned as an N-by-N symmetric positive-definite matrix.
N is the number of parameters to be estimated. The software computes P assuming that the residuals
(difference between estimated and measured outputs) are white noise, and the variance of these
residuals is 1.

ParameterCovariance is applicable only when EstimationMethod is 'ForgettingFactor' or
'KalmanFilter' or when History is Finite.

The interpretation of P depends on your settings for the History and EstimationMethod
properties.

• If History is Infinite, then your EstimationMethod selection results in one of the following:

• 'ForgettingFactor' — (R2/2)P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals.

• 'KalmanFilter' — R2P is the covariance matrix of the estimated parameters, and R1 /R2 is
the covariance matrix of the parameter changes. Here, R1 is the covariance matrix that you
specify in ProcessNoiseCovariance.

• If History is Finite (sliding-window estimation) — R2P is the covariance of the estimated
parameters. The sliding-window algorithm does not use this covariance in the parameter-

1 Functions

1-1556

estimation process. However, the algorithm does compute the covariance for output so that you
can use it for statistical evaluation.

ParameterCovariance is a read-only property and is initially empty after you create the object. It is
populated after you use the step command for online parameter estimation.

InitialParameterCovariance

Covariance of the initial parameter estimates, specified as one of the following:

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements. N is the number of parameters to be estimated.

• Vector of real positive scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix, with
[α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive-definite matrix.

InitialParameterCovariance represents the uncertainty in the initial parameter estimates. For
large values of InitialParameterCovariance, less importance is placed on the initial parameter
values and more on the measured data during beginning of estimation using step.

Use only when EstimationMethod is 'ForgettingFactor' or 'KalmanFilter'.

InitialParameterCovariance is a tunable property. You can change it when the object is in a
locked state.

Default: 10000

EstimationMethod

Recursive least squares estimation algorithm used for online estimation of model parameters,
specified as one of the following values:

• 'ForgettingFactor' — Algorithm used for parameter estimation
• 'KalmanFilter' — Algorithm used for parameter estimation
• 'NormalizedGradient' — Algorithm used for parameter estimation
• 'Gradient' — Unnormalized gradient algorithm used for parameter estimation

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
unnormalized gradient methods. However, they have better convergence properties. For information
about these algorithms, see “Recursive Algorithms for Online Parameter Estimation”.

These methods all use an infinite data history, and are available only when History is 'Infinite'.

EstimationMethod is a nontunable property. You cannot change it during execution, that is, after
the object is locked using the step command.

Default: Forgetting Factor

ForgettingFactor

Forgetting factor, λ, relevant for parameter estimation, specified as a scalar in the range (0,1].

Suppose that the system remains approximately constant over T0 samples. You can choose λ such
that:

 recursiveLS

1-1557

T0 = 1
1− λ

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.
• Setting λ < 1 implies that past measurements are less significant for parameter estimation and

can be “forgotten”. Set λ < 1 to estimate time-varying coefficients.

Typical choices of λ are in the range [0.98 0.995].

Use only when EstimationMethod is 'ForgettingFactor'.

ForgettingFactor is a tunable property. You can change it when the object is in a locked state.

Default: 1

EnableAdapation

Enable or disable parameter estimation, specified as one of the following:

• true or 1— The step command estimates the parameter values for that time step and updates
the parameter values.

• false or 0 — The step command does not update the parameters for that time step and instead
outputs the last estimated value. You can use this option when your system enters a mode where
the parameter values do not vary with time.

Note If you set EnableAdapation to false, you must still execute the step command. Do not
skip step to keep parameter values constant, because parameter estimation depends on current
and past I/O measurements. step ensures past I/O data is stored, even when it does not update
the parameters.

EnableAdapation is a tunable property. You can change it when the object is in a locked state.

Default: true

DataType

Floating point precision of parameters, specified as one of the following values:

• 'double' — Double-precision floating point
• 'single' — Single-precision floating point

Setting DataType to 'single' saves memory, but leads to loss of precision. Specify DataType
based on the precision required by the target processor where you will deploy generated code.

DataType is a nontunable property. It can only be set during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'double'

ProcessNoiseCovariance

Covariance matrix of parameter variations, specified as one of the following:

1 Functions

1-1558

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive semidefinite matrix.

N is the number of parameters to be estimated.

ProcessNoiseCovariance is applicable when EstimationMethod is 'KalmanFilter'.

Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. ProcessNoiseCovariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to estimating
constant coefficients. Values larger than 0 correspond to time-varying parameters. Use large values
for rapidly changing parameters. However, the larger values result in noisier parameter estimates.

ProcessNoiseCovariance is a tunable property. You can change it when the object is in a locked
state.

Default: 0.1

AdaptationGain

Adaptation gain, γ, used in gradient recursive estimation algorithms, specified as a positive scalar.

AdaptationGain is applicable when EstimationMethod is 'Gradient' or
'NormalizedGradient'.

Specify a large value for AdaptationGain when your measurements have a high signal-to-noise
ratio.

AdaptationGain is a tunable property. You can change it when the object is in a locked state.

Default: 1

NormalizationBias

Bias in adaptation gain scaling used in the 'NormalizedGradient' method, specified as a
nonnegative scalar.

NormalizationBias is applicable when EstimationMethod is 'NormalizedGradient'.

The normalized gradient algorithm divides the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, this can cause jumps in the estimated
parameters. NormalizationBias is the term introduced in the denominator to prevent these jumps.
Increase NormalizationBias if you observe jumps in estimated parameters.

NormalizationBias is a tunable property. You can change it when the object is in a locked state.

Default: eps

History

Data history type defining which type of recursive algorithm you use, specified as:

 recursiveLS

1-1559

• 'Infinite' — Use an algorithm that aims to minimize the error between the observed and
predicted outputs for all time steps from the beginning of the simulation.

• 'Finite' — Use an algorithm that aims to minimize the error between the observed and
predicted outputs for a finite number of past time steps.

Algorithms with infinite history aim to produce parameter estimates that explain all data since the
start of the simulation. These algorithms still use a fixed amount of memory that does not grow over
time. The object provides multiple algorithms of the 'Infinite' History type. Specifying this
option activates the EstimationMethod property with which you specify an algorithm.

Algorithms with finite history aim to produce parameter estimates that explain only a finite number of
past data samples. This method is also called sliding-window estimation. The object provides one
algorithm of the 'Finite' type. Specifying this option activates the WindowLength property that
sizes the window.

For more information on recursive estimation methods, see “Recursive Algorithms for Online
Parameter Estimation”.

History is a nontunable property. It can be set only during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'Infinite'

WindowLength

Window size determining the number of time samples to use for the sliding-window estimation
method, specified as a positive integer. Specify WindowLength only when History is Finite.

Choose a window size that balances estimation performance with computational and memory burden.
Sizing factors include the number and time variance of the parameters in your model. Always specify
Window Length in samples, even if you are using frame-based input processing.

WindowLength must be greater than or equal to the number of estimated parameters.

Suitable window length is independent of whether you are using sample-based or frame-based input
processing (see InputProcessing). However, when using frame-based processing, your window
length must be greater than or equal to the number of samples (time steps) contained in the frame.

WindowLength is a nontunable property. It can be set only during object construction using
Name,Value arguments and cannot be changed afterward.

Default: 200

InputProcessing

Option for sample-based or frame-based input processing, specified as a character vector or string.

• Sample-based processing operates on signals streamed one sample at a time.
• Frame-based processing operates on signals containing samples from multiple time steps. Many

machine sensor interfaces package multiple samples and transmit these samples together in
frames. Frame-based processing allows you to input this data directly without having to first
unpack it.

Your InputProcessing specification impacts the dimensions for the input and output signals when
using the step command:

1 Functions

1-1560

[theta,EstimatedOutput] = step(obj,y,H)

• Sample-based

• y and EstimatedOutput are scalars.
• H is a 1-by-Np vector, where Np is the number of parameters.

• • Frame-based with M samples per frame

• y and EstimatedOutput are M-by-1 vectors.
• H is an M-by-Np matrix.

InputProcessing is a nontunable property. It can be set only during object construction using
Name,Value arguments and cannot be changed afterward.

Default: 'Sample-based'

Output Arguments
obj — System object for online parameter estimation
recursiveLS System object

System object for online parameter estimation, returned as a recursiveLS System object. Use step
command to estimate the parameters of the system. You can then access the estimated parameters
and parameter covariance using dot notation. For example, type obj.Parameters to view the
estimated parameters.

Tips
• Starting in R2016b, instead of using the step command to update model parameter estimates,

you can call the System object with input arguments, as if it were a function. For example,
[theta,EstimatedOutput] = step(obj,y,H) and [theta,EstimatedOutput] =
obj(y,H) perform equivalent operations.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For Simulink based workflows, use Recursive Least Squares Estimator.
• For limitations, see “Generate Code for Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No

 recursiveLS

1-1561

See Also
step | release | reset | clone | isLocked | Recursive Least Squares Estimator | mldivide |
recursiveAR | recursiveARX | recursiveARMA | recursiveBJ | recursiveOE |
recursiveARMAX

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“Line Fitting with Online Recursive Least Squares Estimation”
“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

1 Functions

1-1562

recursiveOE
Create System object for online parameter estimation of Output-Error polynomial model

Syntax
obj = recursiveOE
obj = recursiveOE(Orders)
obj = recursiveOE(Orders,B0,F0)
obj = recursiveOE(___ ,Name,Value)

Description
Use recursiveOE command for parameter estimation with real-time data. If all data necessary for
estimation is available at once, and you are estimating a time-invariant model, use the offline
estimation command, oe.

obj = recursiveOE creates a System object for online parameter estimation of a default single-
input-single output (SISO) Output-Error model structure on page 1-1574. The default model structure
has polynomials of order 1 and initial polynomial coefficient values eps.

After creating the object, use the step command to update model parameter estimates using
recursive estimation algorithms and real-time data.

obj = recursiveOE(Orders) specifies the polynomial orders of the Output-Error model to be
estimated.

obj = recursiveOE(Orders,B0,F0) specifies the polynomial orders and initial values of the
polynomial coefficients. Specify initial values to potentially avoid local minima during estimation. If
the initial values are small compared to the default InitialParameterCovariance property value,
and you have confidence in your initial values, also specify a smaller
InitialParameterCovariance.

obj = recursiveOE(___ ,Name,Value) specifies additional attributes of the Output-Error model
structure and recursive estimation algorithm using one or more Name,Value pair arguments.

Object Description
recursiveOE creates a System object for online parameter estimation of SISO Output-Error
polynomial models using a recursive estimation algorithm.

A System object is a specialized MATLAB object designed specifically for implementing and
simulating dynamic systems with inputs that change over time. System objects use internal states to
store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain information from or
about the object. System objects use a minimum of two commands to process data — a constructor to
create the object and the step command to update object parameters using real-time data. This
separation of declaration from execution lets you create multiple, persistent, reusable objects, each
with different settings.

 recursiveOE

1-1563

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-time
data.

step puts the object into a locked state. In a
locked state, you cannot change any nontunable
properties or input specifications, such as model
order, data type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this command to
enable setting of nontunable parameters.

reset Reset the internal states of a locked System
object to the initial values, and leave the object
locked.

clone Create another System object with the same
object property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created this way
(obj2) also change the properties of the original
object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Use the recursiveOE command to create an online estimation System object. Then estimate the
Output-Error polynomial model parameters (B and F) and output using the step command with
incoming input and output data, u and y.

[B,F,EstimatedOutput] = step(obj,y,u)

For recursiveOE object properties, see “Properties” on page 1-1567.

Examples

Estimate Output-Error Polynomial Model Online

Create a System object for online parameter estimation of a Output-Error polynomial model using
recursive estimation algorithms.

obj = recursiveOE;

The Output-Error model has a default structure with polynomials of order 1 and initial polynomial
coefficient values, eps.

Load the estimation data. In this example, use a static data set for illustration.

1 Functions

1-1564

load iddata1 z1;
output = z1.y;
input = z1.u;

Estimate Output-Error model parameters online using step.

for i = 1:numel(input)
[B,F,EstimatedOutput] = step(obj,output(i),input(i));
end

View the current estimated values of polynomial F coefficients.

obj.F

ans = 1×2

 1.0000 -0.7618

View the current covariance estimate of the parameters.

obj.ParameterCovariance

ans = 2×2

 0.0024 0.0002
 0.0002 0.0001

View the current estimated output.

EstimatedOutput

EstimatedOutput = -4.1866

Create System Object for Output-Error Model With Known Orders and Delays

Specify Output-Error polynomial model orders and delays.

nb = 1;
nf = 2;
nk = 1;

Create a System object for online estimation of Output-Error polynomial model with the specified
orders and delays.

obj = recursiveOE([nb nf nk]);

Create System Object for Output-Error Model With Known Initial Parameters

Specify Output-Error polynomial model orders and delays.

 recursiveOE

1-1565

nb = 1;
nf = 2;
nk = 1;

Create a System object for online estimation of Output-Error model with known initial polynomial
coefficients.

B0 = [0 1];
F0 = [1 0.7 0.8];
obj = recursiveOE([nb nf nk],B0,F0);

Specify the initial parameter covariance.

obj.InitialParameterCovariance = 0.1;

InitialParameterCovariance represents the uncertainty in your guess for the initial parameters.
Typically, the default InitialParameterCovariance (10000) is too large relative to the parameter
values. This results in initial guesses being given less importance during estimation. If you have
confidence in the initial parameter guesses, specify a smaller initial parameter covariance.

Specify Estimation Method for Online Estimation of Output-Error Model

Create a System object that uses the unnormalized gradient algorithm for online parameter
estimation of an Output-Error model.

obj = recursiveOE([1 2 1],'EstimationMethod','Gradient');

Input Arguments
Orders — Model orders and delays
1-by-3 vector of integers

Model orders and delays of a Output-Error polynomial model on page 1-1574, specified as a 1-by-3
vector of integers, [nb nf nk].

• nb — Order of the polynomial B(q) + 1, specified as a positive integer.
• nf — Order of the polynomial F(q), specified as a nonnegative integer.
• nk — Input-output delay, specified as a positive integer. nk is number of input samples that occur

before the input affects the output. nk is expressed as fixed leading zeros of the B polynomial.

B0,F0 — Initial value of polynomial coefficients
row vectors of real values | []

Initial value of polynomial coefficients, specified as row vectors of real values with elements in order
of ascending powers of q-1.

• B0 — Initial guess for the coefficients of the polynomial B(q), specified as a 1-by-(nb+nk) vector
with nk leading zeros.

• F0 — Initial guess for the coefficients of the polynomial F(q), specified as a 1-by-(nf+1) vector
with 1 as the first element.

1 Functions

1-1566

The coefficients in F0 must define a stable discrete-time polynomial with roots within a unit disk.
For example,

F0 = [1 0.5 0.5];
all(abs(roots(F0))<1)

ans =

 1

Specifying as [], uses the default value of eps for the polynomial coefficients.

Note If the initial parameter values are much smaller than InitialParameterCovariance, these
initial values are given less importance during estimation. Specify a smaller initial parameter
covariance if you have high confidence in the initial parameter values. This statement applies only for
infinite-history estimation. Finite-history estimation does not use InitialParameterCovariance.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify writable properties on page 1-1567 of recursiveOE System
object during object creation. For example, obj = recursiveOE([1 2
1],'EstimationMethod','Gradient') creates a System object to estimate a Output-Error
polynomial model using the 'Gradient' recursive estimation algorithm.

Properties
recursiveOE System object properties consist of read-only and writable properties. The writable
properties are tunable and nontunable properties. The nontunable properties cannot be changed
when the object is locked, that is, after you use the step command.

Use Name,Value arguments to specify writable properties of recursiveOE objects during object
creation. After object creation, use dot notation to modify the tunable properties.

obj = recursiveOE;
obj.ForgettingFactor = 0.99;

B

Estimated coefficients of polynomial B(q), returned as a vector of real values specified in order of
ascending powers of q-1.

B is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

F

Estimated coefficients of polynomial F(q), returned as a vector of real values specified in order of
ascending powers of q-1.

 recursiveOE

1-1567

F is a read-only property and is initially empty after you create the object. It is populated after you
use the step command for online parameter estimation.

InitialB

Initial values for the coefficients of polynomial B(q) of order nb-1, specified as a row vector of length
nb+nk, with nk leading zeros. nk is the input-output delay. Specify the coefficients in order of
ascending powers of q-1.

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialB is a tunable property. You can change it when the object is in a locked state.

Default: [0 eps]

InitialF

Initial values for the coefficients of polynomial F(q) of order nf, specified as a row vector of length nf
+1, with 1 as the first element. Specify the coefficients in order of ascending powers of q-1.

The coefficients in InitialF must define a stable discrete-time polynomial with roots within a unit
circle. For example,

InitialF = [1 0.9 0.8];
all(abs(roots(InitialF))<1)

ans =

 1

If the initial guesses are much smaller than the default InitialParameterCovariance, 10000, the
initial guesses are given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

InitialF is a tunable property. You can change it when the object is in a locked state.

Default: [1 eps]

InitialOutputs

Initial values of the measured outputs buffer in finite-history estimation, specified as 0 or as a (W+nf)-
by-1 vector, where W is the window length and nf is the order of the polynomial F(q) that you specify
when constructing the object.

The InitialOutputs property provides a means of controlling the initial behavior of the algorithm.

When InitialOutputs is set to 0, the object populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Specify InitialOutputs only when History is Finite.

1 Functions

1-1568

InitialOutputs is a tunable property. You can change InitialOutputs when the object is in a
locked state.

Default: 0

InitialInputs

Initial values of the inputs in the finite history window, specified as 0 or as a (W+nb+nk-1)-by-1
vector, where W is the window length. nb is the vector of B(q) polynomial orders and nk is vector of
input delays that you specify when constructing the recursiveOE object.

The InitialInputs property provides a means of controlling the initial behavior of the algorithm.

When the InitialInputs is set to 0, the object populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Specify InitialInputs only when History is Finite.

InitialInputs is a tunable property. You can change InitialInputs when the object is in a
locked state.

Default: 0

ParameterCovariance

Estimated covariance P of the parameters, returned as an N-by-N symmetric positive-definite matrix.
N is the number of parameters to be estimated. The software computes P assuming that the residuals
(difference between estimated and measured outputs) are white noise, and the variance of these
residuals is 1.

ParameterCovariance is applicable only when EstimationMethod is 'ForgettingFactor' or
'KalmanFilter' or when History is Finite.

The interpretation of P depends on your settings for the History and EstimationMethod
properties.

• If History is Infinite, then your EstimationMethod selection results in one of the following:

• 'ForgettingFactor' — (R2/2)P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals.

• 'KalmanFilter' — R2P is the covariance matrix of the estimated parameters, and R1 /R2 is
the covariance matrix of the parameter changes. Here, R1 is the covariance matrix that you
specify in ProcessNoiseCovariance.

• If History is Finite (sliding-window estimation) — R2P is the covariance of the estimated
parameters. The sliding-window algorithm does not use this covariance in the parameter-
estimation process. However, the algorithm does compute the covariance for output so that you
can use it for statistical evaluation.

ParameterCovariance is a read-only property and is initially empty after you create the object. It is
populated after you use the step command for online parameter estimation.

 recursiveOE

1-1569

InitialParameterCovariance

Covariance of the initial parameter estimates, specified as one of the following:

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements. N is the number of parameters to be estimated.

• Vector of real positive scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix, with
[α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive-definite matrix.

InitialParameterCovariance represents the uncertainty in the initial parameter estimates. For
large values of InitialParameterCovariance, less importance is placed on the initial parameter
values and more on the measured data during beginning of estimation using step.

Use only when EstimationMethod is 'ForgettingFactor' or 'KalmanFilter'.

InitialParameterCovariance is a tunable property. You can change it when the object is in a
locked state.

Default: 10000

EstimationMethod

Recursive estimation algorithm used for online estimation of model parameters, specified as one of
the following values:

• 'ForgettingFactor' — Algorithm used for parameter estimation
• 'KalmanFilter' — Algorithm used for parameter estimation
• 'NormalizedGradient' — Algorithm used for parameter estimation
• 'Gradient' — Unnormalized gradient algorithm used for parameter estimation

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
unnormalized gradient methods. However, they have better convergence properties. For information
about these algorithms, see “Recursive Algorithms for Online Parameter Estimation”.

These methods all use an infinite data history, and are available only when History is 'Infinite'.

EstimationMethod is a nontunable property. You cannot change it during execution, that is, after
the object is locked using the step command.

Default: Forgetting Factor

ForgettingFactor

Forgetting factor, λ, relevant for parameter estimation, specified as a scalar in the range (0,1].

Suppose that the system remains approximately constant over T0 samples. You can choose λ such
that:

T0 = 1
1− λ

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.

1 Functions

1-1570

• Setting λ < 1 implies that past measurements are less significant for parameter estimation and
can be “forgotten”. Set λ < 1 to estimate time-varying coefficients.

Typical choices of λ are in the range [0.98 0.995].

Use only when EstimationMethod is 'ForgettingFactor'.

ForgettingFactor is a tunable property. You can change it when the object is in a locked state.

Default: 1

EnableAdapation

Enable or disable parameter estimation, specified as one of the following:

• true or 1— The step command estimates the parameter values for that time step and updates
the parameter values.

• false or 0 — The step command does not update the parameters for that time step and instead
outputs the last estimated value. You can use this option when your system enters a mode where
the parameter values do not vary with time.

Note If you set EnableAdapation to false, you must still execute the step command. Do not
skip step to keep parameter values constant, because parameter estimation depends on current
and past I/O measurements. step ensures past I/O data is stored, even when it does not update
the parameters.

EnableAdapation is a tunable property. You can change it when the object is in a locked state.

Default: true

DataType

Floating point precision of parameters, specified as one of the following values:

• 'double' — Double-precision floating point
• 'single' — Single-precision floating point

Setting DataType to 'single' saves memory, but leads to loss of precision. Specify DataType
based on the precision required by the target processor where you will deploy generated code.

DataType is a nontunable property. It can only be set during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'double'

ProcessNoiseCovariance

Covariance matrix of parameter variations, specified as one of the following:

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

 recursiveOE

1-1571

• N-by-N symmetric positive semidefinite matrix.

N is the number of parameters to be estimated.

ProcessNoiseCovariance is applicable when EstimationMethod is 'KalmanFilter'.

Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. ProcessNoiseCovariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to estimating
constant coefficients. Values larger than 0 correspond to time-varying parameters. Use large values
for rapidly changing parameters. However, the larger values result in noisier parameter estimates.

ProcessNoiseCovariance is a tunable property. You can change it when the object is in a locked
state.

Default: 0.1

AdaptationGain

Adaptation gain, γ, used in gradient recursive estimation algorithms, specified as a positive scalar.

AdaptationGain is applicable when EstimationMethod is 'Gradient' or
'NormalizedGradient'.

Specify a large value for AdaptationGain when your measurements have a high signal-to-noise
ratio.

AdaptationGain is a tunable property. You can change it when the object is in a locked state.

Default: 1

NormalizationBias

Bias in adaptation gain scaling used in the 'NormalizedGradient' method, specified as a
nonnegative scalar.

NormalizationBias is applicable when EstimationMethod is 'NormalizedGradient'.

The normalized gradient algorithm divides the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, this can cause jumps in the estimated
parameters. NormalizationBias is the term introduced in the denominator to prevent these jumps.
Increase NormalizationBias if you observe jumps in estimated parameters.

NormalizationBias is a tunable property. You can change it when the object is in a locked state.

Default: eps

History

Data history type defining which type of recursive algorithm you use, specified as:

• 'Infinite' — Use an algorithm that aims to minimize the error between the observed and
predicted outputs for all time steps from the beginning of the simulation.

• 'Finite' — Use an algorithm that aims to minimize the error between the observed and
predicted outputs for a finite number of past time steps.

1 Functions

1-1572

Algorithms with infinite history aim to produce parameter estimates that explain all data since the
start of the simulation. These algorithms still use a fixed amount of memory that does not grow over
time. The object provides multiple algorithms of the 'Infinite' History type. Specifying this
option activates the EstimationMethod property with which you specify an algorithm.

Algorithms with finite history aim to produce parameter estimates that explain only a finite number of
past data samples. This method is also called sliding-window estimation. The object provides one
algorithm of the 'Finite' type. Specifying this option activates the WindowLength property that
sizes the window.

For more information on recursive estimation methods, see “Recursive Algorithms for Online
Parameter Estimation”.

History is a nontunable property. It can be set only during object construction using Name,Value
arguments and cannot be changed afterward.

Default: 'Infinite'

WindowLength

Window size determining the number of time samples to use for the sliding-window estimation
method, specified as a positive integer. Specify WindowLength only when History is Finite.

Choose a window size that balances estimation performance with computational and memory burden.
Sizing factors include the number and time variance of the parameters in your model. Always specify
Window Length in samples, even if you are using frame-based input processing.

WindowLength must be greater than or equal to the number of estimated parameters.

Suitable window length is independent of whether you are using sample-based or frame-based input
processing (see InputProcessing). However, when using frame-based processing, your window
length must be greater than or equal to the number of samples (time steps) contained in the frame.

WindowLength is a nontunable property. It can be set only during object construction using
Name,Value arguments and cannot be changed afterward.

Default: 200

InputProcessing

Option for sample-based or frame-based input processing, specified as a character vector or string.

• Sample-based processing operates on signals streamed one sample at a time.
• Frame-based processing operates on signals containing samples from multiple time steps. Many

machine sensor interfaces package multiple samples and transmit these samples together in
frames. Frame-based processing allows you to input this data directly without having to first
unpack it.

Your InputProcessing specification impacts the dimensions for the input and output signals when
using the step command:

[theta,EstimatedOutput] = step(obj,y,u)

• Sample-based

 recursiveOE

1-1573

• y,u, and EstimatedOutput are scalars.
• • Frame-based with M samples per frame

• y,u, and EstimatedOutput are M-by-1 vectors.

InputProcessing is a nontunable property. It can be set only during object construction using
Name,Value arguments and cannot be changed afterward.

Default: 'Sample-based'

Output Arguments
obj — System object for online parameter estimation of Output-Error polynomial model
recursiveOE System object

System object for online parameter estimation of SISO Output-Error polynomial model, returned as a
recursiveOE System object. This object is created using the specified model orders and properties.
Use step command to estimate the coefficients of the Output-Error model polynomials. You can then
access the estimated coefficients and parameter covariance using dot notation. For example, type
obj.B to view the estimated B polynomial coefficients.

More About
Output-Error Model Structure

The general output-error model structure is:

y(t) = B(q)
F(q)u(t − nk) + e(t)

The orders of the output-error model are:

nb: B(q) = b1 + b2q−1 + ... + bnbq−nb + 1

nf : F(q) = 1 + f1q−1 + ... + fnfq−nf

Tips
• Starting in R2016b, instead of using the step command to update model parameter estimates,

you can call the System object with input arguments, as if it were a function. For example,
[B,F,EstimatedOutput] = step(obj,y,u) and [B,F,EstimatedOutput] = obj(y,u)
perform equivalent operations.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-1574

Usage notes and limitations:

• For Simulink-based workflows, use Recursive Polynomial Model Estimator.
• For limitations, see “Generate Code for Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No

See Also
step | release | reset | clone | isLocked | Recursive Polynomial Model Estimator | oe |
recursiveAR | recursiveARX | recursiveARMA | recursiveARMAX | recursiveBJ |
recursiveLS

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

 recursiveOE

1-1575

release
Unlock online parameter estimation System object

Syntax
release(obj)

Description
release(obj) unlocks the online parameter estimation System object, obj. Use release to change
nontunable properties of the object.

Note You can use release on a System object in code generated using MATLAB Coder, but once
you release its resources, you cannot use that System object again.

Examples

Unlock Online Estimation System Object

Create a System object™ for online estimation of an ARMAX model with default properties.

obj = recursiveARMAX;

Estimate model parameters online using step and input-output data.

[A,B,C,EstimatedOutput] = step(obj,1,1);

step puts the object in a locked state.

L = isLocked(obj)

L = logical
 1

Unlock the object.

release(obj)

Check the locked status of the object.

L = isLocked(obj)

L = logical
 0

1 Functions

1-1576

Input Arguments
obj — System object for online parameter estimation
recursiveAR object | recursiveARMA object | recursiveARX object | recursiveARMAX object |
recursiveOE object | recursiveBJ object | recursiveLS object

System object for online parameter estimation, created using one of the following commands:

• recursiveAR
• recursiveARMA
• recursiveARX
• recursiveARMAX
• recursiveOE
• recursiveBJ
• recursiveLS

Version History
Introduced in R2015b

See Also
step | reset | clone | isLocked | recursiveAR | recursiveARX | recursiveARMA |
recursiveARMAX | recursiveBJ | recursiveOE | recursiveLS

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“What Is Online Estimation?”

 release

1-1577

repsys
Replicate and tile models

Syntax
rsys = repsys(sys,[M N])
rsys = repsys(sys,N)
rsys = repsys(sys,[M N S1,...,Sk])

Description
rsys = repsys(sys,[M N]) replicates the model sys into an M-by-N tiling pattern. The resulting
model rsys has size(sys,1)*M outputs and size(sys,2)*N inputs.

rsys = repsys(sys,N) creates an N-by-N tiling.

rsys = repsys(sys,[M N S1,...,Sk]) replicates and tiles sys along both I/O and array
dimensions to produce a model array. The indices S specify the array dimensions. The size of the
array is [size(sys,1)*M, size(sys,2)*N, size(sys,3)*S1, ...].

Input Arguments
sys

Model to replicate.

M

Number of replications of sys along the output dimension.

N

Number of replications of sys along the input dimension.

S

Numbers of replications of sys along array dimensions.

Output Arguments
rsys

Model having size(sys,1)*M outputs and size(sys,2)*N inputs.

If you provide array dimensions S1,...,Sk, rsys is an array of dynamic systems which each have
size(sys,1)*M outputs and size(sys,2)*N inputs. The size of rsys is [size(sys,1)*M,
size(sys,2)*N, size(sys,3)*S1, ...].

Examples

1 Functions

1-1578

Replicate SISO Transfer Function to Create MIMO Transfer Function

Create a single-input single-output (SISO) transfer function.

sys = tf(2,[1 3])

sys =

 2

 s + 3

Continuous-time transfer function.

Replicate the SISO transfer function to create a MIMO transfer function that has three inputs and
two outputs.

rsys = repsys(sys,[2 3])

rsys =

 From input 1 to output...
 2
 1: -----
 s + 3

 2
 2: -----
 s + 3

 From input 2 to output...
 2
 1: -----
 s + 3

 2
 2: -----
 s + 3

 From input 3 to output...
 2
 1: -----
 s + 3

 2
 2: -----
 s + 3

Continuous-time transfer function.

Alternatively, you can obtain the MIMO transfer function as follows:

rsys = [sys sys sys; sys sys sys];

 repsys

1-1579

Replicate SISO Transfer Function to Create Array of Transfer Functions

Create a SISO transfer function.

sys = tf(2,[1 3]);

Replicate the transfer function into a 3-by-4 array of two-input, one-output transfer functions.

rsys = repsys(sys,[1 2 3 4]);

Check the size of rsys.

size(rsys)

3x4 array of transfer functions.
Each model has 1 outputs and 2 inputs.

Tips
rsys = repsys(sys,N) produces the same result as rsys = repsys(sys,[N N]). To produce a
diagonal tiling, use rsys = sys*eye(N).

Version History
Introduced in R2010b

See Also
append

1 Functions

1-1580

resample
Resample time-domain data that is stored in an iddata object by decimation or interpolation
(requires Signal Processing Toolbox software)

Syntax
datar = resample(data,P,Q)
datar = resample(data,P,Q,order)

Description
datar = resample(data,P,Q) resamples the data in data such that the data is interpolated by a
factor P and then decimated by a factor Q. For example, the command resample(z,1,Q) results in
decimation by a factor Q.

datar = resample(data,P,Q,order) filters the data by applying a filter of specified order
before interpolation and decimation.

Examples

Resample Time-Domain Data

Increase the sampling rate of data and compare the resampled and the original data signals.

Use idinput to generate an input signal u that contains 2 periods, each containing 20 samples, of a
sum-of-sinusoids signal with 5 sinusoids.

u = idinput([20 1 2],'sine',[],[],[5 10 1]);
plot(u)

 resample

1-1581

Repackage u into an iddata object ui. Set the start time to 0. A sum-of-sinusoids signal is band
limited, so set 'intersample' to 'bl'.

ui = iddata([],u,1,'tstart',0,'intersample','bl');

Resample the data using factors of 25 and 3 for P and Q, respectively. These values produce an
increase in sample rate of about 8.3.

ur = resample(ui,25,3);
plot(ui,ur)
legend('ui','ur')

1 Functions

1-1582

The resampled signal is smoother than the original signal.

Input Arguments
data — Original data
iddata object

Original data, specified as an iddata that contains either input/output data or time series data. data
must contain uniform time samples.

P,Q — Resampling factor terms
positive integer

Resampling factor terms, specified as integers that represent the interpolation and decimation
factors. After resampling, the new sample time is Q/P times the original sample time.

Setting (Q/P)>1 results in decimation and setting (Q/P)<1 results in interpolation.

order — Order of FIR filter
10 (default) | positive integer

Order of the FIR filter that resample applies before interpolation and decimation, specified as a
positive integer.

 resample

1-1583

Output Arguments
datar — Resampled data
iddata object

Resampled data, returned as an iddata that contains the same type of data as data. The length of
the data in datar is equal to P/Q times the length of the data in data.

Algorithms
resample calls the resample function in Signal Processing Toolbox. The algorithm takes into
account the intersample characteristics of the input signal that are described by the
data.InterSample property.

If you do not have a license for Signal Processing Toolbox, perform resampling using idresamp.

Version History
Introduced before R2006a

See Also
idresamp | idinput

1 Functions

1-1584

reset
Reset online parameter estimation System object

Syntax
reset(obj)

Description
reset(obj) resets the states of a locked online parameter estimation System object, obj, to initial
values and leaves the object locked. The states of the object are the estimated parameters and
parameter covariance. Use reset if you are not satisfied with the estimation or if your system
changes modes.

Examples

Reset Online Estimation System Object

Create a System object for online estimation of an Output-Error model.

obj = recursiveOE('InitialB',[0 0.5],'InitialF',[1 0.8],...
 'InitialParameterCovariance',0.1);

Load the estimation data. For this example, use a static data set for illustration.

load iddata1 z1;
output = z1.y;
input = z1.u;

Estimate model parameters online using step.

for i = 1:numel(input)
 [B,F,EstimatedOutput] = step(obj,output(i),input(i));
end

View the object properties.

obj

obj =
 recursiveOE with properties:

 B: [0 2.0014]
 F: [1 -0.7639]
 InitialB: [0 0.5000]
 InitialF: [1 0.8000]
 ParameterCovariance: [2x2 double]
 InitialParameterCovariance: [2x2 double]
 EstimationMethod: 'ForgettingFactor'
 ForgettingFactor: 1
 EnableAdaptation: true

 reset

1-1585

 History: 'Infinite'
 InputProcessing: 'Sample-based'
 DataType: 'double'

Reset the System object.

reset(obj)

The estimated parameters, B and F, and parameter covariance, ParameterCovariance are reset to
the initial values.

obj

obj =
 recursiveOE with properties:

 B: [0 0.5000]
 F: [1 0.8000]
 InitialB: [0 0.5000]
 InitialF: [1 0.8000]
 ParameterCovariance: [2x2 double]
 InitialParameterCovariance: [2x2 double]
 EstimationMethod: 'ForgettingFactor'
 ForgettingFactor: 1
 EnableAdaptation: true
 History: 'Infinite'
 InputProcessing: 'Sample-based'
 DataType: 'double'

Input Arguments
obj — System object for online parameter estimation
recursiveAR object | recursiveARMA object | recursiveARX object | recursiveARMAX object |
recursiveOE object | recursiveBJ object | recursiveLS object

System object for online parameter estimation, created using one of the following commands:

Online Estimation System Object Estimated Parameters
recursiveAR A — Reset to InitialA
recursiveARMA A — Reset to InitialA

C — Reset to InitialC
recursiveARX A — Reset to InitialA

B — Reset to InitialB
recursiveARMAX A — Reset to InitialA

B — Reset to InitialB

C — Reset to InitialC

1 Functions

1-1586

Online Estimation System Object Estimated Parameters
recursiveOE B — Reset to InitialB

F — Reset to InitialF
recursiveBJ B — Reset to InitialB

C — Reset to InitialC

D — Reset to InitialD

F — Reset to InitialF
recursiveLS Parameters — Reset to InitialParameters

When EstimationMethod property of obj is 'ForgettingFactor' or 'KalmanFilter', the
ParameterCovariance property of obj is reset to the value of InitialParameterCovariance.

Version History
Introduced in R2015b

See Also
step | release | clone | isLocked | recursiveAR | recursiveARX | recursiveARMA |
recursiveARMAX | recursiveBJ | recursiveOE | recursiveLS

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“What Is Online Estimation?”

 reset

1-1587

reshape
Change shape of model array

Syntax
sys = reshape(sys,s1,s2,...,sk)
sys = reshape(sys,[s1 s2 ... sk])

Description
sys = reshape(sys,s1,s2,...,sk) (or, equivalently, sys = reshape(sys,[s1 s2 ...
sk])) reshapes the LTI array sys into an s1-by-s2-by-...-by-sk model array. With either syntax, there
must be s1*s2*...*sk models in sys to begin with.

Examples

Change Shape of Model Array

Generate a 2-by-3 array of SISO models with four states each.

sys = rss(4,1,1,2,3);
size(sys)

2x3 array of state-space models.
Each model has 1 outputs, 1 inputs, and 4 states.

Change the shape of the array to create a 6-by-1 model array.

sys1 = reshape(sys,6,1);
size(sys1)

6x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 4 states.

Version History
Introduced before R2006a

See Also
ndims | size

1 Functions

1-1588

resid
Compute and test residuals

Syntax
resid(Data,sys)
resid(Data,sys,Linespec)
resid(Data,sys1,...,sysn)
resid(Data,sys1,Linespec1,...,sysn,Linespecn)

resid(___ ,Options)

resid(___ ,Type)

[E,R] = resid(Data,sys)

Description
resid(Data,sys) computes the 1-step-ahead prediction errors (residuals) for an identified model,
sys, and plots residual-input dynamics as one of the following, depending on the data inData:

• For time-domain data, resid plots the autocorrelation of the residuals and the cross-correlation of
the residuals with the input signals. The correlations are generated for lags -25 to 25. To specify a
different maximum lag value, use residOptions. The 99% confidence region marking
statistically insignificant correlations displays as a shaded region around the X-axis.

• For frequency-domain data, resid plots a bode plot of the frequency response from the input
signals to the residuals. The 99% confidence region marking statistically insignificant response is
shown as a region around the X-axis.

To change display options, right-click the plot to access the context menu. For more details about the
menu, see “Tips” on page 1-1597.

resid(Data,sys,Linespec) sets the line style, marker symbol, and color.

resid(Data,sys1,...,sysn) computes and plots the residual of multiple identified models
sys1,...,sysn.

resid(Data,sys1,Linespec1,...,sysn,Linespecn) sets the line style, marker symbol, and
color for each system.

resid(___ ,Options) specifies additional residual calculation options. Use Options with any of
the previous syntaxes.

resid(___ ,Type) specifies the plot type. Use Type with any of the previous syntaxes.

[E,R] = resid(Data,sys) returns the calculated residuals, E, and residual correlations, R. No
plot is generated.

Examples

 resid

1-1589

Plot Model Residual Correlations

Load time-domain data.

load iddata1
data = z1;

Estimate an ARX model.

sys = arx(data,[1 1 0]);

Plot the autocorrelation of the residuals and cross-correlation between the residuals and the inputs.

resid(data,sys)

The correlations are calculated until the default maximum lag, 25. The 99% confidence region
marking statistically insignificant correlations displays as a shaded region around the X-axis.

Convert data to frequency domain.

data2 = fft(data);

Compute the residuals for identified model, sys, and the frequency-domain data. Plot the residual
response using red crosses.

resid(data2,sys,'rx')

1 Functions

1-1590

For frequency-domain data, resid plots the Bode plot showing frequency response from the input to
the residuals.

Compare the Residuals for Multiple Identified Models

Load time-domain data.

load iddata1

Estimate an ARX model.

sys1 = arx(z1,[1 1 0]);

Estimate a transfer function model.

sys2 = tfest(z1,2);

Plot the correlations of the residuals.

resid(z1,sys1,'b',sys2,'r')

 resid

1-1591

The cross-correlation between residuals of sys2 and the inputs lie in the 99% confidence band for all
lags.

Specify Maximum Lag for Residual Impulse Response Calculations

Load time-domain data.

load iddata1

Estimate an ARX model.

sys = arx(z1,[1 1 0]);

Specify the maximum lag for residual correlation calculations.

opt = residOptions('MaxLag',35);

Plot the impulse response from the input to the residuals.

resid(z1,sys,opt,'ir')

1 Functions

1-1592

Calculate Residuals for a MIMO System

Load time-domain data.

load iddata7

The data is a two-input, single-output dataset.

Estimate an ARX model.

sys = tfest(z7,2);

Calculate the residuals and their autocorrelations and cross-correlations with inputs.

[E,R] = resid(z7,sys);

R is a 26-by-3-by-3 matrix of correlations. For example,

• R(:,1,1) is the autocorrelation of the residuals until lag 25.
• R(:,1,2) is the cross-correlation of the residuals with the first input,until lag 25.

E is an iddata object with the residuals as output data and the inputs of validation data (z7) as input
data. You can use E to identify error models and analyze the error dynamics.

Plot the error.

 resid

1-1593

plot(E)

Estimate impulse response between inputs and residuals. Plot them with a 3 standard deviation
confidence region.

I = impulseest(E);
showConfidence(impulseplot(I,20),3)

1 Functions

1-1594

Input Arguments
Data — Validation data
iddata object

Validation input-output data, specified as an iddata object. Data can have multiple input-output
channels. When sys is linear, Data is time-domain or frequency-domain. When sys is nonlinear,
Data is time-domain.

sys — System used for computing residuals
identified linear or nonlinear model

System used for computing residuals, specified as an identified linear or nonlinear model.
Example: idpoly

Linespec — Line style, marker symbol, and color
character vector

Line style, marker symbol, and color, specified as a character vector. For more information, see plot.
When Type is specified as 'corr', only the line style is used.
Example: 'Linespec','kx'

Options — Residual analysis options
residOptions option set

 resid

1-1595

Residual analysis options, specified as an residOptions option set.

Type — Plot type
'corr' | 'ir' | 'fr'

Plot type, specified as one of the following values:

• 'corr' — Plots the autocorrelation of the residuals, e, and the cross-correlation of the residuals
with the input signals, u. The correlations are generated for lags -25 to 25. Use residOptions to
specify a different maximum lag value. The 99% confidence region marking statistically
insignificant correlations is also shown as a shaded region around the X-axis. The computation of
the confidence region is done assuming e to be white and independent of u.

'corr' is default for time-domain data. This plot type is not available for frequency-domain data.
• 'ir' — Plots the impulse response up to lag 25 of a system from the input to the residuals. The

impulseest command first estimates the impulse response model with e as output data and u as
inputs. Then impulseest calculates the impulse response of the estimated model. The 99%
confidence region marking statistically insignificant response displays as a shaded region. A low
magnitude indicates a reliable model.

This plot type is not available for frequency-domain data.
• 'fr' — The frequency response from the input to the residuals (based on a high-order FIR model)

is shown as a Bode plot. The 99% confidence region marking statistically insignificant response
displays as a shaded region. A low magnitude in the frequency range of interest indicates a
reliable model.

'fr' is default for frequency-domain data.

Output Arguments
E — Model residuals
iddata object

Model residuals, returned as an iddata object. The residuals are stored in E.OutputData, and the
inputs are stored in E.InputData. Use E to build models that describe the dynamics from the inputs
to the residuals. The dynamics are negligible if sys is a reliable identified model.

R — Correlations of the residuals
matrix of doubles | []

Correlations of the residuals, returned as one of the following:

• Matrix of doubles — For time-domain-data

R is a matrix of size M+1-by-(ny+nu)-by-(ny+nu). Where, M is the maximum lag specified in
Options, ny is the number of outputs, and nu is the number of inputs. The default value of M is
25.

At each lag k (k = 0:M), R(k,i,j) is the expectation value, <Z(t,i).Z(t+k-1,j)>. Here, Z =
[E.OutputData,E.InputData].

For example, for a two-output, single-input model, Z = [e1,e2,u1]. Where, e1 is the residual of
the first output, e2 is the residual of the second output, and u1 is the input. R is a 26-by-3-by-3
matrix, where:

1 Functions

1-1596

• R(5,1,2) = <e1(t).e2(t+4)> is the cross-correlation at lag 4 between e1 and e2.
• R(5,1,3) = <e1(t).u1(t+4)> is the cross-correlation at lag 4 between e1 and u1.
• R(5,1,1), R(5,2,2), R(5,3,3) are the autocorrelations at lag 4 for e1, e2, and u1,

respectively.
• [] — For frequency-domain data

Tips
• Right-clicking the plot opens the context menu, where you can access the following options:

• Systems — Select systems to view the residual correlation or response plots. By default, all
systems are plotted.

• Show Confidence Region — View the 99% confidence region marking statistically
insignificant correlations. Applicable only for the correlation plots.

• Data Experiment — For multi-experiment data only. Toggle between data from different
experiments.

• Characteristics — View data characteristics. Not applicable for correlation plots.

• Peak Response — View peak response of the data.
• Confidence Region — View the 99% confidence region marking statistically insignificant

response.
• Show — Applicable only for frequency-response plots.

• Magnitude — View magnitude of frequency response.
• Phase — View phase of frequency response.

• I/O Grouping — For datasets containing more than one input or output channel. Select
grouping of input and output channels on the plot. Not applicable for correlation plots.

• None — Plot input-output channels in their own separate axes.
• All — Group all input channels together and all output channels together.

• I/O Selector — For datasets containing more than one input or output channel. Select a subset
of the input and output channels to plot. By default, all output channels are plotted.

• Grid — Add grids to the plot.
• Normalize — Normalize the y-scale of all data in the plot. Not applicable for frequency-

response data.
• Full View — Return to full view. By default, the plot is scaled to full view.
• Initial Condition — Specify handling of initial conditions.

Specify as one of the following:

• Estimate — Treat the initial conditions as estimation parameters.
• Zero — Set all initial conditions to zero.
• Absorb delays and estimate — Absorb nonzero delays into the model coefficients and

treat the initial conditions as estimation parameters. Use this option for discrete-time
models only.

• Properties — Open the Property Editor dialog box to customize plot attributes.

 resid

1-1597

Version History
Introduced before R2006a

References
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,

1999, Section 16.6.

See Also
compare | predict | sim | simsd | residOptions

Topics
“What Is Residual Analysis?”

1 Functions

1-1598

residOptions
Option set for resid

Syntax
opt = residOptions
opt = residOptions(Name,Value)

Description
opt = residOptions creates the default option set for resid. Use dot notation to customize the
option set, if needed.

opt = residOptions(Name,Value) creates an option set with options specified by one or more
Name,Value pair arguments. The options that you do not specify retain their default value.

Examples

Create and Modify Default Option Set for Residual Analysis

Create a default option set for resid.

opt = residOptions;

Specify the maximum lag for residual correlation calculations.

opt.MaxLag = 35;

Specify Options for Residual Analysis

Create an option set for resid that specifies initial condition as zero.

opt = residOptions('InitialCondition','z');

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: residOptions('InitialCondition','e')

 residOptions

1-1599

MaxLag — Maximum positive lag
25 (default) | positive integer

Maximum positive lag for residual correlation and impulse response calculations, specified as the
comma-separated pair consisting of 'MaxLag' and a positive integer.

InitialCondition — Handling of initial conditions
'e' (default) | 'z' | 'd' | column vector | matrix | initialCondition object | object array |
structure | idpar object x0Obj

Handling of initial conditions, specified as the comma-separated pair consisting of
'InitialCondition' and one of the following values:

• 'z' — Zero initial conditions.
• 'e' — Estimate initial conditions such that the prediction error for observed output is minimized.

For nonlinear grey-box models, only those initial states i that are designated as free in the model
(sys.InitialStates(i).Fixed = false) are estimated. To estimate all the states of the
model, first specify all the Nx states of the idnlgrey model sys as free.

for i = 1:Nx
sys.InitialStates(i).Fixed = false;
end

Similarly, to fix all the initial states to values specified in sys.InitialStates, first specify all
the states as fixed in the sys.InitialStates property of the nonlinear grey-box model.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model coefficients. The delays are first
converted to explicit model states, and the initial values of those states are also estimated and
returned.

Use this option for linear models only.
• Vector or Matrix — Initial guess for state values, specified as a numerical column vector of length

equal to the number of states. For multi-experiment data, specify a matrix with Ne columns, where
Ne is the number of experiments. Otherwise, use a column vector to specify the same initial
conditions for all experiments. Use this option for state-space (idss and idgrey) and nonlinear
models (idnlarx, idnlhw, and idnlgrey) only.

• initialCondition object — initialCondition object that represents a model of the free
response of the system to initial conditions. For multiexperiment data, specify a 1-by-Ne array of
objects, where Ne is the number of experiments.

Use this option for linear models only.
• Structure with the following fields, which contain the historical input and output values for a time

interval immediately before the start time of the data used by resid:

Field Description
Input Input history, specified as a matrix with Nu columns, where Nu is the number of

input channels. For time series models, use []. The number of rows must be
greater than or equal to the model order.

Output Output history, specified as a matrix with Ny columns, where Ny is the number of
output channels. The number of rows must be greater than or equal to the model
order.

1 Functions

1-1600

For multi-experiment data, configure the initial conditions separately for each experiment by
specifying InitialCondition as a structure array with Ne elements. To specify the same initial
conditions for all experiments, use a single structure.

The software uses data2state to map the historical data to states. If your model is not idss,
idgrey, idnlgrey, or idnlarx, the software first converts the model to its state-space
representation and then maps the data to states. If conversion of your model to idss is not
possible, the estimated states are returned empty.

• x0obj — Specification object created using idpar. Use this object for discrete-time state-space
(idss and idgrey) and nonlinear grey-box (idnlgrey) models only. Use x0obj to impose
constraints on the initial states by fixing their value or specifying minimum or maximum bounds.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weight of output for initial condition estimation
[] (default) | 'noise' | matrix

Weight of output for initial condition estimation, specified as the comma-separated pair consisting of
'OutputWeight' and one of the following:

• [] — No weighting is used. This option is the same as using eye(Ny) for the output weight. Ny is
the number of outputs.

• 'noise' — Inverse of the noise variance stored with the model.
• Matrix of doubles — A positive semidefinite matrix of dimension Ny-by-Ny. Ny is the number of

outputs.

Output Arguments
opt — Option set for resid
residOptions option set

 residOptions

1-1601

Option set for resid, returned as an residOptions option set.

Version History
Introduced in R2016a

See Also
resid

1 Functions

1-1602

residual
Return measurement residual and residual covariance when using extended or unscented Kalman
filter

Syntax
[Residual,ResidualCovariance] = residual(obj,y)
[Residual,ResidualCovariance] = residual(obj,y,Um1,...,Umn)

Description
The residual command returns the difference between the actual and predicted measurements for
extendedKalmanFilter and unscentedKalmanFilter objects. Viewing the residual provides a
way for you to validate the performance of the filter. Residuals, also known as innovations, quantify
the prediction error and drive the correction step in the extended and unscented Kalman filter update
sequence. When using correct and predict to update the estimated Kalman filter state, use the
residual command immediately before using the correct command.

[Residual,ResidualCovariance] = residual(obj,y) returns the residual Residual
between a measurement y and a predicted measurement produced by the Kalman filter obj. The
function also returns the covariance of the residual ResidualCovariance.

You create obj using the extendedKalmanFilter or unscentedKalmanFilter commands. You
specify the state transition function f and measurement function h of your nonlinear system in obj.
The State property of the object stores the latest estimated state value. At each time step, you use
correct and predict together to update the state x. The residual s is the difference between the
actual and predicted measurements for the time step, and is expressed as s = y - h(x). The covariance
of the residual S is the sum R + RP, where R is the measurement noise matrix set by the
MeasurementNoise property of the filter and RP is the state covariance matrix projected onto the
measurement space.

Use this syntax if the measurement function h that you specified in obj.MeasurementFcn has one of
the following forms:

• y(k) = h(x(k)) for additive measurement noise
• y(k) = h(x(k),v(k)) for nonadditive measurement noise

Here, y(k), x(k), and v(k) are the measured output, states, and measurement noise of the system
at time step k. The only inputs to h are the states and measurement noise.

[Residual,ResidualCovariance] = residual(obj,y,Um1,...,Umn) specifies additional
input arguments if the measurement function of the system requires these inputs. You can specify
multiple arguments.

Use this syntax if the measurement function h has one of the following forms:

• y(k) = h(x(k),Um1,...,Umn) for additive measurement noise
• y(k) = h(x(k),v(k),Um1,...,Umn) for nonadditive measurement noise

 residual

1-1603

Examples

Estimate States Online Using Extended Kalman Filter

Estimate the states of a van der Pol oscillator using an extended Kalman filter algorithm and
measured output data. The oscillator has two states and one output.

Create an extended Kalman filter object for the oscillator. Use previously written and saved state
transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. These
functions describe a discrete-approximation to a van der Pol oscillator with the nonlinearity
parameter mu equal to 1. The functions assume additive process and measurement noise in the
system. Specify the initial state values for the two states as [1;0]. This is the guess for the state value
at initial time k, based on knowledge of system outputs until time k-1, x[k |k− 1].

obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[1;0]);

Load the measured output data y from the oscillator. In this example, use simulated static data for
illustration. The data is stored in the vdp_data.mat file.

load vdp_data.mat y

Specify the process noise and measurement noise covariances of the oscillator.

obj.ProcessNoise = 0.01;
obj.MeasurementNoise = 0.16;

Initialize arrays to capture results of the estimation.

residBuf = [];
xcorBuf = [];
xpredBuf = [];

Implement the extended Kalman filter algorithm to estimate the states of the oscillator by using the
correct and predict commands. You first correct x[k |k− 1] using measurements at time k to get
x[k |k]. Then, you predict the state value at the next time step x[k + 1|k] using x[k |k], the state
estimate at time step k that is estimated using measurements until time k.

To simulate real-time data measurements, use the measured data one time step at a time. Compute
the residual between the predicted and actual measurement to assess how well the filter is
performing and converging. Computing the residual is an optional step. When you use residual,
place the command immediately before the correct command. If the prediction matches the
measurement, the residual is zero.

After you perform the real-time commands for the time step, buffer the results so that you can plot
them after the run is complete.

for k = 1:size(y)
 [Residual,ResidualCovariance] = residual(obj,y(k));
 [CorrectedState,CorrectedStateCovariance] = correct(obj,y(k));
 [PredictedState,PredictedStateCovariance] = predict(obj);

 residBuf(k,:) = Residual;
 xcorBuf(k,:) = CorrectedState';
 xpredBuf(k,:) = PredictedState';

end

1 Functions

1-1604

When you use the correct command, obj.State and obj.StateCovariance are updated with
the corrected state and state estimation error covariance values for time step k, CorrectedState
and CorrectedStateCovariance. When you use the predict command, obj.State and
obj.StateCovariance are updated with the predicted values for time step k+1, PredictedState
and PredictedStateCovariance. When you use the residual command, you do not modify any
obj properties.

In this example, you used correct before predict because the initial state value was x[k |k− 1], a
guess for the state value at initial time k based on system outputs until time k-1. If your initial state
value is x[k− 1|k− 1], the value at previous time k-1 based on measurements until k-1, then use the
predict command first. For more information about the order of using predict and correct, see
“Using predict and correct Commands” on page 1-240.

Plot the estimated states, using the postcorrection values.

plot(xcorBuf(:,1), xcorBuf(:,2))
title('Estimated States')

Plot the actual measurement, the corrected estimated measurement, and the residual. For the
measurement function in vdpMeasurementFcn, the measurement is the first state.

M = [y,xcorBuf(:,1),residBuf];
plot(M)
grid on
title('Actual and Estimated Measurements, Residual')
legend('Measured','Estimated','Residual')

 residual

1-1605

The estimate tracks the measurement closely. After the initial transient, the residual remains
relatively small throughout the run.

Specify State Transition and Measurement Functions with Additional Inputs

Consider a nonlinear system with input u whose state x and measurement y evolve according to the
following state transition and measurement equations:

x[k] = x[k− 1] + u[k− 1] + w[k− 1]

y[k] = x[k] + 2 * u[k] + v[k]2

The process noise w of the system is additive while the measurement noise v is nonadditive.

Create the state transition function and measurement function for the system. Specify the functions
with an additional input u.

f = @(x,u)(sqrt(x+u));
h = @(x,v,u)(x+2*u+v^2);

f and h are function handles to the anonymous functions that store the state transition and
measurement functions, respectively. In the measurement function, because the measurement noise
is nonadditive, v is also specified as an input. Note that v is specified as an input before the
additional input u.

1 Functions

1-1606

Create an extended Kalman filter object for estimating the state of the nonlinear system using the
specified functions. Specify the initial value of the state as 1 and the measurement noise as
nonadditive.

obj = extendedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);

Specify the measurement noise covariance.

obj.MeasurementNoise = 0.01;

You can now estimate the state of the system using the predict and correct commands. You pass
the values of u to predict and correct, which in turn pass them to the state transition and
measurement functions, respectively.

Correct the state estimate with measurement y[k]=0.8 and input u[k]=0.2 at time step k.

correct(obj,0.8,0.2)

Predict the state at the next time step, given u[k]=0.2.

predict(obj,0.2)

Retrieve the error, or residual, between the prediction and the measurement.

[Residual, ResidualCovariance] = residual(obj,0.8,0.2);

Input Arguments
obj — Extended or unscented Kalman filter
extendedKalmanFilter object | unscentedKalmanFilter object

Extended or unscented Kalman filter, created using one of the following commands:

• extendedKalmanFilter — Uses the extended Kalman filter algorithm
• unscentedKalmanFilter — Uses the unscented Kalman filter algorithm

y — Measured system output
vector

Measured system output at the current time step, specified as an N-element vector, where N is the
number of measurements.

Um1,...,Umn — Additional input arguments to measurement function
input arguments of any type

Additional input arguments to the measurement function of the system, specified as input arguments
of any type. The measurement function h is specified in the MeasurementFcn or
MeasurementLikelihoodFcn property of obj. If the function requires input arguments in addition
to the state and measurement noise values, you specify these inputs in the residual command
syntax. The residual command passes these inputs to the measurement or the measurement
likelihood function to calculate estimated outputs. You can specify multiple arguments.

For instance, suppose that your measurement or measurement likelihood function calculates the
estimated system output y using system inputs u and current time k, in addition to the state x. The
Um1 and Um2 terms are therefore u(k) and k. These inputs result in the estimated output

 residual

1-1607

y(k) = h(x(k),u(k),k)

Before you perform online state estimation correction at time step k, specify these additional inputs
in the residual command syntax:

[Residual,ResidualCovariance] = residual(obj,y,u(k),k);

For an example showing how to use additional input arguments, see “Specify State Transition and
Measurement Functions with Additional Inputs” on page 1-1606.

Output Arguments
Residual — Residual between current and predicted measurement
scalar | vector

Residual between current and predicted measurement, returned as a:

• Scalar for a single-output system
• Vector of size N for a multiple-output system, where N is the number of measured outputs

ResidualCovariance — Residual covariance
matrix

Residual covariance, returned as an N-by-N matrix where N is the number of measured outputs.

Version History
Introduced in R2019b

See Also
correct | predict | extendedKalmanFilter | unscentedKalmanFilter

Topics
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
“Generate Code for Online State Estimation in MATLAB”
“What Is Online Estimation?”
“Extended and Unscented Kalman Filter Algorithms for Online State Estimation”
“Validate Online State Estimation at the Command Line”

1 Functions

1-1608

retrend
Add offsets or trends to time-domain data signals stored in iddata objects

Syntax
data = retrend(data_d,T)

Description
data = retrend(data_d,T) returns a data object data by adding the trend information T to each
signal in data_d. data_d is a time-domain iddata object. T is an TrendInfo object.

Examples

Retrend Simulated Model Output

Subtract means from input-output signals, estimate a linear model, and retrend the simulated output.

Load SISO data containing vectors u2 and y2.

load dryer2

Create a data object with sample time of 0.08 seconds.

data = iddata(y2,u2,0.08);

Remove the mean from the data.

[data_d,T] = detrend(data,0);

Estimate a linear ARX model.

m = arx(data_d,[2 2 1]);

Simulate the model output with zero initial states.

y_sim = sim(m,data_d(:,[],:));

Retrend the simulated model output.

y_tot = retrend(y_sim,T);

Version History
Introduced in R2009a

See Also
getTrend | detrend | TrendInfo

 retrend

1-1609

Topics
“Handling Offsets and Trends in Data”

1 Functions

1-1610

roe
(To be removed) Estimate recursively output-error models (IIR-filters)

Note roe will be removed in a future release. Use recursiveOE instead.

Syntax
thm = roe(z,nn,adm,adg)

[thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)

Description
The parameters of the output-error model structure

y(t) = B(q)
F(q)u(t − nk) + e(t)

are estimated using a recursive prediction error method.

The input-output data are contained in z, which is either an iddata object or a matrix z = [y u]
where y and u are column vectors. nn is given as

nn = [nb nf nk]

where nb and nf are the orders of the output-error model, and nk is the delay. Specifically,

nb: B(q) = b1 + b2q−1 + ... + bnbq−nb + 1

nf : F(q) = 1 + f1q−1 + ... + fnfq−nf

See “What Are Polynomial Models?” for more information.

Only single-input, single-output models are handled by roe. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the
parameters associated with time k; that is, they are based on the data in the rows up to and including
row k in z.

Each row of thm contains the estimated parameters in the following order.

thm(k,:) = [b1,...,bnb,f1,...,fnf]

yhat is the predicted value of the output, according to the current model; that is, row k of yhat
contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These are described under
rarx.

 roe

1-1611

The input argument th0 contains the initial value of the parameters, a row vector consistent with the
rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix
of the parameters. The default value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend on the chosen model orders. The normal choice of phi0 and psi0 is to use
the outputs from a previous call to roe with the same model orders. (This call could be a dummy call
with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want nk = 0, shift the input
sequence appropriately and use nk = 1.

Algorithms
The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also
“Recursive Algorithms for Online Parameter Estimation”.

Version History
Introduced before R2006a

See Also
nkshift | recursiveOE | rpem | rplr

Topics
“Recursive Algorithms for Online Parameter Estimation”

1 Functions

1-1612

rpem
Estimate general input-output models using recursive prediction-error minimization method

Syntax
thm = rpem(z,nn,adm,adg)

[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,P0,phi0,psi0)

Description
rpem is not compatible with MATLAB Coder or MATLAB Compiler™. For the special cases of ARX,
AR, ARMA, ARMAX, Box-Jenkins, and Output-Error models, use recursiveARX, recursiveAR,
recursiveARMA, recursiveARMAX, recursiveBJ, and recursiveOE, respectively.

The parameters of the general linear model structure

A(q)y(t) =
B1(q)
F1(q)u1(t − nk1) + ... +

Bnu(q)
Fnu(q)unu(t − nknu) + C(q)

D(q)e(t)

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a matrix z = [y u]
where y and u are column vectors. (In the multiple-input case, u contains one column for each input.)
nn is given as

nn = [na nb nc nd nf nk]

where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay. For multiple-input
systems, nb, nf, and nk are row vectors giving the orders and delays of each input. See “What Are
Polynomial Models?” for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the
parameters associated with time k; that is, they are based on the data in the rows up to and including
row k in z. Each row of thm contains the estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,...
 c1,...,cnc,d1,...,dnd,f1,...,fnf]

For multiple-input systems, the B part in the above expression is repeated for each input before the C
part begins, and the F part is also repeated for each input. This is the same ordering as in m.par.

yhat is the predicted value of the output, according to the current model; that is, row k of yhat
contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adg and adm:

• adm = 'ff' and adg = lam specify the forgetting factor algorithm with the forgetting factor
λ=lam. This algorithm is also known as recursive least squares (RLS). In this case, the matrix P
has the following interpretation: R2/2 * P is approximately equal to the covariance matrix of the
estimated parameters.R2 is the variance of the innovations (the true prediction errors e(t)).

 rpem

1-1613

adm ='ug' and adg = gam specify the unnormalized gradient algorithm with gain gamma =
gam. This algorithm is also known as the normalized least mean squares (LMS).

adm ='ng' and adg = gam specify the normalized gradient or normalized least mean squares
(NLMS) algorithm. In these cases, P is not applicable.

adm ='kf' and adg =R1 specify the Kalman filter based algorithm with R2=1 and R1 = R1. If the
variance of the innovations e(t) is not unity but R2; then R2* P is the covariance matrix of the
parameter estimates, while R1 = R1 /R2 is the covariance matrix of the parameter changes.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the
rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix
of the parameters. The default value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend on the chosen model orders. The normal choice of phi0 and psi0 is to use
the outputs from a previous call to rpem with the same model orders. (This call could be a dummy
call with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want nk = 0, shift the input
sequence appropriately and use nk = 1.

Examples
Estimate Model Parameters Using Recursive Prediction-Error Minimization

Specify the order and delays of a polynomial model structure.

na = 2;
nb = 1;
nc = 1;
nd = 1;
nf = 0;
nk = 1;

Load the estimation data.

load iddata1 z1

Estimate the parameters using forgetting factor algorithm with forgetting factor 0.99.

EstimatedParameters = rpem(z1,[na nb nc nd nf nk],'ff',0.99);

Get the last set of estimated parameters.

p = EstimatedParameters(end,:);

Construct a polynomial model with the estimated parameters.

sys = idpoly([1 p(1:na)],... % A polynomial
 [zeros(1,nk) p(na+1:na+nb)],... % B polynomial
 [1 p(na+nb+1:na+nb+nc)],... % C polynomial
 [1 p(na+nb+nc+1:na+nb+nc+nd)]); % D polynomial
sys.Ts = z1.Ts;

1 Functions

1-1614

Compare the estimated output with measured data.

compare(z1,sys);

Algorithms
The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also
“Recursive Algorithms for Online Parameter Estimation”.

Version History
Introduced before R2006a

See Also
nkshift | recursiveAR | recursiveARX | recursiveARMA | recursiveARMAX | recursiveBJ |
recursiveOE | rplr

Topics
“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

 rpem

1-1615

rplr
Estimate general input-output models using recursive pseudolinear regression method

Syntax
thm = rplr(z,nn,adm,adg)

[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,P0,phi0)

Description
rplr is not compatible with MATLAB Coder or MATLAB Compiler.

This is a direct alternative to rpem and has essentially the same syntax. See rpem for an explanation
of the input and output arguments.

rplr differs from rpem in that it uses another gradient approximation. See Section 11.5 in Ljung
(1999). Several of the special cases are well-known algorithms.

When applied to ARMAX models, (nn = [na nb nc 0 0 nk]), rplr gives the extended least
squares (ELS) method. When applied to the output-error structure (nn = [0 nb 0 0 nf nk]), the
method is known as HARF in the adm = 'ff' case and SHARF in the adm = 'ng' case.

rplr can also be applied to the time-series case in which an ARMA model is estimated with:

z = y
nn = [na nc]

Examples
Estimate Output-Error Model Parameters Using Recursive Pseudolinear Regression

Specify the order and delays of an Output-Error model structure.

na = 0;
nb = 2;
nc = 0;
nd = 0;
nf = 2;
nk = 1;

Load the estimation data.

load iddata1 z1

Estimate the parameters using forgetting factor algorithm, with forgetting factor 0.99.

EstimatedParameters = rplr(z1,[na nb nc nd nf nk],'ff',0.99);

1 Functions

1-1616

Version History
Introduced before R2006a

References
For more information about HARF and SHARF, see Chapter 11 in Ljung (1999).

See Also
nkshift | recursiveAR | recursiveARX | recursiveARMA | recursiveARMAX | recursiveBJ |
recursiveOE | rpem

Topics
“What Is Online Estimation?”
“Recursive Algorithms for Online Parameter Estimation”

 rplr

1-1617

rsample
Random sampling of linear identified systems

Syntax
sys_array = rsample(sys,N)
sys_array = rsample(sys,N,sd)

Description
sys_array = rsample(sys,N) creates N random samples of the identified linear system, sys.
sys_array contains systems with the same structure as sys, whose parameters are perturbed about
their nominal values, based on the parameter covariance.

sys_array = rsample(sys,N,sd) specifies the standard deviation level, sd, for perturbing the
parameters of sys.

Input Arguments
sys

Identifiable system.

N

Number of samples to be generated.

Default: 10

sd

Standard deviation level for perturbing the identifiable parameters of sys.

Default: 1

Output Arguments
sys_array

Array of random samples of sys.

If sys is an array of models, then the size of sys_array is equal to [size(sys) N]. There are N
randomized samples for each model in sys.

The parameters of the samples in sys_array vary from the original identifiable model within 1
standard deviation of their nominal values.

Examples

1 Functions

1-1618

Create Random Samples of Estimated Model

Estimate a third-order, discrete-time, state-space model.

load iddata2 z2;
sys = n4sid(z2,3);

Randomly sample the estimated model.

N = 20;
sys_array = rsample(sys,N);

Analyze the uncertainty in time (step) and frequency (Bode) responses.

opt = bodeoptions;
opt.PhaseMatching = 'on';
figure;
bodeplot(sys_array,'g',sys,'r.',opt)

figure;
stepplot(sys_array,'g',sys,'r.-')

 rsample

1-1619

Specify Standard Deviation Level for Parameter Perturbation

Estimate a third-order, discrete-time, state-space model.

load iddata2 z2;
sys = n4sid(z2,3);

Randomly sample the estimated model. Specify the standard deviation level for perturbing the model
parameters.

N = 20;
sd = 2;
sys_array = rsample(sys,N,sd);

Analyze the model uncertainty.

figure;
bode(sys_array);

1 Functions

1-1620

Compare Frequency Response Confidence Regions for Sampled ARMAX Model

Estimate an ARMAX model.

load iddata1 z1
sys = armax(z1,[2 2 2 1]);

Randomly sample the ARMAX model. Perturb the model parameters up to 2 standard deviations.

N = 20;
sd = 2;
sys_array = rsample(sys,N,sd);

Compare the frequency response confidence region corresponding to 2 standard deviations
(asymptotic estimate) with the model array response.

opt = bodeoptions; opt.PhaseMatching = 'on';
opt.ConfidenceRegionNumberSD = 2;
bodeplot(sys_array,'g',sys,'r',opt)

 rsample

1-1621

To view the confidence region, right click the plot, and choose Characteristics > Confidence
Region.

Tips
• For systems with large parameter uncertainties, the randomized systems may contain unstable

elements. These unstable elements may make it difficult to analyze the properties of the identified
system. Execution of analysis commands, such as step, bode, sim, etc., on such systems can
produce unreliable results. Instead, use a dedicated Monte-Carlo analysis command, such as
simsd.

Version History
Introduced in R2012a

See Also
simsd | init | noisecnv | noise2meas | iopzmap | bode | step | translatecov

1 Functions

1-1622

segment
Segment data and estimate models for each segment

Syntax
segm = segment(z,nn)

[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,P0,ll,mu)

Description
segment builds models of AR, ARX, or ARMAX/ARMA type,

A(q)y(t) = B(q)u(t − nk) + C(q)e(t)

assuming that the model parameters are piecewise constant over time. It results in a model that has
split the data record into segments over which the model remains constant. The function models
signals and systems that might undergo abrupt changes.

The input-output data is contained in z, which is either an iddata object or a matrix z = [y u]
where y and u are column vectors. If the system has several inputs, u has the corresponding number
of columns.

The argument nn defines the model order. For the ARMAX model

nn = [na nb nc nk];

where na, nb, and nc are the orders of the corresponding polynomials. See “What Are Polynomial
Models?”. Moreover, nk is the delay. If the model has several inputs, nb and nk are row vectors,
giving the orders and delays for each input.

For an ARX model (nc = 0) enter

nn = [na nb nk];

For an ARMA model of a time series

z = y;
nn = [na nc];

and for an AR model

nn = na;

The output argument segm is a matrix, where the kth row contains the parameters corresponding to
time k. This is analogous to output estimates returned by the recursiveARX and recursiveARMAX
estimators. The output argument thm of segment contains the corresponding model parameters that
have not yet been segmented. Each row of thm contains the parameter estimates at the
corresponding time instant. These estimates are formed by weighting together the parameters of
M (default: 5) different time-varying models, with the participating models changing at every time
step. Consider segment as an alternative to the online estimation commands when you are not
interested in continuously tracking the changes in parameters of a single model, but need to detect
abrupt changes in the system dynamics.

 segment

1-1623

The output argument V contains the sum of the squared prediction errors of the segmented model. It
is a measure of how successful the segmentation has been.

The input argument R2 is the assumed variance of the innovations e(t) in the model. The default value
of R2, R2 = [], is that it is estimated. Then the output argument R2e is a vector whose kth element
contains the estimate of R2 at time k.

The argument q is the probability that the model exhibits an abrupt change at any given time. The
default value is 0.01.

R1 is the assumed covariance matrix of the parameter jumps when they occur. The default value is
the identity matrix with dimension equal to the number of estimated parameters.

M is the number of parallel models used in the algorithm (see below). Its default value is 5.

th0 is the initial value of the parameters. Its default is zero. P0 is the initial covariance matrix of the
parameters. The default is 10 times the identity matrix.

ll is the guaranteed life of each of the models. That is, any created candidate model is not abolished
until after at least ll time steps. The default is ll = 1. Mu is a forgetting parameter that is used in
the scheme that estimates R2. The default is 0.97.

The most critical parameter for you to choose is R2. It is usually more robust to have a reasonable
guess of R2 than to estimate it. Typically, you need to try different values of R2 and evaluate the
results. (See the example below.) sqrt(R2) corresponds to a change in the value y(t) that is normal,
giving no indication that the system or the input might have changed.

Examples

Divide Sinusoid into Segments with Constant Levels

Create a sinusoid for the simulated model output.

y = sin([1:50]/3)';

Specify the input signal to be constant at 1.

u = ones(size(y));

Specify the estimated noise variance for the model.

R2 = 0.1;

Segment the signal and estimate an ARX model for each segment. Use the simple model
y(t) = b1u(t − 1), where b1 is the model parameter describing the piecewise constant level of the
estimated output, y(t).

segm = segment([y,u],[0 1 1],R2);

Examine the result.

plot([segm,y])

1 Functions

1-1624

Vary the value of R2 to change the estimated noise variance. Decreasing R2 increases the number of
segments produced for this model.

Model Abrupt Change In Time Delay Using Segmentation

Load and plot the estimation data.

load iddemo6m.mat z
z = iddata(z(:,1),z(:,2));
plot(z)

 segment

1-1625

This data contains a change in time delay from 2 to 1, which is difficult to detect by examining the
data.

Specify the model orders to estimate an ARX model of the form:

y(t) + ay(t − 1) = b1u(t − 1) + b2u(t − 2)

nn = [1 2 1];

Segment the data and estimate ARX models for each segment. Specify an estimated noise variance of
0.1.

seg = segment(z,nn,0.1);

Examine the parameters of the segmented model.

plot(seg)
legend('a','b1','b2');

1 Functions

1-1626

The data has been divided into two segments, as indicated by the change in model parameters around
sample number 19. The increase in b1, along with a corresponding decrease in b2, shows the change
in model delay.

Limitations
segment is not compatible with MATLAB Coder or MATLAB Compiler.

Algorithms
The algorithm is based on M parallel models, each recursively estimated by an algorithm of Kalman
filter type. Each model is updated independently, and its posterior probability is computed. The time-
varying estimate thm is formed by weighting together the M different models with weights equal to
their posterior probability. At each time step the model (among those that have lived at least ll
samples) that has the lowest posterior probability is abolished. A new model is started, assuming that
the system parameters have changed, with probability q, a random jump from the most likely among
the models. The covariance matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest posterior probability is tracked
back and the time instances where it jumped are marked. This defines the different segments of the
data. (If no models had been abolished in the algorithm, this would have been the maximum
likelihood estimates of the jump instances.) The segmented model segm is then formed by smoothing
the parameter estimate, assuming that the jump instances are correct. In other words, the last
estimate over a segment is chosen to represent the whole segment.

 segment

1-1627

Version History
Introduced before R2006a

See Also
Topics
“Data Segmentation”

1 Functions

1-1628

selstruc
Select model order for single-output ARX models

Syntax
nn = selstruc(v)

[nn,vmod] = selstruc(v,c)

Description

Note Use selstruc for single-output systems only. selstruc supports both single-input and
multiple-input systems.

selstruc is a function to help choose a model structure (order) from the information contained in
the matrix v obtained as the output from arxstruc or ivstruc.

The default value of c is 'plot'. The plot shows the percentage of the output variance that is not
explained by the model as a function of the number of parameters used. Each value shows the best fit
for that number of parameters. By clicking in the plot you can examine which orders are of interest.
When you click Select, the variable nn is exported to the workspace as the optimal model structure
for your choice of number of parameters. Several choices can be made.

c = 'aic' gives no plots, but returns in nn the structure that minimizes

Vmod = log V 1 + 2d
N

= log(V) + 2d
N , N ≫ d

where V is the loss function, d is the total number of parameters in the structure in question, and N is
the number of data points used for the estimation. log(V) + 2d

N is the Akaike's Information Criterion
(AIC). See aic for more details.

c = 'mdl' returns in nn the structure that minimizes Rissanen's Minimum Description Length
(MDL) criterion.

Vmod = V 1 + dlog(N)
N

When c equals a numerical value, the structure that minimizes Vmod = V 1 + cd
N

is selected.

The output argument vmod has the same format as v, but it contains the logarithms of the
accordingly modified criteria.

 selstruc

1-1629

Examples

Generate Model-Order Combinations and Estimate ARX Model Using IV Method

Create estimation and validation data sets

load iddata1;
ze = z1(1:150);
zv = z1(151:300);

Generate model-order combinations for estimation, specifying ranges for model orders and delays.

NN = struc(1:3,1:2,2:4);

Estimate ARX models using the instrumental variable method, and compute the loss function for each
model order combination.

V = ivstruc(ze,zv,NN);

Select the model order with the best fit to the validation data.

order = selstruc(V,0);

Estimate an ARX model of selected order.

M = iv4(ze,order);

Generate Model-Order Combinations and Estimate Multi-Input ARX Model

Create estimation and validation data sets.

load co2data;
Ts = 0.5; % Sample time is 0.5 min
ze = iddata(Output_exp1,Input_exp1,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);

Generate model-order combinations for:

• na = 2:4
• nb = 2:5 for the first input, and 1 or 4 for the second input.
• nk = 1:4 for the first input, and 0 for the second input.

NN = struc(2:4,2:5,[1 4],1:4,0);

Estimate an ARX model for each model order combination.

V = arxstruc(ze,zv,NN);

Select the model order with the best fit to the validation data.

order = selstruc(V,0);

Estimate an ARX model of selected order.

1 Functions

1-1630

M = arx(ze,order);

Version History
Introduced before R2006a

 selstruc

1-1631

set
Set or modify model properties

Syntax
set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2',Value2,...)
sysnew = set(___)
set(sys,'Property')

Description
set is used to set or modify the properties of a dynamic system model using property name/property
value pairs.

set(sys,'Property',Value) assigns the value Value to the property of the model sys.
'Property' can be the full property name (for example, 'UserData') or any unambiguous case-
insensitive abbreviation (for example, 'user'). The specified property must be compatible with the
model type. For example, if sys is a transfer function, Variable is a valid property but StateName
is not. For a complete list of available system properties for any linear model type, see the reference
page for that model type. This syntax is equivalent to sys.Property = Value.

set(sys,'Property1',Value1,'Property2',Value2,...) sets multiple property values with a
single statement. Each property name/property value pair updates one particular property.

sysnew = set(___) returns the modified dynamic system model, and can be used with any of the
previous syntaxes.

set(sys,'Property') displays help for the property specified by 'Property'.

Examples

Specify Model Properties

Create a SISO state-space model with matrices A, B, C, and D equal to 1, 2, 3, and 4, respectively.

sys = ss(1,2,3,4);

Modify the properties of the model. Add an input delay of 0.1 second, label the input as torque, and
set the D matrix to 0.

set(sys,'InputDelay',0.1,'InputName','torque','D',0);

View the model properties, and verify the changes.

get(sys)

 A: 1
 B: 2
 C: 3

1 Functions

1-1632

 D: 0
 E: []
 Scaled: 0
 StateName: {''}
 StatePath: {''}
 StateUnit: {''}
 InternalDelay: [0x1 double]
 InputDelay: 0.1000
 OutputDelay: 0
 InputName: {'torque'}
 InputUnit: {''}
 InputGroup: [1x1 struct]
 OutputName: {''}
 OutputUnit: {''}
 OutputGroup: [1x1 struct]
 Notes: [0x1 string]
 UserData: []
 Name: ''
 Ts: 0
 TimeUnit: 'seconds'
 SamplingGrid: [1x1 struct]

Tips
For discrete-time transfer functions, the convention used to represent the numerator and
denominator depends on the choice of variable (see tf for details). Like tf, the syntax for set
changes to remain consistent with the choice of variable. For example, if the Variable property is
set to 'z' (the default),

set(h,'num',[1 2],'den',[1 3 4])

produces the transfer function

h z = z + 2
z2 + 3z + 4

However, if you change the Variable to 'z^-1' by

set(h,'Variable','z^-1'),

the same command

set(h,'num',[1 2],'den',[1 3 4])

now interprets the row vectors [1 2] and [1 3 4] as the polynomials 1 + 2z−1 and 1 + 3z−1 + 4z−2

and produces:

h z−1 = 1 + 2z−1

1 + 3z−1 + 4z−2 = zh z

Note Because the resulting transfer functions are different, make sure to use the convention
consistent with your choice of variable.

 set

1-1633

Version History
Introduced before R2006a

See Also
get | frd | ss | tf | zpk | idfrd | idss | idtf | idgrey | idproc | idpoly | idnlarx | idnlhw |
idnlgrey

1 Functions

1-1634

setcov
Set parameter covariance data in identified model

Syntax
sys = setcov(sys0,cov)

Description
sys = setcov(sys0,cov) sets the parameter covariance of identified model sys0 as cov.

The model parameter covariance is calculated and stored automatically when a model is estimated.
Therefore, you do not need to set the parameter covariance explicitly for estimated models. Use this
function for analysis, such as to study how the parameter covariance affects the response of a model
obtained by explicit construction.

Input Arguments
sys0

Identified model.

Identified model, specified as an idtf, idss, idgrey, idpoly, idproc, or idnlgrey model. You
cannot set the covariance for nonlinear black-box models (idnlarx and idnlhw).

cov

Parameter covariance matrix.

cov is one of the following:

• an np-by-np semi-positive definite symmetric matrix, where np is equal to the number of
parameters of sys0.

• a structure with the following fields that describe the parameter covariance in a factored form:

• R — usually the Cholesky factor of inverse of covariance.
• T — transformation matrix.
• Free — logical vector of length np indicating if a parameter is free. Here np is equal to the

number of parameters of sys0.

cov(Free,Free) = T*inv(R'*R)*T'.

Default:

Output Arguments
sys

Identified model.

 setcov

1-1635

The values of all the properties of sys are the same as those in sys0, except for the parameter
covariance values which are modified as specified by cov.

Examples

Set Raw Covariance Data for Identified Model

Create a transfer function model for the following system:

sys0 = 4
s2 + 2s + 1

sys0 = idtf(4,[1 2 1]);
np = nparams(sys0);

sys0 contains np model parameters.

Specify the covariance values for the denominator parameters only.

cov = zeros(np);
den_index = 2:3;
cov(den_index,den_index) = diag([0.04 0.001]);

cov is a covariance matrix with nonzero entries for the denominator parameters.

Set the covariance for sys0.

sys = setcov(sys0,cov);

Version History
Introduced in R2012a

See Also
getcov | rsample | sim | setpvec

1 Functions

1-1636

setinit
Set initial states of idnlgrey model object

Syntax
model = setinit(model,Property,Values)

Description
model = setinit(model,Property,Values) sets the values of the Property field of the
InitialStates model property. Property can be 'Name', 'Unit', 'Value', 'Minimum',
'Maximum', and 'Fixed'.

Input Arguments
model

Name of the idnlgrey model object.
Property

Name of the InitialStates model property field, such as 'Name', 'Unit', 'Value',
'Minimum', 'Maximum', and 'Fixed'.

Values
Values of the specified property Property. Values are an Nx-by-1 cell array of values, where Nx
is the number of states.

Version History
Introduced in R2007a

See Also
getinit | getpar | idnlgrey | setpar

 setinit

1-1637

setoptions
Package:

Set plot options handle or plot options property

Syntax
setoptions(h,p)
setoptions(h,'property1','value1',...,'propertyN','valueN')
setoptions(h,p,'property1','value1',...,'propertyN','valueN')

Description
You can use setoptions to set the plot handle options or properties list and use it to customize the
plot, such as modify the axes labels, limits and units. For a list of the properties and values available
for each plot type, see “Properties and Values Reference” (Control System Toolbox). To customize an
existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox).

setoptions(h,p) sets preferences for response plot using the plot handle h and plot options handle
p that contains information about plot options.

setoptions(h,'property1','value1',...,'propertyN','valueN') assigns values to
property-value pairs instead of using the plot options handle p. For a list of the properties and values
available for each plot type, see “Properties and Values Reference” (Control System Toolbox).

setoptions(h,p,'property1','value1',...,'propertyN','valueN') first assigns
properties using the plot options handle p, and then overrides any properties governed by the
specified property-value pairs.. For a list of the properties and values available for each plot type, see
“Properties and Values Reference” (Control System Toolbox).

Examples

Impulse Plot with Specified Grid Color

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a
impulse plot with red colored grid lines.

Create the MIMO state-space model sys_mimo.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;

1 Functions

1-1638

B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

Create an impulse plot with plot handle h and use getoptions for a list of the options available.

h = impulseplot(sys_mimo)

h =

 resppack.timeplot

p = getoptions(h)

p =

 Normalize: 'off'
 SettleTimeThreshold: 0.0200
 RiseTimeLimits: [0.1000 0.9000]
 TimeUnits: 'seconds'
 ConfidenceRegionNumberSD: 1
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]

 setoptions

1-1639

 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {3x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {3x1 cell}

Use setoptions to update the plot with the required customization.

setoptions(h,'Grid','on','GridColor',[1 0 0]);

The impulse plot automatically updates when you call setoptions. For MIMO models,
impulseplot produces a grid of plots, each plot displaying the impulse response of one I/O pair.

Bode Plot with Specified Frequency Scale and Units

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a
Bode plot with linear frequency scale, specify frequency units in Hz and turn the grid on.

1 Functions

1-1640

Create the MIMO state-space model sys_mimo.

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

Create a Bode plot with plot handle h and use getoptions for a list of the options available.

h = bodeplot(sys_mimo);
p = getoptions(h)

p =

 FreqUnits: 'rad/s'
 FreqScale: 'log'
 MagUnits: 'dB'
 MagScale: 'linear'
 MagVisible: 'on'
 MagLowerLimMode: 'auto'
 PhaseUnits: 'deg'
 PhaseVisible: 'on'
 PhaseWrapping: 'off'
 PhaseMatching: 'off'
 PhaseMatchingFreq: 0
 ConfidenceRegionNumberSD: 1
 MagLowerLim: 0
 PhaseMatchingValue: 0
 PhaseWrappingBranch: -180
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {6x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {6x1 cell}

Use setoptions to update the plot with the requires customization.

setoptions(h,'FreqScale','linear','FreqUnits','Hz','Grid','on');

 setoptions

1-1641

The Bode plot automatically updates when you call setoptions. For MIMO models, bodeplot
produces an array of Bode plots, each plot displaying the frequency response of one I/O pair.

Change Frequency Units in Response Plot

Create the following continuous-time transfer function:

H(s) = 1
s + 1

sys = tf(1,[1 1]);

Create a Bode plot with plot handle h.

h = bodeplot(sys);

1 Functions

1-1642

Create a plot options handle p.

p = getoptions(h);

Change frequency units of the plot to Hz.

p.FreqUnits = 'Hz';

Apply the plot options to the Bode plot.

setoptions(h,p);

 setoptions

1-1643

Alternatively, use setoptions(h,'FreqUnits','Hz').

Input Arguments
h — Plot handle
plot handle object

Plot handle, specified as a plot handle object. For example, h is a mpzplot object for a pole-zero or
I/O pole-zero plot.

p — Plot options handle
plot options handle object

Plot options handle, specified as a plot options handle object. For example, p is a PZMapOptions
object for a pole-zero or I/O pole-zero plot.

There are two ways to create a plot options handle:

• Use getoptions, which accepts a plot handle and returns a plot options handle.

p = getoptions(h)

• Create a default plot options handle using one of the following commands:

• bodeoptions — Bode plot

1 Functions

1-1644

• hsvoptions — Hankel singular values plot
• nicholsoptions — Nichols plot
• nyquistoptions — Nyquist plot
• pzoptions — Pole-zero plot
• sigmaoptions — Sigma plot
• timeoptions — Time plots (step, initial, impulse, etc.)

For example,

p = bodeoptions

returns a plot options handle for Bode plot.

Version History
Introduced in R2012a

See Also
getoptions

Topics
“Properties and Values Reference” (Control System Toolbox)
“Customizing Response Plots from the Command Line” (Control System Toolbox)

 setoptions

1-1645

setpar
Set attributes such as values and bounds of linear model parameters

Syntax
sys1 = setpar(sys,'value',value)
sys1 = setpar(sys,'free',free)
sys1 = setpar(sys,'bounds',bounds)
sys1 = setpar(sys,'label',label)

Description
sys1 = setpar(sys,'value',value) sets the parameter values of the model sys. For model
arrays, use setpar separately on each model in the array.

sys1 = setpar(sys,'free',free) sets the free or fixed status of the parameters.

sys1 = setpar(sys,'bounds',bounds) sets the minimum and maximum bounds on the
parameters.

sys1 = setpar(sys,'label',label) sets the labels for the parameters.

Examples

Assign Model Parameter Values

Estimate an ARMAX model.

load iddata8;
init_data = z8(1:100);
na = 1;
nb = [1 1 1];
nc = 1;
nk = [0 0 0];
sys = armax(init_data,[na nb nc nk]);

Set the parameter values.

sys = setpar(sys,'value',[0.5 0.1 0.3 0.02 0.5]');

To view the values, type val = getpar(sys,'value').

Fix or Free Model Parameters

Construct a process model.

m = idproc('P2DUZI');
m.Kp = 1;

1 Functions

1-1646

m.Tw = 100;
m.Zeta = .3;
m.Tz = 10;
m.Td = 0.4;

Set the free status of the parameters.

m = setpar(m,'free',[1 1 1 1 0]);

Here, you set Tz to be a fixed parameter.

To check the free status of Tz, type m.Structure.Tz.

Set Minimum and Maximum Bounds on Parameters

Estimate an ARMAX model.

load iddata8;
init_data = z8(1:100);
na = 1;
nb = [1 1 1];
nc = 1;
nk = [0 0 0];
sys = armax(init_data,[na nb nc nk]);

Set the minimum and maximum bounds for the parameters. Each row represents the bounds for a
single parameter. The first value in each row specifies the minimum bound and the second value
specifies the maximum bound.

sys = setpar(sys,'bounds',[0 1; 1 1.5; 0 2; 0.5 1; 0 1]);

Assign Default Labels to Parameters

Estimate an ARMAX model.

load iddata8;
init_data = z8(1:100);
na = 1;
nb = [1 1 1];
nc = 1;
nk = [0 0 0];
sys = armax(init_data,[na nb nc nk]);

Assign default labels to model parameters.

sys = setpar(sys,'label','default');

View the default labels.

getpar(sys,'label')

ans = 5x1 cell
 {'A1(1)'}

 setpar

1-1647

 {'B0(1)'}
 {'B0(2)'}
 {'B0(3)'}
 {'C1' }

Input Arguments
sys — Identified linear model
idss | idproc | idgrey | idtf | idpoly

Identified linear model, specified as an idss, idproc, idgrey, idtf, or idpoly model object.

value — Parameter values
vector of doubles

Parameter values, specified as a double vector of length nparams(sys).

free — Free or fixed status of parameters
vector of logical values

Free or fixed status of parameters, specified as a logical vector of length nparams(sys).

bounds — Minimum and maximum bounds on parameters
matrix of doubles

Minimum and maximum bounds on parameters, specified as a double matrix of size nparams(sys)-
by-2. The first column specifies the minimum bound and the second column the maximum bound.

label — Parameter labels
cell array of character vectors | 'default'

Parameter labels, specified as a cell array of character vectors. The cell array is of length
nparams(sys). For example, {'a1','a3'}, if nparams(sys) is two.

Use 'default' to assign default labels, A1, A2..., B1,B2,..., to the parameters.

Output Arguments
sys1 — Model with specified values of parameter attributes
idss | idproc | idgrey | idtf | idpoly

Model with specified values of parameter attributes. The model sys you specify as the input to
setpar gets updated with the specified parameter attribute values.

Version History
Introduced in R2013b

See Also
getpar | setpvec | setcov

1 Functions

1-1648

setpar
Set initial parameter values of idnlgrey model object

Syntax
setpar(model,property,values)

Input Arguments
model

Name of the idnlgrey model object.
property

Name of the Parameters model property field, such as 'Name', 'Unit', 'Value', 'Minimum',
or 'Maximum'.

Default: 'Value'.
values

Values of the specified property Property. values are an Np-by-1 cell array of values, where Np
is the number of parameters.

Description
setpar(model,property,values) sets the model parameter values in the property field of the
Parameters model property. property can be 'Name', 'Unit', 'Value', 'Minimum', and
'Maximum'.

Version History
Introduced in R2007a

See Also
getinit | getpar | idnlgrey | setinit

 setpar

1-1649

setPolyFormat
Specify format for B and F polynomials of multi-input polynomial model

Syntax
modelOut = setPolyFormat(modelIn,’double’)
modelOut = setPolyFormat(modelIn,’cell’)

Description
modelOut = setPolyFormat(modelIn,’double’) converts the B and F polynomials of a multi-
input polynomial model, modelIn, to double matrices.

By default, the B and F polynomials of an idpoly model are cell arrays. For MATLAB scripts written
before R2012a, convert the cell arrays to double matrices for backward compatibility using this
syntax. For example:

model = arx(data,[3 2 2 1 1]);
model = setPolyFormat(model,'double');

modelOut = setPolyFormat(modelIn,’cell’) converts the B and F polynomials of modelIn to
cell arrays.

MATLAB data files saved before R2012a store idpoly models with their B and F polynomials
represented as double matrices. If these models were previously set to operate in backward-
compatibility mode, they are not converted to use cell arrays when loaded. Convert these models to
use cell arrays using this syntax. For example:

load polyData.mat model;
model = setPolyFormat(model,'cell');

Examples

Convert B and F Polynomials of a Multi-Input ARX Model to Double Matrices

Load estimation data.

load iddata8;

Estimate the model.

m1 = arx(z8,[3 [2 2 1] [1 1 1]]);

Convert the b and f polynomials to use double matrices.

m2 = setPolyFormat(m1,'double');

Extract pole and zero information from the model using matrix syntax.

Poles1 = roots(m2.F(1,:));
Zeros1 = roots(m2.B(1,:));

1 Functions

1-1650

Input Arguments
modelIn — Polynomial model
idpoly object

Polynomial model, specified as an idpoly object. The B and F polynomials of modelIn are either:

• Cell arrays with Nu elements, where Nu is the number of model inputs, with each element
containing a double vector. This configuration is the default.

• Double matrices with Nu rows. This configuration applies to backward-compatible idpoly models
stored in MATLAB data files before R2012a.

Note setPolyFormat only supports multi-input, single-output models. Specifying modelIn as a:

• Multi-output model generates an error.
• Single-input, single-output model has no effect. The B and F polynomials remain as double vectors.

Output Arguments
modelOut — Polynomial model
idpoly object

Polynomial model, returned as an idpoly object.

To access the b and f polynomials of modelOut, use:

• Matrix syntax after using modelOut = setPolyFormat(modelIn,'double'). For example:

modelOut.B(1,:);
• Cell array syntax after using modelOut = setPolyFormat(modelIn,'cell'). For example:

modelOut.B{1};

After using modelOut = setPolyFormat(modelIn,'cell'), you can resave the converted model
in cell array format. For example:

save polyNew.mat modelOut;

Tips
• To verify the current format of the B and F polynomials for a given idpoly model, enter:

class(model.B)

If the model uses double matrices, the displayed result is:

ans =

double

Otherwise, for cell arrays, the result is:

 setPolyFormat

1-1651

ans =

cell

Version History
Introduced in R2010a

See Also
idpoly | get | set | polydata | tfdata

Topics
“Extracting Numerical Model Data”

1 Functions

1-1652

setpvec
Modify values of model parameters

Syntax
sys = setpvec(sys0,par)
sys = setpvec(sys0,par,'free')

Description
sys = setpvec(sys0,par) modifies the value of the parameters of the identified model sys0 to
the value specified by par.

par must be of length nparams(sys0). nparams(sys0) returns a count of all the parameters of
sys0.

sys = setpvec(sys0,par,'free') modifies the value of all the free estimation parameters of
sys0 to the value specified by par.

par must be of length nparams(sys0,'free'). nparams(sys0,'free') returns a count of all the
free parameters of sys0. For idnlarx and idnlhw models, all parameters are treated as free.

Input Arguments
sys0

Identified model, specified as an idtf, idss, idgrey, idpoly, idproc, idnlarx, idnlhw, or
idnlgrey object.

par

Replacement value for the parameters of the identified model sys0.

For the syntax sys = setpvec(sys0,par), par must be of length nparams(sys0).
nparams(sys0) returns a count of all the parameters of sys0.

For the syntax sys = setpvec(sys0,par,'free'), par must be of length
nparams(sys0,'free'). nparams(sys0,'free') returns a count of all the free parameters of
sys0.

Use NaN to denote unknown parameter values.

If sys0 is an array of models, then specify par as a cell array with an entry corresponding to each
model in sys0.

Output Arguments
sys

Identified model obtained from sys0 by updating the values of the specified parameters.

 setpvec

1-1653

Examples

Modify Parameter Values of Transfer Function Model

Construct a transfer function model.

sys0 = idtf(1,[1 2]);

Define a parameter vector and use it to set the model parameters. The second parameter is set to
NaN, indicating that its value is unknown.

par = [1;NaN;0];
sys = setpvec(sys0,par);

The constructed model, sys, can be used to initialize a model estimation.

Modify Free Parameter Values of Transfer Function Model

Construct a transfer function model.

sys0 = idtf([1 0],[1 2 0]);

Set the first three parameters of sys0 as free parameters.

sys0 = setpar(sys0,'free',[1 1 1 0 0]);

Define a parameter vector and use it to set the free model parameters.

par = [1;2;1];
sys = setpvec(sys0,par,'free');

Version History
Introduced in R2012a

See Also
getpvec | setcov | nparams

1 Functions

1-1654

sgrid
Generate s-plane grid of constant damping factors and natural frequencies

Syntax
sgrid
sgrid(zeta,wn)
sgrid(___ ,'new')
sgrid(AX, ___)

Description
sgrid generates a grid of constant damping factors from 0 to 1 in steps of 0.1 and natural
frequencies from 0 to 10 rad/sec in steps of one rad/sec for pole-zero and root locus plots. sgrid then
plots the grid over the current axis. sgrid creates the grid over the plot if the current axis contains a
continuous s-plane root locus diagram or pole-zero map.

sgrid(zeta,wn) plots a grid of constant damping factor and natural frequency lines for the
damping factors and natural frequencies in the vectors zeta and wn, respectively. sgrid(zeta,wn)
creates the grid over the plot if the current axis contains a continuous s-plane root locus diagram or
pole-zero map.

Alternatively, you can select Grid from the context menu to generate the same s-plane grid.

sgrid(___ ,'new') clears the current axes first and sets hold on.

sgrid(AX, ___) plots the s-plane grid on the Axes or UIAxes object in the current figure with the
handle AX. Use this syntax when creating apps with sgrid in the App Designer.

Examples

Generate S-Plane Grid on Root Locus Plot

Create the following continuous-time transfer function:

H(s) = 2s2 + 5s + 1
s2 + 2s + 3

H = tf([2 5 1],[1 2 3]);

Plot the root locus of the transfer function.

rlocus(H)

 sgrid

1-1655

Plot s-plane grid lines on the root locus.

sgrid

1 Functions

1-1656

Input Arguments
zeta — Damping ratio
vector

Damping ratio, specified as a vector in the same order as wn.

wn — Normalized natural frequency
vector

Normalized natural frequency, specified as a vector.

AX — Object handle
Axes object | UIAxes object

Object handle, specified as an Axes or UIAxes object. Use AX to create apps with sgrid in the App
Designer.

Version History
Introduced before R2006a

 sgrid

1-1657

See Also
pzmap | rlocus | zgrid

1 Functions

1-1658

showConfidence
Display confidence regions on response plots for identified models

Syntax
showConfidence(plot_handle)
showConfidence(plot_handle,sd)

Description
showConfidence(plot_handle) displays the confidence region on the response plot, with handle
plot_handle, for an identified model.

showConfidence(plot_handle,sd) displays the confidence region for sd standard deviations.

Input Arguments
plot_handle

Response plot handle.

plot_handle is the handle for the response plot of an identified model on which the confidence
region is displayed. It is obtained as an output of one of the following plot commands: bodeplot,
stepplot, impulseplot, nyquistplot, or iopzplot.

sd

Standard deviation of the confidence region. A common choice is 3 standard deviations, which gives
99.7% significance.

Default: getoptions(plot_handle,'ConfidenceRegionNumberSD')

Examples

View Confidence Region for Identified Model

Show the confidence bounds on the bode plot of an identified ARX model.

Obtain identified model and plot its bode response.

load iddata1 z1
sys = arx(z1, [2 2 1]);
h = bodeplot(sys);

 showConfidence

1-1659

z1 is an iddata object that contains time domain system response data. sys is an idpoly model
containing the identified polynomial model. h is the plot handle for the bode response plot of sys.

Show the confidence bounds for sys.

showConfidence(h);

1 Functions

1-1660

This plot depicts the confidence region for 1 standard deviation.

Specify the Standard Deviation of the Confidence Region

Show the confidence bounds on the bode plot of an identified ARX model.

Obtain identified model and plot its bode response.

load iddata1 z1
sys = arx(z1, [2 2 1]);
h = bodeplot(sys);

 showConfidence

1-1661

z1 is an iddata object that contains time domain system response data. sys is an idpoly model
containing the identified polynomial model. h is the plot handle for the bode response plot of sys.

Show the confidence bounds for sys using 2 standard deviations.

sd = 2;
showConfidence(h,sd);

1 Functions

1-1662

sd specifies the number of standard deviations for the confidence region displayed on the plot.

Alternatives
You can interactively turn on the confidence region display on a response plot. Right-click the
response plot, and select Characteristics > Confidence Region.

Version History
Introduced in R2012a

See Also
bodeplot | stepplot | impulseplot | nyquistplot | iopzplot

 showConfidence

1-1663

sim
Simulate response of identified model

Syntax
y = sim(sys,udata)
y = sim(sys,udata,opt)

[y,y_sd] = sim(___)
[y,y_sd,x] = sim(___)
[y,y_sd,x,x_sd] = sim(___)

sim(___)

Description
y = sim(sys,udata) returns the simulated response of an identified model using the input data,
udata. udata can be a timetable, a numeric matrix, or an iddata object. By default, zero initial
conditions are used for all model types except idnlgrey, in which case the initial conditions stored
internally in the model are used.

y = sim(sys,udata,opt) uses the option set, opt, to configure the simulation option, including
the specification of initial conditions.

[y,y_sd] = sim(___) returns the estimated standard deviation, y_sd, of the simulated response.

[y,y_sd,x] = sim(___) returns the state trajectory, x, for state-space models.

[y,y_sd,x,x_sd] = sim(___) returns the standard deviation of the state trajectory, x_sd, for
state-space models.

sim(___) plots the simulated response of the identified model.

Examples

Simulate State-Space Model Using Input Data

Load the estimation data.

load iddata2 z2

Estimate a third-order state-space model.

sys = ssest(z2,3);

Simulate the identified model using the input channels from the estimation data.

y = sim(sys,z2);

1 Functions

1-1664

Add Noise to Simulated Model Response

Load the data, and obtain the identified model.

load iddata2 z2
sys = n4sid(z2,3);

sys is a third-order state-space model estimated using a subspace method.

Create a simulation option set to add noise to the simulated model response.

opt1 = simOptions('AddNoise',true);

Simulate the model.

y = sim(sys,z2,opt1);

Default Gaussian white noise is filtered by the noise transfer function of the model and added to the
simulated model response.

You can also add your own noise signal, e, using the NoiseData option.

e = randn(length(z2.u),1);
opt2 = simOptions('AddNoise',true,'NoiseData',e);

Simulate the model.

y = sim(sys,z2,opt2);

Simulate Model Using Initial Conditions Obtained During Estimation

Load data.

load iddata1 z1

Specify the estimation option to estimate the initial state.

estimOpt = ssestOptions('InitialState','estimate');

Estimate a state-space model, and return the value of the estimated initial state.

[sys,x0] = ssest(z1,2,estimOpt);

Specify initial conditions for simulation

simOpt = simOptions('InitialCondition',x0);

Simulate the model, and obtain the model response and standard deviation.

[y,y_sd] = sim(sys,z1,simOpt);

Estimate Standard Deviation and State Trajectory for State-Space Models

Load estimation data, and estimate a state-space model.

 sim

1-1665

load iddata1 z1
sys = ssest(z1,2);

Return the standard deviation and state trajectory.

[y,y_sd,x] = sim(sys,z1);

Estimate State Trajectory and Standard Deviations of Simulated Response

Load estimation data, and estimate a state-space model.

load iddata1 z1
sys = ssest(z1,2);

Create a simulation option set, and specify the initial states.

opt = simOptions('InitialCondition',[1;2]);

Specify the covariance of the initial states.

opt.X0Covariance = [0.1 0; 0 0.1];

Calculate the standard deviations of simulated response, y_sd, and state trajectory, x_sd.

[y,y_sd,x,x_sd] = sim(sys,z1,opt);

Plot Simulated Model Response

Obtain the identified model.

load iddata2 z2
sys = tfest(z2,3);

sys is an idtf model that encapsulates the third-order transfer function estimated for the measured
data z2.

Simulate the model.

sim(sys,z2)

1 Functions

1-1666

Simulate Nonlinear ARX Model

Simulate a single-input single-output nonlinear ARX model around a known equilibrium point, with an
input level of 1 and output level of 10.

Load the sample data.

load iddata2

Estimate a nonlinear ARX model from the data.

M = nlarx(z2,[2 2 1],'idTreePartition');

Estimate current states of model based on past data. Specify as many past samples as there are lags
in the input and output variables (2 here).

x0 = data2state(M,struct('Input',ones(2,1),'Output',10*ones(2,1)));

Simulate the model using the initial states returned by data2state.

opt = simOptions('InitialCondition',x0);
sim(M,z2,opt)

 sim

1-1667

Continue from End of Previous Simulation

Continue the simulation of a nonlinear ARX model from the end of a previous simulation run.

Estimate a nonlinear ARX model from data.

load iddata2
M = nlarx(z2,[2 2 1],idTreePartition);

Simulate the model using the first half of the input data z2. Start the simulation from zero initial
states.

u1 = z2(1:200,[]);
opt1 = simOptions('InitialCondition','zero');
ys1 = sim(M,u1,opt1);

Start another simulation using the second half of the input data z2. Use the same states of the model
from the end of the first simulation.

u2 = z2(201:end,[]);

To set the initial states for the second simulation correctly, package input u1 and output ys1 from the
first simulation into one iddata object. Pass this data as initial conditions for the next simulation.

1 Functions

1-1668

firstSimData = [ys1,u1];
opt2 = simOptions('InitialCondition',firstSimData);
ys2 = sim(M,u2,opt2);

Verify the two simulations by comparing to a complete simulation using all the input data z2. First,
extract the whole set of input data.

uTotal = z2(:,[]);
opt3 = simOptions('InitialCondition','zero');
ysTotal = sim(M,uTotal,opt3);

Plot the three responses ys1, ys2 and ysTotal. ys1 should be equal to first half of ysTotal. ys2
should be equal to the second half of ysTotal.

plot(ys1,'b',ys2,'g',ysTotal,'k*')

The plot shows that the three responses ys1, ys2, and ysTotal overlap as expected.

Match Model Response to Output Data

Estimate initial states of model M such that, the response best matches the output in data set z2.

Load the sample data.

load iddata2;

 sim

1-1669

Estimate a nonlinear ARX model from the data.

M = nlarx(z2,[4 3 2],idWaveletNetwork('NumberOfUnits',20));

Estimate the initial states of M to best fit z2.y in the simulated response.

x0 = findstates(M,z2,Inf);

Simulate the model.

opt = simOptions('InitialCondition',x0);
ysim = sim(M,z2.u,opt);

Compare the simulated model output ysim with the output signal in z2.

time = z2.SamplingInstants;
plot(time,ysim,time,z2.y,'.')

Simulate Model Near Steady State with Known Input and Unknown Output

Start simulation of a model near steady state, where the input is known to be 1, but the output is
unknown.

Load the sample data.

load iddata2

1 Functions

1-1670

Estimate a nonlinear ARX model from the data.

M = nlarx(z2,[4 3 2],idWaveletNetwork);

Determine equilibrium state values for input 1 and unknown target output.

x0 = findop(M,'steady',1, NaN);

Simulate the model using initial states x0.

opt = simOptions('InitialCondition',x0);
sim(M,z2.u,opt)

Simulate Hammerstein-Wiener Model at Steady-State Operating Point

Load the sample data.

load iddata2

Create a Hammerstein-Wiener model.

M = nlhw(z2,[4 3 2],[],idPiecewiseLinear);

Compute steady-state operating point values corresponding to an input level of 1 and an unknown
output level.

 sim

1-1671

x0 = findop(M,'steady',1,NaN);

Simulate the model using the estimated initial states.

opt = simOptions('InitialCondition',x0);
sim(M,z2.u)

Simulate Time Series Model

Load time series data, and estimate an AR model using the least-squares approach.

load iddata9 z9
sys = ar(z9,6,'ls');

For time series data, specify the desired simulation length, N = 200 using an N-by-0 input data set.

data = iddata([],zeros(200,0),z9.Ts);

Set the initial conditions to use the initial samples of the time series as historical output samples.

IC = struct('Input',[],'Output',z9.y(1:6));
opt = simOptions('InitialCondition',IC);

Simulate the model.

sim(sys,data,opt)

1 Functions

1-1672

Understand Use of Historical Data for Model Simulation

Use historical input-output data as a proxy for initial conditions when simulating your model. You first
simulate using the sim command and specify the historical data using the simOptions option set.
You then reproduce the simulated output by manually mapping the historical data to initial states.

Load a two-input, one-output data set.

load iddata7 z7

Identify a fifth-order state-space model using the data.

sys = n4sid(z7,5);

Split the data set into two parts.

zA = z7(1:15);
zB = z7(16:end);

Simulate the model using the input signal in zB.

uSim = zB;

 sim

1-1673

Simulation requires initial conditions. The signal values in zA are the historical data, that is, they are
the input and output values for the time immediately preceding data in zB. Use zA as a proxy for the
required initial conditions.

IO = struct('Input',zA.InputData,'Output',zA.OutputData);
opt = simOptions('InitialCondition',IO);

Simulate the model.

ysim = sim(sys,uSim,opt);

Now reproduce the output by manually mapping the historical data to initial states of sys. To do so,
use the data2state command.

xf = data2state(sys,zA);

xf contains the state values of sys at the time instant immediately after the most recent data sample
in zA.

Simulate the system using xf as the initial states.

opt2 = simOptions('InitialCondition',xf);
ysim2 = sim(sys,uSim,opt2);

Plot the output of the sim command ysim and the manually computed results ysim2.

plot(ysim,'b',ysim2,'--r')

1 Functions

1-1674

ysim2 is the same as ysim.

Simulate Continuous-Time Neural State-Space Object

The state and output networks of an idNeuralStateSpace object are initialized randomly. To
ensure reproducibility, fix the seed of the random number generator.

rng(0)

Create a continuous-time neural state-space object with two states, two inputs, and three outputs.

nss = idNeuralStateSpace(2,NumInputs=2,NumOutputs=3)

Continuous-time Neural State-Space Model with 3 outputs, 2 states, and 2 inputs
 dx/dt = f(x(t),u(t))
 y_1(t) = x(t) + e_1(t)
 y_2(t) = g(x(t),u(t)) + e_2(t)
 y(t) = [y_1(t); y_2(t)]

f(.) network:
 Deep network with 2 fully connected, hidden layers
 Activation function: Tanh
g(.) network:
 Deep network with 2 fully connected, hidden layers
 Activation function: Tanh

Inputs: u1, u2
Outputs: y1, y2, y3
States: x1, x2

Status:
Created by direct construction or transformation. Not estimated.
More information in model's "Report" property.

Model Properties

Define a time sequence, a random input signal, and a random initial state.

t = (0:1:10)';
u = rand(length(t),2);
x0 = 0.3*randn(2,1);

When simulating idNeuralStateSpace systems, specifying input data as a numerical array is not
supported. For this example, convert the input data to a timetable object, specifying that the values of
u are associated with the time points in the vector t.

u = array2timetable(u,RowTimes=seconds(t));

Set up a simulation options object so that the simulation starts from x0 and the output is calculated
for the time points in the vector t.

simOpt = simOptions('InitialCondition',x0,'OutputTimes',t);

Simulate the (untrained) neural state-space system nss.

y = sim(nss,u,simOpt);

 sim

1-1675

Plot the simulated outputs.

plot(t,y.Variables);
ylabel("Outputs");
xlabel("Time (seconds)")
title("Neural state-space system: simulated output")

Input Arguments
sys — Identified model
identified linear model | identified nonlinear model

Identified model, specified as one of the following model objects:

 Model Type Model Object
Identified
Linear
Model

Polynomial
model

idpoly

Process
model

idproc

State-space
model

idss

Transfer
function
model

idtf

Linear grey-
box model

idgrey

1 Functions

1-1676

 Model Type Model Object
Identified
Nonlinear
Model

Nonlinear
ARX model

idnlarx

Nonlinear
Hammerstein-
Wiener model

idnlhw

Nonlinear
grey-box
model

idnlgrey

Neural state-
space

idNeuralStateSpace

udata — Simulation input data
timetable | numeric matrix | iddata object

Simulation input data, specified as a timetable, a numeric matrix, or an iddata object. The
specification for udata depends on the data type.

• Timetable — Specify udata as an Ns-by-Nu timetable, where Ns is the number of data samples in
each variable and Nu is the number of inputs. udata must have the same variable names as the
original data from which the model sys was estimated.

• Numeric Matrix — Specify udata as an Ns-by-Nu matrix. The software uses the sample period in
the Ts property of sys. Numeric matrix input data are not supported for idNeuralStateSpace
objects.

• iddata object — Specify udata as an iddata object that contains time-domain or frequency-
domain data.

If sys is a linear model, you can use either time-domain or frequency-domain data. If sys is a
nonlinear model, you must use time-domain data.

If sys is a time-series model, that is, a model with no inputs, specify udata as an Ns-by-0 signal,
where Ns is the wanted number of simulation output samples. For example, to simulate 100 output
samples, specify udata as follows.

udata = iddata([],zeros(100,0),Ts);

If you do not have data from an experiment, use idinput to generate signals with various
characteristics.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

opt — Simulation options
simOptions option set

Simulation options, specified as a simOptions option set for setting the following options:

• Initial conditions
• Input/output offsets
• Additive noise

 sim

1-1677

Output Arguments
y — Simulated response
iddata object | matrix

Simulated response for sys, returned as an iddata object or matrix, depending on how you specify
udata. For example, if udata is an iddata object, then so is y.

If udata represents time-domain data, then y is the simulated response for the time vector
corresponding to udata.

If udata represents frequency-domain data, U(ω), then y contains the Fourier transform of the
corresponding sampled time-domain output signal. This signal is the product of the frequency
response of sys, G(ω), and U(ω).

For multi-experiment data, y is a corresponding multi-experiment iddata object.

y_sd — Estimated standard deviation
double matrix

Estimated standard deviation of the simulated response for linear models or nonlinear grey-box
models, returned as an Ns-by-Ny matrix, where Ns is the number of samples and Ny is the number of
outputs. The software computes the standard deviation by taking into account the model parameter
covariance, initial state covariance, and additive noise covariance. The additive noise covariance is
stored in the NoiseVariance property of the model.

y_sd is derived using first order sensitivity considerations (Gauss approximation formula).

For nonlinear models, y_sd is [].

x — Estimated state trajectory for state-space models
matrix | []

Estimated state trajectory for state-space models, returned as an Ns-by-Nx matrix, where Ns is the
number of samples and Nx is the number of states.

x is only relevant if sys is an idss, idgrey, or idnlgrey model. If sys is not a state-space model, x
is returned as [].

x_sd — Estimated standard deviation of state trajectory
matrix | []

Estimated standard deviation of state trajectory for state-space models, returned as an Ns-by-Nx
matrix, where Ns is the number of samples and Nx is the number of states. The software computes
the standard deviation by taking into account the model parameter covariance, initial state
covariance, and additive noise covariance. The additive noise covariance is stored in the
NoiseVariance property of the model.

x_sd is only relevant if sys is an idss, idgrey, or idnlgrey model. If sys is not a state-space
model, x_sd is returned as [].

Tips
• When the initial conditions of the estimated model and the system that measured the validation

data set are different, the simulated and measured responses may also differ, especially at the

1 Functions

1-1678

beginning of the response. To minimize this difference, estimate the initial state values using
findstates and use the estimated values to set the InitialCondition option using
simOptions. For an example, see “Match Model Response to Output Data” on page 1-1669.

Algorithms
Simulation means computing the model response using input data and initial conditions. sim
simulates the following system:

Here,

• u(t) is the simulation input data, udata.
• y(t) is the simulated output response.
• G is the transfer function from the input to the output and is defined in sys. The simulation initial

conditions, as specified using simOptions, set the initial state of G.
• e(t) is an optional noise signal. Add noise to your simulation by creating a simOptions option set,

and setting the AddNoise option to true. Additionally, you can change the default noise signal by
specifying the NoiseData option.

• H is the noise transfer function and is defined in sys.
• δu is an optional input offset subtracted from the input signal, u(t), before the input is used to

simulate the model. Specify an input offset by setting the InputOffset option using
simOptions.

• δy is an optional output offset added to the output response, y(t), after simulation. Specify an
output offset by setting the OutputOffset option using simOptions.

For more information on specifying simulation initial conditions, input and output offsets, and noise
signal data, see simOptions. For multiexperiment data, you can specify these options separately for
each experiment.

 sim

1-1679

Alternatives
• Use simsd for a Monte-Carlo method of computing the standard deviation of the response.
• sim extends lsim to facilitate additional features relevant to identified models:

• Simulation of nonlinear models
• Simulation with additive noise
• Incorporation of signal offsets
• Computation of response standard deviation (linear models only)
• Frequency-domain simulation (linear models only)
• Simulations using different intersample behavior for different inputs

To obtain the simulated response without any of the preceding operations, use lsim.

Version History
Introduced before R2006a

See Also
simOptions | simsd | lsim | step | compare | predict | forecast | idinput | findstates

Topics
“Simulate and Predict Identified Model Output”
“Simulation and Prediction at the Command Line”

1 Functions

1-1680

simOptions
Option set for sim

Syntax
opt = simOptions
opt = simOptions(Name,Value)

Description
opt = simOptions creates the default option set for sim.

opt = simOptions(Name,Value) creates an option set with the options specified by one or more
Name,Value pair arguments.

Examples

Create Default Option Set for Model Simulation

opt = simOptions;

Specify Options for Model Simulation

Create an option set for sim specifying the following options.

• Zero initial conditions
• Input offset of 5 for the second input of a two-input model

opt = simOptions('InitialCondition','z','InputOffset',[0; 5]);

Add Noise to Simulation Output

Create noise data for a simulation with 500 input data samples and two outputs.

noiseData = randn(500,2);

Create a default option set.

opt = simOptions;

Modify the option set to add the noise data.

opt.AddNoise = true;
opt.NoiseData = noiseData;

 simOptions

1-1681

Use Historical Data to Specify Initial Conditions for Model Simulation

Use historical input-output data as a proxy for initial conditions when simulating your model.

Load a two-input, one-output data set.

load iddata7 z7

Identify a fifth-order state-space model using the data.

sys = n4sid(z7, 5);

Split the data set into two parts.

zA = z7(1:15);
zB = z7(16:end);

Simulate the model using the input signal in zB.

uSim = zB;

Simulation requires initial conditions. The signal values in zA are the historical data, that is, they are
the input and output values for the time immediately preceding data in zB. Use zA as a proxy for the
required initial conditions.

IO = struct('Input',zA.InputData,'Output',zA.OutputData);
opt = simOptions('InitialCondition',IO);

Simulate the model.

ysim = sim(sys,uSim,opt);

To understand how the past data is mapped to the initial states of the model, see “Understand Use of
Historical Data for Model Simulation” on page 1-1673.

Obtain and Apply Estimated Initial Conditions

Load and plot the data.

load iddata1ic z1i
plot(z1i)

1 Functions

1-1682

Examine the initial value of the output data y(1).

ystart = z1i.y(1)

ystart = -3.0491

The measured output does not start at 0.

Estimate a second-order transfer function sys and return the estimated initial condition ic.

[sys,ic] = tfest(z1i,2,1);
ic

ic =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [0.2957 5.2441]
 Ts: 0

ic is an initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0.

Simulate sys using the estimation data but without incorporating the initial conditions. Plot the
simulated output with the measured output.

 simOptions

1-1683

y_no_ic = sim(sys,z1i);
plot(y_no_ic,z1i)
legend('Model Response','Output Data')

The measured and simulated outputs do not agree at the beginning of the simulation.

Incorporate the initial condition into the simOptions option set.

opt = simOptions('InitialCondition',ic);
y_ic = sim(sys,z1i,opt);
plot(y_ic,z1i)
legend('Model Response','Output Data')

1 Functions

1-1684

The simulation combines the model response to the input signal with the free response to the initial
condition. The measured and simulated outputs now have better agreement at the beginning of the
simulation. This initial condition is valid only for the estimation data z1i.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AddNoise',true','InputOffset',[5;0] adds default Gaussian white noise to the
response model and specifies an input offset of 5 for the first of two model inputs.

InitialCondition — Simulation initial conditions
[] (default) | column vector | matrix | initialCondition object | object array | structure |
structure array | 'model'

Simulation initial conditions, specified as one of the following:

• 'z' — Zero initial conditions.

 simOptions

1-1685

• Numerical column vector of initial states with length equal to the model order.

For multiexperiment data, specify a matrix with Ne columns, where Ne is the number of
experiments, to configure the initial conditions separately for each experiment. Otherwise, use a
column vector to specify the same initial conditions for all experiments.

Use this option for state-space models (idss and idgrey) only.
• initialCondition object — initialCondition object that represents a model of the free

response of the system to initial conditions. For multiexperiment data, specify a 1-by-Ne array of
objects, where Ne is the number of experiments.

Use this option for linear models only. For an example, see “Obtain and Apply Estimated Initial
Conditions” on page 1-1682.

• Structure with the following fields, which contain the historical input and output values for a time
interval immediately before the start time of the data used in the simulation:

Field Description
Input Input history, specified as a matrix with Nu columns, where Nu is the number of

input channels. For time-series models, use []. The number of rows must be
greater than or equal to the model order.

Output Output history, specified as a matrix with Ny columns, where Ny is the number of
output channels. The number of rows must be greater than or equal to the model
order.

For an example, see “Use Historical Data to Specify Initial Conditions for Model Simulation” on
page 1-1682.

For multiexperiment data, configure the initial conditions separately for each experiment by
specifying InitialCondition as a structure array with Ne elements. To specify the same initial
conditions for all experiments, use a single structure.

The software uses data2state to map the historical data to states. If your model is not idss,
idgrey, idnlgrey, or idnlarx, the software first converts the model to its state-space
representation and then maps the data to states. If conversion of your model to idss is not
possible, the estimated states are returned empty.

• 'model' — Use this option for idnlgrey models only. The software sets the initial states to the
values specified in the sys.InitialStates property of the model sys.

• [] — Corresponds to zero initial conditions for all models except idnlgrey. For idnlgrey
models, the software treats [] as 'model' and specifies the initial states as
sys.InitialStates.

X0Covariance — Covariance of initial states vector
[] (default) | matrix

Covariance of initial states vector, specified as one of the following:

• Positive definite matrix of size Nx-by-Nx, where Nx is the model order.

For multiexperiment data, specify as an Nx-by-Nx-by-Ne matrix, where Ne is the number of
experiments.

• [] — No uncertainty in the initial states.

1 Functions

1-1686

Use this option only for state-space models (idss and idgrey) when 'InitialCondition' is
specified as a column vector. Use this option to account for initial condition uncertainty when
computing the standard deviation of the simulated response of a model.

InputInterSample — Input-channel intersample behavior
'auto' | 'zoh' | 'foh' | 'bl'

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata
object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

InputOffset — Input signal offset
[] (default) | column vector | matrix

Input signal offset, specified as a column vector of length Nu. Use [] if there are no input offsets.
Each element of InputOffset is subtracted from the corresponding input data before the input is
used to simulate the model.

For multiexperiment data, specify InputOffset as:

• An Nu-by-Ne matrix to set offsets separately for each experiment.
• A column vector of length Nu to apply the same offset for all experiments.

OutputOffset — Output signal offset
[] (default) | column vector | matrix

Output signal offset, specified as a column vector of length Ny. Use [] if there are no output offsets.
Each element of OutputOffset is added to the corresponding simulated output response of the
model.

For multiexperiment data, specify OutputOffset as:

• An Ny-by-Ne matrix to set offsets separately for each experiment.
• A column vector of length Ny to apply the same offset for all experiments.

AddNoise — Noise addition toggle
false (default) | true

Noise addition toggle, specified as a logical value indicating whether to add noise to the response
model.

 simOptions

1-1687

NoiseData — Noise signal data
[] (default) | matrix | cell array of matrices

Noise signal data specified as one of the following:

• [] — Default Gaussian white noise.
• Matrix with Ns rows and Ny columns, where Ns is the number of input data samples, and Ny is the

number of outputs. Each matrix entry is scaled according to NoiseVariance property of the
simulated model and added to the corresponding output data point. To set NoiseData at a level
that is consistent with the model, use white noise with zero mean and a unit covariance matrix.

• Cell array of Ne matrices, where Ne is the number of experiments for multiexperiment data. Use a
cell array to set the NoiseData separately for each experiment, otherwise set the same noise
signal for all experiments using a matrix.

NoiseData is the noise signal, e(t), for the model

y(t) = Gu(t) + He(t) .

Here,G is the transfer function from the input, u(t), to the output, y(t), and H is the noise transfer
function.

NoiseData is used for simulation only when AddNoise is true.

OutputTimes — Times at which the output is calculated
[] (default) | vector | cell array

Times at which the output is calculated, specified as one of the following:

• Empty matrix, []. This is the default option, in which output times are not specified. For systems
with inputs, the output sample times are chosen to be the same as those of the input signals. For
autonomous systems (that is, systems with no inputs) a non-empty value for OutputTimes must
be specified, otherwise, an error is generated during simulation.

• Time span [tMin, tMax], where tMin and tMax are expressed in the time units of the model.
• Time vector. A column vector of doubles. For models with inputs, the time vector must be

contained within the time span of the simulation inputs (that is entries cannot be outside the time
range of the input signals). For discrete-time models, the time interval must match the model
sample time.

• Cell array. This option is used for multi-experiment simulations. Each element of the cell contains
an array of time spans or time vectors, one array for each data experiment.

Output Arguments
opt — Option set for sim command
simOptions option set

Option set for sim command, returned as a simOptions option set.

Version History
Introduced in R2012a

1 Functions

1-1688

InputInterSample option allows intersample behavior specification for continuous models
estimated from timetables or matrices.

iddata objects contain an InterSample property that describes the behavior of the signal between
sample points. The InputInterSample option implements a version of that property in simOptions
so that intersample behavior can be specified also when estimation data is stored in timetables or
matrices.

See Also
sim

 simOptions

1-1689

simsd
Simulate linear models with uncertainty using Monte Carlo method

Syntax
simsd(sys,udata)
simsd(sys,udata,N)
simsd(sys,udata,N,opt)

y = simsd(___)
[y,y_sd] = simsd(___)

Description
simsd simulates linear models using the Monte Carlo method. The command performs multiple
simulations using different values of the uncertain parameters of the model, and different realizations
of additive noise and simulation initial conditions. simsd uses Monte Carlo techniques to generate
response uncertainty, whereas sim generates the uncertainty using the Gauss Approximation
Formula.

simsd(sys,udata) simulates and plots the response of 10 perturbed realizations of the identified
model sys. Simulation input data udata is used to compute the simulated response.

The parameters of the perturbed realizations of sys are consistent with the parameter covariance of
the original model, sys. If sys does not contain parameter covariance information, the 10 simulated
responses are identical. For information about how the parameter covariance information is used to
generate the perturbed models, see “Generating Perturbations of Identified Model” on page 1-1697.

simsd(sys,udata,N) simulates and plots the response of N perturbed realizations of the identified
model sys.

simsd(sys,udata,N,opt) simulates the system response using the simulation behavior specified
in the option set opt. Use opt to specify uncertainties in the initial conditions and include the effect
of additive disturbances.

The simulated responses are all identical if sys does not contain parameter covariance information,
and you do not specify additive noise or covariance values for initial states. You specify these values
in the AddNoise and X0Covariance options of opt.

y = simsd(___) returns the N simulation results in y as a cell array. No simulated response plot is
produced. Use with any of the input argument combinations in the previous syntaxes.

[y,y_sd] = simsd(___) also returns the estimated standard deviation y_sd for the simulated
response.

Examples

1 Functions

1-1690

Simulate State-Space Model Using Monte Carlo Method

Load the estimation data.

load iddata1 z1

z1 is an iddata object that stores the input-output estimation data.

Estimate a third-order state-space model.

sys = ssest(z1,3);

Simulate the response of the estimated model using the Monte Carlo method and input estimation
data, and plot the response.

simsd(sys,z1);

The blue line plots the simulated response of the original nominal model sys. The green lines plot the
simulated response of 10 perturbed realizations of sys.

Simulate Estimated Model Using Monte Carlo Method

Simulate an estimated model using the Monte Carlo method for a specified number of model
perturbations.

 simsd

1-1691

Estimate a second-order state-space model using estimation data. Obtain sys in the observability
canonical form.

load iddata3 z3
sys = ssest(z3,2,'Form','canonical');

Compute the simulated response of the estimated model using the Monte Carlo method, and plot the
responses. Specify the number of random model perturbations as 20.

N = 20;
simsd(sys,z3,N)

The blue line plots the simulated response of the original nominal model sys. The green lines plot the
simulated response of the 20 perturbed realizations of sys.

You can also obtain the simulated response for each perturbation of sys. No plot is generated when
you use this syntax.

y = simsd(sys,z3,N);

y is the simulated response, returned as a cell array of N+1 elements. y{1} contains the nominal
response for sys. The remaining elements contain the simulated response for the N perturbed
realizations.

1 Functions

1-1692

Simulate Time Series Model Using Monte Carlo Method

Load time series data.

load iddata9 z9

z9 is an iddata object with 200 output data samples and no inputs.

Estimate a sixth-order AR model using the least-squares algorithm.

sys = ar(z9,6,'ls');

For time series data, specify the desired simulation length, Ns = 200 using an Ns-by-0 input data set.

data = iddata([],zeros(200,0),z9.Ts);

Set the initial conditions to use the initial samples of the time series as historical output samples. The
past data is mapped to the initial states of each perturbed system individually.

IC = struct('Input',[],'Output',z9.y(1:6));
opt = simsdOptions('InitialCondition',IC);

Simulate the model using Monte Carlo method and specified initial conditions. Specify the number of
random model perturbations as 20.

simsd(sys,data,20,opt)

 simsd

1-1693

The blue line plots the simulated response of the original nominal model sys. The green lines plot the
simulated response of the 20 perturbed realizations of sys.

Study Effect of Initial Condition Uncertainty on Model Response

Load data, and split it into estimation and simulation data.

load iddata3
ze = z3(1:200);
zsim = z3(201:256);

Estimate a second-order state-space model sys using estimation data. Specify that no parameter
covariance data is generated. Obtain sys in the observability canonical form.

opt = ssestOptions('EstimateCovariance',false);
sys = ssest(ze,2,'Form','canonical',opt);

Set the initial conditions for simulating the estimated model. Specify initial state values x0 for the
two states and also the covariance of initial state values x0Cov. The covariance is specified as a 2-
by-2 matrix because there are two states.

x0 = [1.2; -2.4];
x0Cov = [0.86 -0.39; -0.39 1.42];
opt = simsdOptions('InitialCondition',x0,'X0Covariance',x0Cov);

Simulate the model using Monte Carlo method and specified initial conditions. Specify the number of
random model perturbations as 100.

simsd(sys,zsim,100,opt)

1 Functions

1-1694

The blue line plots the simulated response of the original nominal model sys. The green lines plot the
simulated response of the 100 perturbed realizations of sys. The software uses a different realization
of the initial states to simulate each perturbed model. Initial states are drawn from a Gaussian
distribution with mean InitialCondition and covariance X0Covariance.

Study Effect of Additive Disturbance on Response Uncertainty

Load the estimation data.

load iddata1 z1

z1 is an idddata object that stores 300 input-output estimation data samples.

Estimate a second-order state-space model using the estimation data.

sys = ssest(z1,2);

Create a default option set for simsd, and modify the option set to add noise.

opt = simsdOptions;
opt.AddNoise = true;

Compute the simulated response of the estimated model using the Monte Carlo method. Specify the
number of random model perturbations as 20, and simulate the model using the specified option set.

 simsd

1-1695

[y,y_sd] = simsd(sys,z1,20,opt);

y is the simulated response, returned as a cell array of 21 elements. y{1} contains the nominal,
noise-free response for sys. The remaining elements contain the simulated response for the 20
perturbed realizations of sys with additive disturbances added to each response.

y_sd is the estimated standard deviation of simulated response, returned as an iddata object with
no inputs. The standard deviations are computed from the 21 simulated outputs. To access the
standard deviation, use y_sd.OutputData.

Input Arguments
sys — Model to be simulated
parametric linear identified model

Model to be simulated, specified as one of the following parametric linear identified models: idtf,
idproc, idpoly, idss, or idgrey.

To generate the set of simulated responses, the software perturbs the parameters of sys in a way
that is consistent with the parameter covariance information. Use getcov to examine the parameter
uncertainty for sys. For information about how the perturbed models are generated from sys, see
rsample.

The simulated responses are all identical if sys does not contain parameter covariance information
and you do not specify additive noise or covariance values for initial states. You specify these values
in the AddNoise and X0Covariance options of opt.

udata — Simulation input data
iddata object | matrix

Simulation input data, specified as one of the following:

• iddata object — Input data can be either time-domain or frequency-domain. The software uses
only the input channels of the iddata object.

If sys is a time series model, that is, a model with no inputs, specify udata as an Ns-by-0 signal,
where Ns is the wanted number of simulation output samples for each of the N perturbed
realizations of sys. For example, to simulate 100 output samples, specify udata as follows.

udata = iddata([],zeros(100,0),Ts);

For an example, see “Simulate Time Series Model Using Monte Carlo Method” on page 1-1692.
• matrix — For simulation of discrete-time systems using time-domain data only. Columns of the

matrix correspond to each input channel.

If you do not have data from an experiment, use idinput to generate signals with various
characteristics.

N — Number of perturbed realizations
10 (default) | positive integer

Number of perturbed realizations of sys to be simulated, specified as a positive integer.

1 Functions

1-1696

opt — Simulation options
simsdOptions option set

Simulation options for simulating models using Monte Carlo methods, specified as a simsdOptions
option set. You can use this option set to specify:

• Input and output signal offsets — Specify an offset to remove from the input signal and an offset to
add to the response of sys.

• Initial condition handling — Specify initial conditions for simulation and their covariance. For
state-space and linear grey-box models (idss and idgrey), if you want to simulate the effect of
uncertainty in initial states, set the InitialCondition option to a double vector, and specify its
covariance using the X0Covariance option. For an example, see “Study Effect of Initial Condition
Uncertainty on Model Response” on page 1-1694.

• Addition of noise to simulated data — If you want to include the influence of additive disturbances,
specify the AddNoise option as true. For an example, see “Study Effect of Additive Disturbance
on Response Uncertainty” on page 1-1695.

Output Arguments
y — Simulated response
cell array

Simulated response, returned as a cell array of N+1 elements. y{1} contains the nominal response
for sys. The remaining elements contain the simulated response for the N perturbed realizations.

The command performs multiple simulations using different values of the uncertain parameters of the
model, and different realizations of additive noise and simulation initial conditions. Thus, the
simulated responses are all identical if sys does not contain parameter covariance information and
you do not specify additive noise and covariance values for initial states in opt.

y_sd — Estimated standard deviation of simulated response
iddata object

Estimated standard deviation of simulated response, returned as an iddata object. The standard
deviation is computed as the sample standard deviation of the y ensemble:

y_sd = 1
N ∑

i = 2

N + 1
(y 1 − y i)2

Here y{1} is the nominal response for sys, and y{i} (i = 2:N+1) are the simulated responses for
the N perturbed realizations of sys.

More About
Generating Perturbations of Identified Model

The software generates N perturbations of the identified model sys and then simulates the response
of each of these perturbations. The parameters of the perturbed realizations of sys are consistent
with the parameter covariance of the original model sys. The parameter covariance of sys gives
information about the distribution of the parameters. However, for some parameter values, the
resulting perturbed systems can be unstable. To reduce the probability of generation of unrealistic
systems, the software prescales the parameter covariance.

 simsd

1-1697

If Δp is the parameter covariance for the parameters p of sys, then the simulated output f(p+Δp) of a
perturbed model as a first-order approximation is:

f (p + Δp) = f (p) + ∂ f
∂pΔp

The simsd command first scales Δp by a scaling factor s (approximately 0.1%) to generate perturbed
systems with parameters (p+sΔp). The command then computes f(p+sΔp), the simulated response of
these perturbed systems. Where,

f (p + sΔp) = f (p) + s∂ f
∂pΔp

The command then computes the simulated response f(p+Δp) as:

f (p + Δp) = f (p) + 1
s f (p + sΔp)− f (p)

Note This scaling is not applied to the free delays of idproc or idtf models.

If you specify the AddNoise option of simsdOptions as true, the software adds different
realizations of the noise sequence to the noise-free responses of the perturbed system. The
realizations of the noise sequence are consistent with the noise component of the model.

For state-space models, if you specify the covariance of initial state values in X0Covariance option
of simsdOptions, different realizations of the initial states are used to simulate each perturbed
model. Initial states are drawn from a Gaussian distribution with mean InitialCondition and
covariance X0Covariance.

Version History
Introduced before R2006a

See Also
simsdOptions | getcov | sim | rsample | showConfidence

1 Functions

1-1698

simsdOptions
Option set for simsd

Syntax
opt = simsdOptions
opt = simsdOptions(Name,Value)

Description
opt = simsdOptions creates the default option set for simsd.

opt = simsdOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Examples

Create Default Option Set for Uncertain Model Simulation

opt = simsdOptions;

Specify Options for Uncertain Model Simulation

Create an option set for simsd specifying the following options.

• Zero initial conditions
• Input offset of 5 for the second input of a two-input model

opt = simsdOptions('InitialCondition','z','InputOffset',[0; 5]);

Add Noise to Uncertain Simulation Output

Create a default option set.

opt = simsdOptions;

Modify the option set to add noise to the data.

opt.AddNoise = true;

When you use this option set and simsd command to simulate the response of a model sys. The
command returns the perturbed realizations of sys with additive disturbances added to each
response.

 simsdOptions

1-1699

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: opt = simsdOptions('AddNoise',true','InputOffset',[5;0]) adds default
Gaussian white noise to the response model, and specifies an input offset of 5 for the first of two
model inputs.

InitialCondition — Simulation initial conditions
'z' (default) | column vector | matrix | structure | structure array

Simulation initial conditions, specified as one of the following:

• 'z' — Zero initial conditions.
• Numerical column vector X0 of initial states with length equal to the model order.

For multi-experiment data, specify a matrix with Ne columns, where Ne is the number of
experiments, to configure the initial conditions separately for each experiment. Otherwise, use a
column vector to specify the same initial conditions for all experiments.

Use this option for state-space models (idss and idgrey) only. You can also specify the
covariance of the initial state vector in X0Covariance.

• Structure with the following fields, which contain the historical input and output values for a time
interval immediately before the start time of the data used in the simulation:

Field Description
Input Input history, specified as a matrix with Nu columns, where Nu is the number of

input channels. For time-series models, use []. The number of rows must be
greater than or equal to the model order.

Output Output history, specified as a matrix with Ny columns, where Ny is the number of
output channels. The number of rows must be greater than or equal to the model
order.

For multi-experiment data, you can configure the initial conditions separately for each experiment
by specifying InitialCondition as a structure array with Ne elements. Otherwise, use a single
structure to specify the same initial conditions for all experiments.

The software uses data2state to map the historical data to states. If your model is not idss or
idgrey, the software first converts the model to its state-space representation and then maps the
data to states. If conversion of your model to idss is not possible, the estimated states are
returned empty.

X0Covariance — Covariance of initial states vector
[] (default) | matrix

Covariance of initial states vector, specified as one of the following:

1 Functions

1-1700

• Positive definite matrix of size Nx-by-Nx, where Nx is the model order.

For multi-experiment data, specify as an Nx-by-Nx-by-Ne matrix, where Ne is the number of
experiments. For the kth experiment, X0Covariance(:,:,k) specifies the covariance of initial
states X0(:,k).

• [] — No uncertainty in the initial states.

Use this option for state-space models (idss and idgrey) when 'InitialCondition' is specified
as a numerical column vector X0. When you specify this option, the software uses a different
realization of the initial states to simulate each perturbed model. Initial states are drawn from a
Gaussian distribution with mean InitialCondition and covariance X0Covariance.

InputOffset — Input signal offset
[] (default) | column vector | matrix

Input signal offset, specified as a column vector of length Nu. Use [] if there are no input offsets.
Each element of InputOffset is subtracted from the corresponding input data before the input is
used to simulate the model.

For multiexperiment data, specify InputOffset as:

• An Nu-by-Ne matrix to set offsets separately for each experiment.
• A column vector of length Nu to apply the same offset for all experiments.

OutputOffset — Output signal offset
[] (default) | column vector | matrix

Output signal offset, specified as a column vector of length Ny. Use [] if there are no output offsets.
Each element of OutputOffset is added to the corresponding simulated output response of the
model.

For multiexperiment data, specify OutputOffset as:

• An Ny-by-Ne matrix to set offsets separately for each experiment.
• A column vector of length Ny to apply the same offset for all experiments.

AddNoise — Noise addition toggle
false (default) | true

Noise addition toggle, specified as a logical value indicating whether to add noise to the response
model. Set NoiseModel to true to study the effect of additive disturbances on the response. A
different realization of the noise sequence, consistent with the noise component of the perturbed
system, is added to the noise-free response of that system.

Output Arguments
opt — Option set for simsd command
simsdOptions option set

Option set for simsd command, returned as a simsdOptions option set.

 simsdOptions

1-1701

Version History
Introduced in R2012a

See Also
simsd

1 Functions

1-1702

size
Query output/input/array dimensions of input–output model and number of frequencies of FRD model

Syntax
size(sys)
d = size(sys)
Ny = size(sys,1)
Nu = size(sys,2)
Sk = size(sys,2+k)
Nf = size(sys,'frequency')

Description
When invoked without output arguments, size(sys) returns a description of type and the input-
output dimensions of sys. If sys is a model array, the array size is also described. For identified
models, the number of free parameters is also displayed. The lengths of the array dimensions are also
included in the response to size when sys is a model array.

d = size(sys) returns:

• The row vector d = [Ny Nu] for a single dynamic model sys with Ny outputs and Nu inputs
• The row vector d = [Ny Nu S1 S2 ... Sp] for an S1-by-S2-by-...-by-Sp array of dynamic

models with Ny outputs and Nu inputs

Ny = size(sys,1) returns the number of outputs of sys.

Nu = size(sys,2) returns the number of inputs of sys.

Sk = size(sys,2+k) returns the length of the k-th array dimension when sys is a model array.

Nf = size(sys,'frequency') returns the number of frequencies when sys is a frequency
response data model. This is the same as the length of sys.frequency.

Examples

Query Dimensions of Model Array

Create a 3-by-1 model array of random state-space models with 3 outputs, 2 inputs, and 5 states.

sys = rss(5,3,2,3);

Verify the size of the model array.

size(sys)

3x1 array of state-space models.
Each model has 3 outputs, 2 inputs, and 5 states.

 size

1-1703

Query Dimensions of Identified Model

Create a 2-input 2-output continuous-time process model with identifiable parameters.

type = {'p1d','p2';'p3uz','p0'};
sys = idproc(type);

Each element of the type cell array describes the model structure for the corresponding input-output
pair.

Query the input-output dimensions and number of free parameters in the model.

size(sys)

Process model with 2 outputs, 2 inputs and 12 free parameters.

Version History
Introduced before R2006a

See Also
isempty | issiso | ndims | nparams

1 Functions

1-1704

spa
Estimate frequency response with fixed frequency resolution using spectral analysis

Syntax
G = spa(data)
G = spa(data,winSize,freq)
G = spa(data,winSize,freq,maxSize)

Description
G = spa(data) estimates the frequency response, along with uncertainty, and the noise spectrum
from time- or frequency-domain data data. If data is a time series, spa(data) returns the output
power spectrum along with uncertainty. spa computes the spectra at 128 equally spaced frequency
values between 0 (excluded) and π, using a Hann window.

G = spa(data,winSize,freq) estimates the frequency response at the frequencies contained in
freq, using a Hann window with size winSize.

G = spa(data,winSize,freq,maxSize) splits the input/output data into segments, each
segment containing fewer than maxSize elements. Use this syntax to improve computational
performance.

Examples

Estimate Frequency Response

Estimate the frequency response for the input/output data in the iddata object z3. Use the default
fixed resolution of 128 equally spaced logarithmic frequency values between 0 (excluded) and π.

load iddata3 z3;
g = spa(z3);
bode(g)

 spa

1-1705

Estimate Frequency Response at Specified Frequencies

Generate the logarithmically spaced vector f.

f = logspace(-2,pi,128);

Estimate the frequency response for the input/output data z3. Specify the window size as [] to
obtain the default lag window size.

load iddata3 z3;
g = spa(z3,[],f);

Plot the Bode response and disturbance spectrum with a confidence interval of 3 standard deviations.

h = bodeplot(g);
showConfidence(h,3)

1 Functions

1-1706

figure
h = spectrumplot(g);
showConfidence(h,3)

 spa

1-1707

Input Arguments
data — Input/output data
iddata object | idfrd object

Input/output data, specified as an iddata object or an idfrd object that can contain complex values.
data can also contain time series data with only output.

winSize — Window size
[] (default) | scalar integer

Hann window size, also known as lag size, specified as a scalar integer. By default, the function sets
the window size to min(length(data)/10,30).

freq — Frequencies
row vector

Frequencies at which to estimate spectral response, specified as a row vector in units of rad/
TimeUnit, where TimeUnit refers to the TimeUnit property of data. By default, the function sets
freq to a vector of 128 values in the range (0,π], evenly spaced logarithmically. For discrete-time
models, set freq within the Nyquist frequency bound.

maxSize — Maximum segment size
250e3 (default) | positive integer

1 Functions

1-1708

Maximum size of segments within data, specified as a positive integer. If you omit this argument, the
function performs estimation using the full data set in data rather than segmenting the data.

Output Arguments
G — Frequency response and noise spectrum
idfrd object

Frequency response with uncertainty and noise spectrum, specified as an idfrd object. For time
series data, G is the estimated spectrum and standard deviation.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
windowSiz
e

Size of the Hann window.

DataUsed Attributes of the data used for estimation. Structure with the following fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time. This is equivalent to data.Ts.
InterSam
ple

Input intersample behavior. One of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

The value of InterSample has no effect on estimation results for
discrete-time models.

InputOff
set

Offset removed from time-domain input data during estimation.

OutputOf
fset

Offset removed from time-domain output data during estimation.

 spa

1-1709

More About
Frequency Response Function

A frequency response function describes the steady-state response of a system to sinusoidal inputs.
For a linear system, a sinusoidal input of a specific frequency results in an output that is also a
sinusoid with the same frequency, but with a different amplitude and phase. The frequency response
function describes the amplitude change and phase shift as a function of frequency.

To better understand the frequency response function, consider the following description of a linear
dynamic system:

y(t) = G(q)u(t) + v(t)

Here, u(t) and y(t) are the input and output signals, respectively. G(q) is called the transfer function of
the system—it captures the system dynamics that take the input to the output. The notation G(q)u(t)
represents the following operation:

G(q)u(t) = ∑
k = 1

∞
g(k)u(t − k)

q is the shift operator, defined by the following equation:

G(q) = ∑
k = 1

∞
g(k)q−k q−1u(t) = u(t − 1)

G(q) is the frequency-response function when it is evaluated on the unit circle, G(q=eiω).

Together, G(q=eiω) and the output noise spectrum Φ v(ω) compose the frequency-domain description
of the system.

The frequency-response function estimated using the Blackman-Tukey approach is given by the
following equation:

G N eiω =
Φ yu ω
Φu ω

In this case, ^ represents approximate quantities. For a derivation of this equation, see the chapter
on nonparametric time- and frequency-domain methods in [1].

Output Noise Spectrum

The output noise spectrum (spectrum of v(t)) is given by the following equation:

Φ v ω = Φ y ω −
Φ yu ω 2

Φu ω

This equation for the noise spectrum is derived by assuming that the linear relationship
y(t) = G(q)u(t) + v(t) holds, that u(t) is independent of v(t), and that the following relationships
between the spectra hold:

Φy(ω) = G eiω 2Φu(ω) + Φv(ω)

1 Functions

1-1710

Φyu(ω) = G eiω Φu(ω)

Here, the noise spectrum is given by the following equation:

Φv(ω) ≡ ∑
τ = −∞

∞
Rv(τ)e−iwτ

Φ yu(ω) is the output-input cross-spectrum and Φu(ω) is the input spectrum.

Alternatively, the disturbance v(t) can be described as filtered white noise:

v(t) = H(q)e(t)

Here, e(t) is the white noise with variance λ and the noise power spectrum is given by the following
equation:

Φv(ω) = λ H eiω 2

Algorithms
spa applies the Blackman-Tukey spectral analysis method by following these steps:

1 Compute the covariances and cross-covariance from u(t) and y(t):

R y τ = 1
N ∑t = 1

N
y t + τ y t

R u τ = 1
N ∑t = 1

N
u t + τ u t

R yu τ = 1
N ∑t = 1

N
y t + τ u t

2 Compute the Fourier transforms of the covariances and the cross-covariance:

Φ y(ω) = ∑
τ = −M

M
R y(τ)WM(τ)e−iωτ

Φu(ω) = ∑
τ = −M

M
R u(τ)WM(τ)e−iωτ

Φ yu(ω) = ∑
τ = −M

M
R yu(τ)WM(τ)e−iωτ

where WM(τ) is the Hann window with a width (lag size) of M. You can specify M to control the
frequency resolution of the estimate, which is approximately equal to 2π/M rad/sample time.

By default, this operation uses 128 equally spaced frequency values between 0 (excluded) and π,
where w = [1:128]/128*pi/Ts and Ts is the sample time of that data set. The default lag size
of the Hann window is M = min(length(data)/10,30). For default frequencies, the operation
uses fast Fourier transforms (FFT), which are more efficient than for user-defined frequencies.

 spa

1-1711

Note M = γ is in Table 6.1 of [1]. Standard deviations are on pages 184 and 188 in [1].
3 Compute the frequency-response function G N eiω and the output noise spectrum Φ v(ω).

G N eiω =
Φ yu ω
Φu ω

Φv(ω) ≡ ∑
τ = −∞

∞
Rv(τ)e−iwτ

spectrum is the spectrum matrix for both the output and the input channels. That is, if z =
[data.OutputData, data.InputData], spectrum contains as spectrum data the matrix-valued
power spectrum of z.

S = ∑
m = −M

M
Ez t + m z t ′WM Ts exp −iωm

Here, ' is a complex-conjugate transpose.

Version History
Introduced before R2006a

References
[1] Ljung, Lennart. System Identification: Theory for the User. 2nd ed. Prentice Hall Information and

System Sciences Series. Upper Saddle River, NJ: Prentice Hall PTR, 1999.

See Also
etfe | freqresp | idfrd | spafdr | bode | spectrum

Topics
“What is a Frequency-Response Model?”
“Estimate Frequency-Response Models at the Command Line”
“Selecting the Method for Computing Spectral Models”

1 Functions

1-1712

spafdr
Estimate frequency response and spectrum using spectral analysis with frequency-dependent
resolution

Syntax
g = spafdr(data)
g = spafdr(data,Resol,w)

Description
g = spafdr(data) estimates the input-to-output frequency response G(ω) and noise spectrum Φυ of
the general linear model

y(t) = G(q)u(t) + v(t)

where Φυ(ω) is the spectrum of υ(t). data contains the output-input data as an iddata object. The
data can be complex valued, and either time or frequency domain. It can also be an idfrd object
containing frequency-response data. g is an idfrd object with the estimate of G eiω at the
frequencies ω specified by row vector w. g also includes information about the spectrum estimate of
Φυ(ω) at the same frequencies. Both results are returned with estimated covariances, included in g.
The normalization of the spectrum is the same as described in spa.

Information about the estimation results and options used is stored in the model's Report property.
Report has the following fields:

• Status — Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

• Method — Estimation command used.
• WindowSize — Frequency resolution.
• DataUsed — Attributes of the data used for estimation. Structure with the following fields:

• Name — Name of the data set.
• Type — Data type.
• Length — Number of data samples.
• Ts — Sample time.
• InterSample — Input intersample behavior.
• InputOffset — Offset removed from time-domain input data during estimation.
• OutputOffset — Offset removed from time-domain output data during estimation.

g = spafdr(data,Resol,w) specifies frequencies and frequency resolution.

Frequencies

The frequency variable w is either specified as a row vector of frequencies in rad/TimeUnit, where
TimeUnit refers to the TimeUnit property of data, or as a cell array {wmin,wmax}. In the latter

 spafdr

1-1713

case the covered frequencies will be 50 logarithmically spaced points from wmin to wmax. You can
change the number of points to NP by entering {wmin,wmax,NP}.

Omitting w or entering it as an empty matrix gives the default value, which is 100 logarithmically
spaced frequencies between the smallest and largest frequency in data. For time-domain data, the
default range goes from 2π

NTs
 to π

Ts
, where Ts is the sample time of data and N is the number of data

points.

Resolution

The argument Resol defines the frequency resolution of the estimates. The resolution (measured in
rad/TimeUnit) is the size of the smallest detail in the frequency function and the spectrum that is
resolved by the estimate. The resolution is a tradeoff between obtaining estimates with fine, reliable
details, and suffering from spurious, random effects: The finer the resolution, the higher the variance
in the estimate. Resol can be entered as a scalar (measured in rad/TimeUnit), which defines the
resolution over the whole frequency interval. It can also be entered as a row vector of the same
length as w. Then Resol(k) is the local, frequency-dependent resolution around frequency w(k).

The default value of Resol, obtained by omitting it or entering it as the empty matrix, is Resol(k) =
2(w(k+1)-w(k)), adjusted upwards, so that a reasonable estimate is guaranteed. In all cases, the
resolution is returned in the variable g.Report.WindowSize.

Algorithms
If the data is given in the time domain, it is first converted to the frequency domain. Then averages of
Y(w)Conj(U(w)) and U(w)Conj(U(w)) are formed over the frequency ranges w, corresponding to
the desired resolution around the frequency in question. The ratio of these averages is then formed
for the frequency-function estimate, and corresponding expressions define the noise spectrum
estimate.

Version History
Introduced before R2006a

See Also
bode | etfe | freqresp | idfrd | nyquist | spa | spectrum

1 Functions

1-1714

spectrum
Plot or return output power spectrum of time series model or disturbance spectrum of linear input/
output model

Syntax
spectrum(sys)
spectrum(sys,{wmin, wmax})
spectrum(sys,w)
spectrum(sys1,...,sysN,w)

ps = spectrum(sys,w)
[ps,wout] = spectrum(sys)
[ps,wout,sdps] = spectrum(sys)

Description
Plot Results

spectrum(sys) plots the output power spectrum of an identified time series model sys or the
disturbance spectrum of an identified input/output model sys. The function chooses the frequency
range and number of points automatically.

• If sys is a time series model, then sys represents the system:

y(t) = He(t)

Here, e(t) is Gaussian white noise and y(t) is the observed output.

spectrum plots |H'H|, scaled by the variance of e(t) and the sample time.
• If sys is an input/output model, sys represents the system:

y(t) = Gu(t) + He(t)

Here, u(t) is the measured input, e(t) is Gaussian white noise, and y(t) is the observed output.

In this case, spectrum plots the spectrum of the disturbance component He(t).

For discrete-time models with sample time Ts, spectrum uses the transformation z = e jωTs to map
the unit circle to the real frequency axis. The function plots the spectrum only for frequencies smaller
than the Nyquist frequency π/Ts, and uses the default value of 1 time unit when Ts is unspecified.

spectrum(sys,{wmin, wmax}) creates a spectrum plot for frequencies ranging from wmin to
wmax.

spectrum(sys,w) creates a spectrum plot using the frequencies specified in the vector w.

spectrum(sys1,...,sysN,w) creates a spectrum plot of several identified models on a single plot.
The w argument is optional.

 spectrum

1-1715

You can specify a color, line style, and marker for each model. For example,
spectrum(sys1,'r',sys2,'y--',sys3,'gx') uses red for sys1, yellow dash markers for sys2,
and green x markers for sys3.

Return Results

ps = spectrum(sys,w) returns the power spectrum amplitude of sys for the specified frequencies
w. This syntax does not plot the spectrum.

[ps,wout] = spectrum(sys) returns the frequency vector wout for which the output power
spectrum is computed.

[ps,wout,sdps] = spectrum(sys) returns the estimated standard deviation of the power
spectrum.

Examples

Plot Output Spectrum of Time-Series Model

Load the time-series estimation data.

load iddata9 z9

Estimate a fourth-order AR model using a least-squares approach.

sys = ar(z9,4,'ls');

Plot the output spectrum of the model.

spectrum(sys);

1 Functions

1-1716

To change display options in the plot, right-click the plot to access the context menu. For example:

• To view the confidence region for the simulated response, select Characteristics > Confidence
Region.

• To specify a number of standard deviations to plot, select Properties. Then, in the property editor,
select the Options tab and specify the number of standard deviations in Number of standard
deviations for display. The default value is 1 standard deviation.

Plot Noise Spectrum of SISO Linear Identified Model

Load the estimation data.

load iddata1 z1;

Estimate a single-input single-output state-space model.

sys = n4sid(z1,2);

Plot the noise spectrum for the model. Specify a frequency range from 0.1 to 50 rad/sec.

spectrum(sys,{0.1,50});

 spectrum

1-1717

The function plots the spectrum, but limits the frequency range to the Nyquist frequency of
approximately 31.4 rad/s.

Compare Spectra of Sinusoid Signal and Its Square

Create an input consisting of the sum of five sinusoids, each spread over the full frequency range.
Compare the spectrum of this signal with that of its square.

Create a sum-of-sinusoids input that extends for 20 periods, with each period containing 100 samples.
Specify that the signal combine 5 sinusoids of random phase, using 10 trials to find the set with the
lowest signal spread. For more information on this step, see idinput.

u = idinput([100 1 20],'sine',[],[],[5 10 1]);

Create an input-only iddata object u that contains the input u and has a period of 100.

u = iddata([],u,1,'per',100);

Square the input values and store them in new iddata object u2.

u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);

Use etfe to estimate empirical transfer function models from u and u2. Plot the power spectra of
these models together. Use different marker colors and types to distinguish the spectrum sources.

1 Functions

1-1718

spectrum(etfe(u),'r*',etfe(u2),'+')

The plot shows some frequency splitting where the u2-based spectrum does not line up with the u-
based spectrum, but instead contains two spectral points that flank certain u-based points. This
splitting indicates the nonlinearity of the squared system.

Input Arguments
sys — Identified model
idpoly object | idproc object | idss object | idtf object

Identified model, specified as an idpoly object, an idproc object, an idss object, or an idtf
object.

• If sys is a time series model, then sys represents the system:

y(t) = He(t)

Here, e(t) is Gaussian white noise and y(t) is the observed output.
• If sys is an input/output model, then sys represents the system:

y(t) = Gu(t) + He(t)

Here, u(t) is the measured input, e(t) is Gaussian white noise, and y(t) is the observed output.

 spectrum

1-1719

wmin — Minimum frequency
positive number

Minimum frequency of the frequency range for which to plot the spectrum, specified as a positive
number.

Specify wmin in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

For an example of specifying wmin, see “Plot Noise Spectrum of SISO Linear Identified Model” on
page 1-1717.

wmax — Maximum frequency
positive number

Maximum frequency of the frequency range for which to plot the spectrum, specified as a positive
number. By default, the function uses the Nyquist frequency of sys as wmax.

Specify wmax in rad/TimeUnit, where TimeUnit is sys.TimeUnit. If you specify wmax to be
greater than the Nyquist frequency, then spectrum uses the Nyquist frequency instead.

For an example of specifying wmax, see “Plot Noise Spectrum of SISO Linear Identified Model” on
page 1-1717.

w — Frequencies
positive numeric vector

Frequencies for which to plot the spectrum, specified as a vector of positive numbers.

Specify w in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

Output Arguments
ps — Power spectrum amplitude
numeric array

Power spectrum amplitude, returned as a numeric vector or a numeric array.

• For single-output models, ps is a 1-by-1- Nw array, where Nw is the length of the frequency vector.
• For multiple-output models, ps is an Ny-by-Ny-by-Nw array, where Ny is the number of outputs.

ps(:,:,k) corresponds to the power spectrum for the frequency at w(k).

For amplitude values in dB, type psdb = 10*log10(ps).

wout — Frequencies
numeric vector

Frequencies for which the spectrum is plotted, returned as a numeric vector in units of rad/
TimeUnit, where TimeUnit is sys.TimeUnit. If you supply w as an input argument, the function
returns the identical vector in wout.

sdps — Standard deviation
numeric array

Estimated standard deviation of the power spectrum, returned as an array with the same dimensions
as ps.

1 Functions

1-1720

Version History
Introduced in R2012a

See Also
bode | freqresp | ar | arx | armax | forecast | etfe | idinput

Topics
“Frequency Response Plots for Model Validation”
“Noise Spectrum Plots”
“Plot the Noise Spectrum Using the System Identification App”
“Plot the Noise Spectrum at the Command Line”
“Plot Bode Plots Using the System Identification App”
“Plot Bode and Nyquist Plots at the Command Line”

 spectrum

1-1721

spectrumoptions
Option set for spectrumplot

Syntax
opt = spectrumoptions
opt = spectrumoptions('identpref')

Description
opt = spectrumoptions creates the default option set for spectrumplot. Use dot notation to
customize the option set, if needed.

opt = spectrumoptions('identpref') initializes the plot options with the System Identification
Toolbox preferences. Use this syntax to change a few plot options but otherwise use your toolbox
preferences.

Examples

Specify Options for Spectrum Plot

Specify the plot options.

plot_options = spectrumoptions;
plot_options.FreqUnits = 'Hz';
plot_options.FreqScale = 'linear';
plot_options.Xlim = {[0 20]};
plot_options.MagUnits = 'abs';

Estimate an AR model.

load iddata9 z9
sys = ar(z9,4);

Plot the output spectrum for the model.

spectrumplot(sys,plot_options);

1 Functions

1-1722

Initialize Plot Options Using Toolbox Preferences

opt = spectrumoptions('identpref');

Output Arguments
opt — Option set for spectrumplot
spectrumpoptions option set

Option set containing the specified options for spectrumplot.

 spectrumoptions

1-1723

Field Description
Title, XLabel, YLabel Text and style for axes labels and plot title,

specified as a structure array with the following
fields:

• String — Title and axes label text, specified
as a character vector.

Default Title: 'Power Spectrum'

Default XLabel: 'Frequency'

Default YLabel: 'Power'
• FontSize — Font size, specified as data type

scalar.
Default: 8

• FontWeight — Thickness of text, specified as
one of the following values: 'Normal' |
'Bold'
Default: 'Normal'

• Font Angle — Text character angle,
specified as one of the following values:
'Normal' | 'Italic'
Default: 'Normal'

• Color — Color of text, specified as vector of
RGB values between 0 to 1.
Default: [0,0,0]

• Interpreter — Interpretation of text
characters, specified as one of the following
values: 'tex' | 'latex'| 'none'
Default: 'tex'

1 Functions

1-1724

Field Description
TickLabel Tick label style, specified as a structure array

with the following fields:

• FontSize — Font size, specified as data type
scalar.
Default: 8

• FontWeight — Thickness of text, specified as
one of the following values: 'Normal' |
'Bold'
Default: 'Normal'

• Font Angle — Text character angle,
specified as one of the following values:
'Normal' | 'Italic'
Default: 'Normal'

• Color — Color of text, specified as vector of
RGB values between 0 to 1 | character vector
of color name | 'none'. For example, for
yellow color, specify as one of the following:
[1 1 0], 'yellow', or 'y'.
Default: [0,0,0]

Grid Show or hide the grid, specified as one of the
following values: 'off' | 'on'

Default: 'off'
GridColor Color of the grid lines, specified as one of the

following: vector of RGB values in the range
[0,1] | character vector of color name | 'none'.
For example, for yellow color, specify as one of
the following: [1 1 0], 'yellow', or 'y'.

Default: [0.15,0.15,0.15]
XLimMode, YLimMode Axes limit modes, specified as one of the

following values:

• 'auto' — The axes limits are based on the
data plotted

• 'manual' — The values are explicitly set with
Xlim, Ylim

Default: 'auto'
XLim, YLim Axes limits, specified as an array of the form

[min,max]
IOGrouping Grouping of input-output pairs in the plot,

specified as one of the following values: 'none' |
'inputs'| 'outputs'|'all'

Default: 'none'

 spectrumoptions

1-1725

Field Description
InputLabels, OutputLabels Input and output label styles, specified as a

structure array with the following fields:

• FontSize — Font size, specified as data type
scalar.
Default: 8

• FontWeight — Thickness of text, specified as
one of the following values: 'Normal' |
'Bold'
Default: 'Normal'

• Font Angle — Text character angle,
specified as one of the following values:
'Normal' | 'Italic'
Default: 'Normal'

• Color — Color of text, specified as a vector of
RGB values between 0 to 1 | character vector
of color name | 'none'. For example, for
yellow color, specify as one of the following:
[1 1 0], 'yellow', or 'y'.
Default: [0.4,0.4,0.4]

• Interpreter — Interpretation of text
characters, specified as one of the following
values: 'tex' | 'latex'| 'none'
Default: 'tex'

InputVisible, OutputVisible Visibility of input and output channels, specified
as one of the following values: 'off' | 'on'

Default: 'on'
ConfidenceRegionNumberSD Number of standard deviations to use to plot the

response confidence region.

Default: 1

1 Functions

1-1726

Field Description
FreqUnits Frequency units, specified as one of the following

values:

• 'Hz'
• 'rad/second'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto', which uses
frequency units rad/TimeUnit relative to
system time units specified in the TimeUnit
property. For multiple systems with different time
units, the units of the first system are used.

FreqScale Frequency scale, specified as one of the following
values: 'linear' | 'log'

Default: 'log'
MagUnits Magnitude units, specified as one of the following

values: 'dB' | 'abs'

Default: 'dB'

 spectrumoptions

1-1727

Field Description
MagScale Magnitude scale, specified as one of the following

values: 'linear' | 'log'

Default: 'linear'
MagLowerLimMode Enables a lower magnitude limit, specified as one

of the following values: 'auto' | 'manual'

Default: 'auto'
MagLowerLim Lower magnitude limit, specified as data type

double.

Version History
Introduced in R2012a

See Also
spectrumplot | identpref | getoptions | setoptions

1 Functions

1-1728

spectrumest
Estimate transfer function model for power spectrum data

Syntax
sys = spectrumest(data)
sys = spectrumest(data,w)
sys = spectrumest(data,w,ts)
sys = spectrumest(data,w,ts,np)
sys = spectrumest(data,w,ts,np,nz)

sys = spectrumest(data,w,ts,Feedthrough=ft)
sys = spectrumest(data,w,ts,np,nz,Feedthrough=ft)

sys = spectrumest(___ ,options)

Description
Estimate Model

sys = spectrumest(data) fits a minimum-phase, discrete-time transfer function model, sys, to
the power spectrum data in data. The spectrumest function assumes that data is measured
uniformly over a frequency range of 0 to π rad/s. spectrumest determines the order (number of
poles) of sys automatically.

sys = spectrumest(data,w) specifies the frequency vector w of the data.

sys = spectrumest(data,w,ts) specifies the sample time ts of the data.

• To estimate discrete-time transfer functions, set ts > 0.
• To estimate continuous-time transfer functions, set ts = 0.

sys = spectrumest(data,w,ts,np) fits a transfer function with np poles to the data.
spectrumest also fits np zeros to the data.

sys = spectrumest(data,w,ts,np,nz) fits a transfer function with np poles and nz zeros to the
data.

Enable Feedthrough

sys = spectrumest(data,w,ts,Feedthrough=ft) specifies whether the identified transfer
function sys has feedthrough. To enable feedthrough, sys must be discrete time (ts > 0).

sys = spectrumest(data,w,ts,np,nz,Feedthrough=ft) specifies whether the transfer
function with np poles and nz zeros has feedthrough.

Specify Additional Options

sys = spectrumest(___ ,options) specifies estimation configuration options, such as the
numerical search method to be used for estimation. Specify opt after all other arguments shown in
previous syntaxes.

 spectrumest

1-1729

Examples

Fit Transfer Function Models to Power Spectrum Data

Fit transfer functions models of varying orders to power spectrum data, and compare the resulting
spectral models.

Load the benchmark Marple data. Extract the power spectrum from the data, along with the
corresponding frequency points and sample time.

load marple
fsys = etfe(marple);
ps = squeeze(fsys.SpectrumData);
w = fsys.Frequency;
Ts = fsys.Ts;

Fit a fourth-order spectral model to the data.

sys1 = spectrumest(ps,w,Ts,4);

Fit a second, more detailed spectral model to the data. Use a spectrumestOptions object to apply
an inverse weighting filter to the estimated model. Do not specify a number of poles.

opt = spectrumestOptions(WeightingFilter='inv');
sys2 = spectrumest(ps,w,Ts,opt);

spectrumest generates a plot of model orders (number of poles) to use to estimate the model. The
optimal model order identified by spectrumest is selected.

1 Under Chosen Order, optionally select a different model order.
2 Click Apply.

Plot the data and the frequency responses of the two spectral models on a semilog plot. The higher-
order model produces a more accurate fit to the power spectrum data.

semilogy(w,sqrt(ps),'k', ...
 w,squeeze(abs(freqresp(sys1,w))),'b', ...
 w,squeeze(abs(freqresp(sys2,w))),'r')
xlabel('Frequency (rad/s)')
ylabel('Magnitude')
legend('data','sys1','sys2')

1 Functions

1-1730

Input Arguments
data — Power spectrum data
nonnegative real vector

Power spectrum data, specified as a nonnegative real vector.

w — Frequency points
numeric vector

Frequency points corresponding to data, specified as a numeric vector in units of rad/TimeUnit,
where TimeUnit is the system time unit that was used to compute data.

spectrumest assumes the Nyquist frequency to be equal to w(end).

ts — Sample time in seconds
nonnegative real scalar

Sample time of data, in seconds, specified as a nonnegative real scalar.

• If data is a continuous-time spectrum, specify ts = 0. The output transfer function sys has the
form

H(s) = num(s) / den(s),
where num and den are the numerator and denominator polynomial coefficients in descending
powers of s.

 spectrumest

1-1731

• If data is a discrete-time spectrum, specify ts > 0 so that π/ts represents the Nyquist
frequency. The output transfer function has the form

H(z-1) = num(z-1)/den(z-1),
where num and den are the numerator and denominator polynomial coefficients in descending
powers of z-1.

The default value of ts depends on whether you specify the spectrum frequencies w:

• If you specify w, then ts = π / w(end).
• If you do not specify w, then ts = 1.

np — Number of poles
"best" (default) | nonnegative integer | vector of nonnegative integers

Number of poles to fit to the transfer function sys to determine its model order, specified as one of
these values:

• "best" — Pick the number of poles required to set an optimal order automatically. The number of
poles is in the range 1:length(H)/2.

• Nonnegative integer — Apply a fixed order to sys by fitting the specified number of poles to it.
• Vector of nonnegative integers — Generate a bar plot to pick the optimal order based on the
significant singular values of a Loewner matrix generated for the data.

If you specify np without nz, then spectrumest fits np zeros to sys.
Example: [1:10]

nz — Number of zeros
nonnegative integer

Number of zeros to fit to the transfer function sys, specified as a nonnegative integer.

• If data is a discrete-time spectrum (ts > 0), then nz represents the number of zeros of the
numerator polynomial expressed in the z–1 variable. For example, P(z–1) = 1 + 2z–1 + 3z–2 has 2
zeros.

• If np is a scalar value and nz is not specified, then nz = np.
• If np is set to "best" or a range of values, then the nz argument is ignored and instead

determined as follows:

• If ts = 0 and ft is false, then nz = np – 1.
• In all other cases, nz = np.

ft — Option to enable feedthrough
1 or true (default) | 0 or false

Option to enable feedthrough in transfer function sys, specified as logical 1 (true) or logical 0
(false).

This argument applies only for discrete-time systems (ts > 0). For continuous-time systems (ts = 0),
the presence of feedthrough is implied by np = nz.

options — Estimation options
spectrumestOptions option set

1 Functions

1-1732

Estimation options, specified as a spectrumestOptions option set. Options that you specify
include:

• Display of estimation progress
• Weighting prefilter
• Numerical search method to be used in estimation

Output Arguments
sys — Identified spectral model transfer function
idtf object

Identified spectral model transfer function, returned as an idtf object.

Version History
Introduced in R2022b

See Also
spectrumestOptions | addMinPhase

 spectrumest

1-1733

spectrumestOptions
Option set for spectrumest

Description
Use a spectrumestOptions object to specify options for estimating spectral transfer function
models using the spectrumest function. You can specify options such as the numerical search
method to be used in estimation and whether to display estimation progress.

Creation

Syntax
opt = spectrumestOptions
opt = spectrumestOptions(Name=Value)

Description

opt = spectrumestOptions creates the default option set for spectrumest. To modify the
properties of this option set for your specific application, use dot notation.

opt = spectrumestOptions(Name=Value) creates an option set with the properties specified
using one or more name-value arguments.

Properties
Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputInterSample — Input-channel intersample behavior
'auto' | 'zoh' | 'foh' | 'bl'

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

1 Functions

1-1734

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata
object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | 'inv' | 'invsqrt'

Weighting prefilter applied to the loss function to be minimized during estimation, specified as one of
the values in the following table. To understand the effect of WeightingFilter on the loss function,
see “Loss Function and Model Quality Metrics”.

Value Description
[] No weighting prefilter is used.
Passbands Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model
and estimation data is optimized. For example, specify [wl,wh], where wl and
wh represent lower and upper limits of a passband. For a matrix with several
rows defining frequency passbands, [w1l,w1h;w2l,w2h;w3l,w3h;...], the
estimation algorithm uses the union of the frequency ranges to define the
estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in
FrequencyUnit for frequency-domain data, where TimeUnit and
FrequencyUnit are the time and frequency units of the estimation data.

Weighting vector Specify a column vector of weights. This vector must have the same length as
the power spectrum data set. Each input and output response in the data is
multiplied by the corresponding weight at that frequency.

'inv' Use 1.0/sqrt(H) as the weighting filter, where H is the power spectrum data.
Use this option for capturing relatively low amplitude dynamics in data or for
fitting data with high modal density. This option also makes it easier to specify
channel-dependent weighting filters for MIMO frequency-response data.

'invsqrt' Use 1.0/H^(0.25) as the weighting filter. Use this option for capturing
relatively low amplitude dynamics in data, or for fitting data with high modal
density. This option also makes it easier to specify channel-dependent
weighting filters for MIMO frequency-response data.

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

 spectrumestOptions

1-1735

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.

1 Functions

1-1736

SearchMethod Description
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

 spectrumestOptions

1-1737

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

1 Functions

1-1738

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

 spectrumestOptions

1-1739

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

1 Functions

1-1740

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

 spectrumestOptions

1-1741

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the fields in the following table.

Field Name Description Default
MaxSize Maximum number of elements in a segment when input-output data is

split into segments.

MaxSize must be a positive integer value.

250000

Examples

Create Default Option Set for Spectrum Estimation
opt = spectrumestOptions

Option set for the spectrumest command:

 Display: 'off'
 InputInterSample: 'auto'
 EstimateCovariance: 1
 WeightingFilter: []
 SearchMethod: 'auto'
 SearchOptions: '<Optimization options set>'
 Advanced: [1x1 struct]

Specify Options for Spectrum Estimation

Create an options set for spectrumest using the 'gn' search method, and set the Display to
'on'.

1 Functions

1-1742

opt = spectrumestOptions(SearchMethod='gn',Display='on');

Alternatively, use dot notation to set the values of opt.

opt = spectrumestOptions;
opt.SearchMethod = 'gn';
opt.Display = 'on';

Version History
Introduced in R2022b

See Also
spectrumest

 spectrumestOptions

1-1743

spectrumplot
Plot disturbance spectrum of linear identified models

Syntax
spectrumplot(sys)
spectrumplot(sys,line_spec)
spectrumplot(sys1,line_spec1,...,sysN,line_specN)
spectrumplot(ax, ___)
spectrumplot(___ ,plot_options)
spectrumplot(sys,w)
h = spectrumplot(___)

Description
spectrumplot(sys) plots the disturbance spectrum of the model, sys. The software chooses the
number of points on the plot and the plot frequency range.

If sys is a time-series model, its disturbance spectrum is the same as the model output spectrum. You
generally use this function with time-series models.

spectrumplot(sys,line_spec) uses line_spec to specify the line type, marker symbol, and
color.

spectrumplot(sys1,line_spec1,...,sysN,line_specN) plots the disturbance spectrum for
one or more models on the same axes.

You can mix sys,line_spec pairs with sys models as in
spectrumplot(sys1,sys2,line_spec2,sys3). spectrumplot automatically chooses colors and
line styles in the order specified by the ColorOrder and LineStyleOrder properties of the current
axes.

spectrumplot(ax, ___) plots into the axes with handle ax. All input arguments described for the
previous syntaxes also apply here.

spectrumplot(___ ,plot_options) uses plot_options to specify options such as plot title,
frequency units, etc. All input arguments described for the previous syntaxes also apply here.

spectrumplot(sys,w) uses w to specify the plot frequencies.

• If w is specified as a 2-element cell array, {wmin, wmax}, the plot spans the frequency range
{wmin, wmax}.

• If w is specified as vector, the spectrum is plotted for the specified frequencies.

Specify w as radians/time_unit, where time_unit must equal sys.TimeUnit.

h = spectrumplot(___) returns the handle to the spectrum plot. You use the handle to customize
the plot. All input arguments described for the previous syntaxes also apply here.

1 Functions

1-1744

Input Arguments
sys

Identified linear model.

Default:

line_spec

Line style, marker, and color of both the line and marker, specified as a character vector. For example,
'b', 'b+:'.

For more information, see Chart Line .

ax

Plot axes handle.

Specify as a double-precision value.

You can obtain the current axes handle by using the function, gca.

plot_options

Plot customization options.

Specify as a plot options object.

You use the command, spectrumoptions, to create plot_options. For more information, type
help spectrumoptions.

w

Frequency range.

Specify in radians/time_unit, where time_unit must equal sys.TimeUnit.

Output Arguments
h

Plot handle for spectrum plot, returned as a double-precision value.

Examples

Plot Model Output Spectrum for Identified Model

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

Plot the output spectrum for the model.

 spectrumplot

1-1745

spectrumplot(sys);

Specify Line Width and Marker Style on Spectrum Plot

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

Specify the line width and marker style for the spectrum plot.

spectrumplot(sys,'k*--');

1 Functions

1-1746

'k*--', specifies a dashed line (--) that is black (k), with star markers (*).

Plot Multiple Models on the Same Axes

Obtain multiple identified models.

load iddata9 z9
sys1 = ar(z9,4);
sys2 = ar(z9,2);

Plot the output spectrum for both models.

spectrumplot(sys1,'b*-',sys2,'g^:');
legend('sys1','sys2');

 spectrumplot

1-1747

Specify Plot Axes for Spectrum Plot

Obtain the axes handle for a plot.

load iddata9 z9
sys1 = ar(z9,4);
spectrumplot(sys1);

1 Functions

1-1748

ax = gca;

ax is the handle for the spectrum plot axes.

Plot the output spectrum for another model on the specified axes.

sys2 = ar(z9,2);

hold on;
spectrumplot(ax,sys2,'r*--');

legend('sys1','sys2');

 spectrumplot

1-1749

Specify Options for Spectrum Plot

Specify the plot options.

plot_options = spectrumoptions;
plot_options.FreqUnits = 'Hz';
plot_options.FreqScale = 'linear';
plot_options.Xlim = {[0 20]};
plot_options.MagUnits = 'abs';

Estimate an AR model.

load iddata9 z9
sys = ar(z9,4);

Plot the output spectrum for the model.

spectrumplot(sys,plot_options);

1 Functions

1-1750

Specify Spectrum Plot Frequency Range

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

Specify the frequency range for the output spectrum plot for the model.

spectrumplot(sys,{1,1000});

 spectrumplot

1-1751

The 2-element cell array {1,1000} specifies the frequency range from 1 rad/s to 1000 rad/s.

Get Plot Handle for Spectrum Plot Customization

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

Get the plot handle for the model spectrum plot.

h = spectrumplot(sys);

1 Functions

1-1752

(Optional) Specify the plot options, using the plot handle.

setoptions(h,'FreqUnits','Hz','FreqScale','linear','Xlim',{[0 20]},'MagUnits','abs');

 spectrumplot

1-1753

Version History
Introduced in R2012b

See Also
spectrum | spectrumoptions | getoptions | setoptions | showConfidence | Axes | Chart Line

1 Functions

1-1754

ss2ss
State coordinate transformation for state-space model

Syntax
sysT = ss2ss(sys,T)

Description
ss2ss performs the similarity transformation z = Tx on the state vector x of a state-space model. For
more information, see “Algorithms” on page 1-1760.

sysT = ss2ss(sys,T) performs the state-coordinate transformation of sys using the specified
transformation matrix T. The matrix T must be invertible.

Examples

Similarity Transformation for State-Space Model

Perform a similarity transform for a state space model.

Generate a random state-space model and a transformation matrix.

rng(0)
sys = rss(5);
t = randn(5);

Perform the transformation and plot the frequency response of both models.

tsys = ss2ss(sys,t);
bode(sys,'b',tsys,'r--')
legend

 ss2ss

1-1755

The responses of both models match closely.

Similarity Transformation for Generalized State-Space Models

ss2ss applies state transformation only to the state vectors of the numeric portion of the generalized
model.

Create a genss model.

sys = rss(2,2,2) * tunableSS('a',2,2,3) + tunableGain('b',2,3)

sys =

 Generalized continuous-time state-space model with 2 outputs, 3 inputs, 4 states, and the following blocks:
 a: Tunable 2x3 state-space model, 2 states, 1 occurrences.
 b: Tunable 2x3 gain, 1 occurrences.

Type "ss(sys)" to see the current value, "get(sys)" to see all properties, and "sys.Blocks" to interact with the blocks.

Specify a transformation matrix and obtain the transformation.

T = [1 -2;3 5];
tsys = ss2ss(sys,T)

tsys =

1 Functions

1-1756

 Generalized continuous-time state-space model with 2 outputs, 3 inputs, 4 states, and the following blocks:
 a: Tunable 2x3 state-space model, 2 states, 1 occurrences.
 b: Tunable 2x3 gain, 1 occurrences.

Type "ss(tsys)" to see the current value, "get(tsys)" to see all properties, and "tsys.Blocks" to interact with the blocks.

Decompose both models.

[H,B,~,~] = getLFTModel(sys);
[H1,B1,~,~] = getLFTModel(tsys);

Obtain the transformation separately on the model from decomposed sys.

H2 = ss2ss(H,T);

Compare this transformed model with the model from decomposed tsys.

isequal(H1,H2)

ans = logical
 1

Both models are equal.

Similarity Transformation for Identified State-Space Models

The file icEngine.mat contains one data set with 1500 input-output samples collected at the a
sampling rate of 0.04 seconds. The input u(t) is the voltage (V) controlling the By-Pass Idle Air Valve
(BPAV), and the output y(t) is the engine speed (RPM/100).

Use the data in icEngine.mat to create a state-space model with identifiable parameters.

load icEngine.mat
z = iddata(y,u,0.04);
sys = n4sid(z,4,'InputDelay',2);

Specify a random transformation matrix.

T = randn(4);

Obtain the transformation.

sysT = ss2ss(sys,T);

Compare the frequency responses.

bode(sys,'b',sysT,'r--')
legend

 ss2ss

1-1757

The responses match closely.

Transformation for Models with Complex Coefficients

ss2ss also lets you perform similarity transformation for models with complex coefficients.

For this example, generate a random state-space model with complex coefficients.

rng(0)
sys = ss(randn(5)+1i*randn(5),randn(5,3),randn(2,5)+1i*randn(2,5),0,.1);

Specify a transformation matrix containing complex data.

T = randn(5)+1i*randn(5);

Obtain the transformation.

sysT = ss2ss(sys,T);

Compare the singular values of the frequency response.

sigma(sys,'b',sysT,'r--')
legend

1 Functions

1-1758

The responses match closely for both branches.

Input Arguments
sys — Dynamic system
dynamic system model

Dynamic system, specified as a SISO, or MIMO dynamic system model. Dynamic systems that you can
use include:

• Continuous-time or discrete-time numeric LTI models, such as ss or dss models.
• Generalized or uncertain LTI models, such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.)

For such models, the state transformation is applied only to the state vectors of the numeric
portion of the model. For more information about decomposition of these models, see
getLFTModel and “Internal Structure of Generalized Models” (Control System Toolbox).

• Identified state-space idss models.

If sys is an array of state-space models, ss2ss applies the transformation T to each individual model
in the array.

T — Transformation matrix
matrix

 ss2ss

1-1759

Transformation matrix, specified as an n-by-n matrix, where n is the number of states. T is the
transformation between the state vector of the state-space model sys and the state vector of the
transformed model sysT. (See “Algorithms” on page 1-1760.)

Output Arguments
sysT — Transformed model
dynamic system model

Transformed state-space model, returned as a dynamic system model of the same type as sys.

Algorithms
ss2ss performs the similarity transformation x = Tx on the state vector x of a state-space model.

This table summarizes the transformations returned by ss2ss for each model form.

Input Model Transformed Model
Explicit state-space models of the form:

ẋ = Ax + Bu
y = Cx + Du

ẋ = TAT−1x + TBu

y = CT−1x + Du

Descriptor (implicit) state-space models for the
form:

Eẋ = Ax + Bu
y = Cx + Du

ET−1ẋ = AT−1x + Bu

y = CT−1x + Du

Identified state-space (idss) models of the form:

dx
dt = Ax + Bu + Ke

y = Cx + Du + e

ẋ = TAT−1x + TBu + TKe

y = CT−1x + Du + e

Version History
Introduced before R2006a

ss2ss returns different transformation results for descriptor state-space models
Behavior changed in R2021b

For a descriptor state-space model

Eẋ = Ax + Bu
y = Cx + Du,

ss2ss now returns

ET−1ẋ = AT−1x + Bu

y = CT−1x + Du .

1 Functions

1-1760

Previously, the function returned the following transformation.

TET−1ẋ = TAT−1x + TBu

y = CT−1x + Du

Similarity transformation is no longer supported for mechss models
Errors starting in R2021b

ss2ss no longer supports sparse second-order (mechss) models. Performing similarity
transformations on mechss models destroys symmetry and has no obvious general form.

See Also
balreal | canon | balance

Topics
“Scaling State-Space Models to Maximize Accuracy” (Control System Toolbox)

 ss2ss

1-1761

ssdata
Access state-space model data

Syntax
[a,b,c,d] = ssdata(sys)
[a,b,c,d,Ts] = ssdata(sys)

Description
[a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional array) data A, B, C, D from
the state-space model (LTI array) sys. If sys is a transfer function or zero-pole-gain model (LTI
array), it is first converted to state space. See ss for more information on the format of state-space
model data.

If sys appears in descriptor form (nonempty E matrix), an equivalent explicit form is first derived.

If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to zero (creating a
zero-order Padé approximation). For some systems, setting delays to zero creates singular algebraic
loops, which result in either improper or ill-defined, zero-delay approximations. For these systems,
ssdata cannot display the matrices and returns an error. This error does not imply a problem with
the model sys itself.

For generalized state-space (genss) models, ssdata returns the state-space models evaluated at the
current, nominal value of all control design blocks. To access the dependency of a genss model on its
static control design blocks, use the A, B, C, and D properties of the model.

[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct referencing. For example:

sys.statename

For arrays of state-space models with variable numbers of states, use the syntax:

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell arrays a, b, c, and d.

Version History
Introduced before R2006a

See Also
dssdata | get | getDelayModel | idssdata | set | ss | tfdata | zpkdata

1 Functions

1-1762

ssest
Estimate state-space model using time-domain or frequency-domain data

Syntax
sys = ssest(tt,nx)
sys = ssest(u,y,nx,'Ts',Ts)
sys = ssest(u,y,nx)
sys = ssest(data,nx)

sys = ssest(tt,nx)
sys = ssest(tt,nx,'OutputName',outputVariables,'InputName',[])
sys = ssest([],y,nx,'Ts',Ts)
sys = ssest(data,nx)

sys = ssest(___ ,Name,Value)

sys = ssest(tt,init_sys)
sys = ssest(u,y,init_sys)
sys = ssest(data,init_sys)

sys = ssest(___ ,opt)

[sys,x0] = ssest(___)

Description
Estimate State-Space Model

sys = ssest(tt,nx) estimates the continuous-time state-space model sys of order nx, using all
the input and output signals in the timetable tt. You can use this syntax for SISO and MISO systems.
The function assumes that the last variable in the timetable is the single output signal.

sys is an idss model of the following form:

ẋ(t) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)

A, B, C, D, and K are state-space matrices. u(t) is the input, y(t) is the output, e(t) is the disturbance,
and x(t) is the vector of nx states.

All entries of A, B, C, and K are free estimable parameters by default. D is fixed to zero by default,
meaning that there is no feedthrough, except for static systems (nx = 0).

To estimate a discrete-time model, set 'Ts' to the model sample time using name-value syntax. To
estimate MIMO models, use n-v syntax to specify the input and output channels using 'InputName'
and 'OutputName' to the corresponding timetable variable names. You can also use 'InputName'
and 'OutputName' to specify specific channels when you do not want to use all the available
channels in tt.

sys = ssest(u,y,nx,'Ts',Ts) estimates a discrete-time state-space model using the time-
domain input and output signals in the comma-separated matrices u,y and the model sample time Ts.

 ssest

1-1763

The software assumes that the data sample time is Ts seconds. You can use this syntax for SISO,
MISO, and MIMO systems.

sys = ssest(u,y,nx) estimates a continuous-time state-space model using the signals in the
matrices u,y. The software assumes that the data sample time is 1 second. You cannot change this
assumed sample time. If you want to estimate a continuous-time model from data with a sample time
other than 1 second, you must first convert your matrix data to a timetable or iddata object.
Estimating continuous-time models from matrix-based data is not recommended.

sys = ssest(data,nx) estimates a continuous-time state-space model using the time-domain or
frequency-domain data in the data object data. Use this syntax especially when you want to estimate
a state-space model using frequency-domain or frequency-response data, or when you want to take
advantage of the additional information, such as intersample behavior, data sample time, or
experiment labeling, that data objects provide.

Estimate Time Series State-Space Model

sys = ssest(tt,nx) estimates the continuous time series model sys to fit the data in the
timetable tt. tt must contain a single numeric variable. The function interprets the timetable
variable data as a time series, which has no inputs and a single output.

For a time series model, the sys idss model has the following form:

ẋ(t) = Ax(t) + Ke(t)
y(t) = Cx(t) + e(t)

sys = ssest(tt,nx,'OutputName',outputVariables,'InputName',[]) estimates a
multivariate time series model that uses the timetable output signals that have the variable names
specified in outputVariables. The function interprets the specified variables as a multivariate time
series. If you specify all the variables in tt in 'OutputName', you can omit the specification of
'InputName'.

sys = ssest([],y,nx,'Ts',Ts) estimates a discrete time series model with the sample time Ts
from the output data matrix y. sys has as many outputs as there are columns in y.

sys = ssest(data,nx) estimates a time series model that uses the data in the iddata property
data.OutputData. The property data.InputData must be empty.

Specify Additional Model Options

sys = ssest(___ ,Name,Value) incorporates additional options specified by one or more name-
value pair arguments. For example, specify a discrete-time system from matrix data that has a sample
time of 0.1 using sys = ssest(um,ym,np,'Ts',0.1). Specify input and output signal variable
names that correspond with the variables to use for MIMO timetable data using sys =
ssest(data,nx,'InputName',["u1","u2"],'OutputName',["y1","y3"]). Use the 'Form',
'Feedthrough', and 'DisturbanceModel' name-value arguments to modify the default behavior
of the A, B, C, D, and K matrices.

You can use this syntax with any of the previous input-argument combinations.

Configure Initial Parameters

sys = ssest(tt,init_sys) uses the linear system init_sys to configure the initial
parameterization of sys for estimation using the timetable tt.

1 Functions

1-1764

sys = ssest(u,y,init_sys) uses the matrix data u,y for estimation. If init_sys is a
continuous-time model, using a timetable instead of matrices is recommended.

sys = ssest(data,init_sys) uses the data object data for estimation.

Specify Additional Estimation Options

sys = ssest(___ ,opt) incorporates an option set opt that specifies options such as estimation
objective, handling of initial conditions, regularization, and numerical search method used for
estimation. You can specify opt after any of the previous input-argument combinations.

Return Estimated Initial States

[sys,x0] = ssest(___) returns the value of initial states computed during estimation.

Examples

State-Space Model

Estimate a state-space model and compare its response with the measured output.

Load the input/output data, which is stored in a timetable.

load sdata1 tt1

Estimate a fourth-order state-space model.

nx = 4;
sys = ssest(tt1,nx);

Compare the simulated model response with the measured output.

compare(tt1,sys)

 ssest

1-1765

The plot shows that the fit percentage between the simulated model and the estimation data is
greater than 70%.

You can view more information about the estimation by exploring the idss property sys.Report.

sys.Report

ans =
 Status: 'Estimated using SSEST with prediction focus'
 Method: 'SSEST'
 InitialState: 'zero'
 N4Weight: 'CVA'
 N4Horizon: [6 10 10]
 Fit: [1x1 struct]
 Parameters: [1x1 struct]
 OptionsUsed: [1x1 idoptions.ssest]
 RandState: []
 DataUsed: [1x1 struct]
 Termination: [1x1 struct]

For example, find out more information about the termination conditions.

sys.Report.Termination

ans = struct with fields:
 WhyStop: 'No improvement along the search direction with line search.'
 Iterations: 7

1 Functions

1-1766

 FirstOrderOptimality: 85.9759
 FcnCount: 123
 UpdateNorm: 8.3842
 LastImprovement: 0

The report includes information on the number of iterations and the reason the estimation stopped
iterating.

Convert SISO Matrix Data to Timetable

Load the data, which consists of the input vector umat1, the output vector ymat1, and the sample
time Ts.

load sdata1 umat1 ymat1 Ts

Combine the data into the single timetable tt. View the first two rows of tt.

tt = timetable(umat1,ymat1,'rowtimes',seconds(Ts*(1:size(umat1,1))));
head(tt,2)

 Time umat1 ymat1
 _______ _____ ________

 0.1 sec 1 -0.58724
 0.2 sec -1 1.1082

Use tt to estimate a continuous-time state-space model.

sys = ssest(tt,2);

Compare the model output with the estimation data.

compare(tt,sys)

 ssest

1-1767

Determine Optimal Estimated Model Order

Load the input-output data z1, which is stored in an iddata object. This is the same data used to
estimate a fourth-order model in “State-Space Model” on page 1-1765.

load iddata1 z1

Determine the optimal model order by specifying argument nx as a range from 1:10.

nx = 1:10;
sys = ssest(z1,nx);

An automatically generated plot shows the Hankel singular values for models of the orders specified
by nx.

1 Functions

1-1768

States with relatively small Hankel singular values can be safely discarded. The suggested default
order choice is 2.

Select the model order in the Chosen Order list and click Apply.

Identify State-Space Model with Input Delay

Load time-domain system response data.

load iddata7 z7;

Identify a fourth-order state-space model of the data. Specify a known delay of 2 seconds for the first
input and 0 seconds for the second input.

nx = 4;
sys = ssest(z7(1:300),nx,'InputDelay',[2;0]);

Convert MIMO Matrix Data to Timetable for Continuous-Time Model Estimation

Estimate a continuous-time model function by first converting matrix data to a timetable.

Load the data, which includes input matrix usteam, output matrix ysteam, and sample time Ts.

load sdatasteam.mat usteam ysteam Ts

Combine usteam and ysteam into the single timetable ttsteam. In order to create a variable for
each channel, you must specify each matrix column explicitly.

 ssest

1-1769

tts = timetable(usteam(:,1),usteam(:,2),ysteam(:,1),ysteam(:,2),...
 'rowtimes',seconds(Ts*(1:size(usteam,1))));
head(tts,4)

 Time Var1 Var2 Var3 Var4
 ________ _______ _______ ________ _________

 0.05 sec -1.5283 2.0584 0.57733 -0.12274
 0.1 sec 1.4412 -2.005 0.75804 -0.086114
 0.15 sec 1.4314 2.0584 -0.76577 -0.19845
 0.2 sec 1.4412 -1.9806 0.47721 -0.20577

Estimate a continuous-time state-space model.

nx = 3;
sysc = ssest(tts,nx,'InputName',["Var1" "Var2"],'OutputName',["Var3" "Var4"]);

Compare the model to the data.

compare(tts,sysc)

Modify Form, Feedthrough, and Disturbance-Model Matrices

Modify the canonical form of the A, B, and C matrices, include a feedthrough term in the D matrix,
and eliminate disturbance-model estimation in the K matrix.

1 Functions

1-1770

Load input-output data and estimate a fourth-order system using the ssest default options.

load iddata1 z1
sys1 = ssest(z1,4);

Specify the companion form and compare the A matrix with the default A matrix.

sys2 = ssest(z1,4,'Form','companion');
A1 = sys1.A

A1 = 4×4

 -0.5155 -3.8483 0.6657 -0.2666
 5.8665 -2.7285 1.0649 -1.4694
 -0.4487 0.9308 -0.6235 18.8148
 -0.4192 0.5595 -16.0688 0.5399

A2 = sys2.A

A2 = 4×4
103 ×

 0 0 0 -7.1122
 0.0010 0 0 -0.9547
 0 0.0010 0 -0.3263
 0 0 0.0010 -0.0033

Include a feedthrough term and compare D matrices.

sys3 = ssest(z1,4,'Feedthrough',1);
D1 = sys1.D

D1 = 0

D3 = sys3.D

D3 = 0.0339

Eliminate disturbance modeling and compare K matrices.

sys4 = ssest(z1,4,'DisturbanceModel','none');
K1 = sys1.K

K1 = 4×1

 0.0520
 0.0973
 0.0151
 0.0270

K4 = sys4.K

K4 = 4×1

 0
 0
 0

 ssest

1-1771

 0

Estimate Initial States as Independent Parameters

Specify ssest estimate initial states as independent estimation parameters.

ssest can handle initial states using one of several methods. By default, ssest chooses the method
automatically based on your estimation data. You can choose the method yourself by modifying the
option set using ssestOptions.

Load the input-output data z1 and estimate a second-order state-space model sys using the default
options. Use the syntax that returns initial states x0.

load iddata1 z1
[sys,x0] = ssest(z1,2);
x0

x0 = 2×1

 0
 0

By default, the estimation is performed using the 'auto' setting for InitialState. Find out which
method ssest applied by reviewing the value of InitialState in sys.Report.

sys.Report.InitialState

ans =
'zero'

The software applied the 'zero' method, meaning that the software set the initial states to zero
instead of estimating them. This selection is consistent with the 0 values returned for x0.

Specify that ssest estimate the initial states instead as independent parameters using the
'estimate' setting. Use ssestOptions to create a modified option set and specify that option set
to estimate a new model.

opt = ssestOptions('InitialState','estimate');
[sys1,x0] = ssest(z1,2,opt);
x0

x0 = 2×1

 0.0068
 0.0052

x0 now has estimated parameters with nonzero values.

1 Functions

1-1772

Estimate State-Space Model Using Regularization

Obtain a regularized fifth-order state-space model for a second-order system from a narrow
bandwidth signal.

Load estimation data.

load regularizationExampleData eData;

Create the transfer function model used for generating the estimation data (true system).

trueSys = idtf([0.02008 0.04017 0.02008],[1 -1.561 0.6414],1);

Estimate an unregularized state-space model.

opt = ssestOptions('SearchMethod','lm');
m = ssest(eData,5,'form','modal','DisturbanceModel','none','Ts',eData.Ts,opt);

Estimate a regularized state-space model.

opt.Regularization.Lambda = 10;
mr = ssest(eData,5,'form','modal','DisturbanceModel','none','Ts',eData.Ts,opt);

Compare the model outputs with the estimation data.

compare(eData,m,mr);

Compare the model impulse responses.

 ssest

1-1773

impulse(trueSys,m,mr,50);
legend('trueSys','m','mr');

Estimate Partially Known State-Space Model Using Structured Estimation

Estimate a state-space model of measured input-output data. Configure the parameter constraints
and initial values for estimation using a state-space model.

Create an idss model to specify the initial parameterization for estimation.

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 1 1 1];
D = 0;
K = zeros(4,1);
x0 = [0.1 0.1 0.1 0.1];
Ts = 0;
init_sys = idss(A,B,C,D,K,x0,Ts);

Setting all entries of K to 0 creates an idss model with no state disturbance element.

Use the Structure property to fix the values of some of the model parameters. Configure the model
so that B and K are fixed, and only the nonzero entries of A are estimable.

1 Functions

1-1774

init_sys.Structure.A.Free = (A~=0);
init_sys.Structure.B.Free = false;
init_sys.Structure.K.Free = false;

The entries in init_sys.Structure.A.Free determine whether the corresponding entries in
init_sys.A are free (true) or fixed (false).

Load the measured data and estimate a state-space model using the parameter constraints and initial
values specified by init_sys.

load iddata2 z2;
sys = ssest(z2,init_sys);

The estimated parameters of sys satisfy the constraints specified by init_sys.

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables.

Estimation data, specified as a uniformly sampled timetable that contains variables representing
input and output channels or, for multiexperiment data, a cell array of timetables.
Use Entire Timetable

If you want to use all the variables in tt as input or output channels, and the variables are organized
so that the set of input channel variables is followed by the set of output channel variables, then:

• For SISO systems, specify tt as an Ns-by-2 timetable, where Ns is the number of samples and the
two timetable variables represent the measured input channel and output channel respectively.

• For MIMO systems, specify tt as an Ns-by-(Nu+Ny) timetable, where Nu is the number of inputs
and Ny is the number of outputs. The first Nu variables must contain the input channels and the
remaining Ny variables must contain the output channels.

When you are estimating state space or transfer function models, you must also explicitly specify
the input and output channels, as the following section describes.

• For multiexperiment data, specify data as an Ne-by-1 cell array of timetables, where Ne is the
number of experiments. The sample times of all the experiments must match.

Use Selected Variables from Timetable

If you want to explicitly identify the input and output channels, such as when you want to use only a
subset of the available channels, when the input and output channel variables are intermixed, or
when you are estimating a MIMO state-space or transfer function model, use the 'InputName' and
'OutputName' name-value arguments to specify which variables to use as inputs and outputs.

For example, suppose that tt contains six channel variables: "u1", "u2", "u3", and "y1", "y2",
"y3". For estimation, you want to use the variables "u1" and "u2" as the inputs and the variables
"y1" and "y3" as the outputs. Use the following command to perform the estimation:

sys = ssest(tt,__,'InputName',["u1" "u2"],'OutputName',["y1" "y3"])
Use Timetable to Estimate Time Series Models

If you want to estimate a time series model rather than an input/output model, use only output
variables from tt. You can either specify tt to contain only the output variables that you want, or

 ssest

1-1775

extract the output variables from tt if tt also contains input variables. The specification approach is
similar to that for input/output model estimation.

• For a single-output system, specify tt as an Ns-by-1 timetable.
• For a multivariate system, specify tt as an Ns-by-(Ny) timetable. Even if you plan to use all the

variables in tt, you must specify all of them using the 'OutputName' name-value argument so
that the software does not interpret them as input variables.

For a timetable tt that has variables beyond what you want to use, such as input variables or
additional output variables, specify both the output variables you want to use and, in 'InputName',
an empty array.

For example, suppose that tt contains six variables: "u1", "u2", "u3", and "y1", "y2", "y3". For
time series estimation, you want to use the output variables "y1" and "y3". Use the following
command to perform the estimation:

sys = ssest(tt,__,'OutputName',["y1" "y3"],'InputName',[])

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

For time series data, which contains only outputs and no inputs, specify y only.

Limitations

• Matrix-based data does not support estimation from frequency-domain data. You must use a data
object such as an iddata object or idfrd object (see data).

• Using matrices for estimation data is not recommended for continuous-time estimation because
the data does not provide the sample time. The software assumes that the data is sampled at 1 Hz.
For continuous-time estimation, it is recommended that you convert each matrix to a timetable.
For example, to convert the matrices um and ym to a timetable tt with a sample time of 0.5
minutes, use the following command.

tt = timetable(um,ym,'rowtimes',minutes(0.5*(1:size(u,1))))

For a more detailed example of converting matrix-based SISO data to a timetable, see “Convert
SISO Matrix Data to Timetable”. For an example of converting a MIMO matrix pair to a timetable,
see “Convert MIMO Matrix Data to Timetable for Continuous-Time Model Estimation”.

1 Functions

1-1776

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data object
iddata object | frd object | idfrd object

Estimation data object, specified as an iddata object, an frd object, or an idfrd object that
contains uniformly sampled input and output values. By default, the software sets the sample time of
the model to the sample time of the estimation data.

For multiexperiment data, the sample times and intersample behavior of all the experiments must
match.

For time-domain estimation, data must be an iddata object containing the input and output signal
values.

For frequency-domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)
• iddata object with properties specified as follows:

• InputData — Fourier transform of the input signal
• OutputData — Fourier transform of the output signal
• Domain — 'Frequency'

Limitations

You cannot estimate continuous-time models using discrete-time frequency-domain data.

nx — Order of estimated model
1:10 (default) | positive integer scalar | positive integer vector | 0

Order of the estimated model, specified as a nonnegative integer or as a vector containing a range of
positive integers.

• If you already know what order you want your estimated model to have, specify nx as a scalar.
• If you want to compare a range of potential orders to choose the most effective order for your

estimated model, specify the range in nx. ssest creates a Hankel singular-value plot that shows
the relative energy contributions of each state in the system. States with relatively small Hankel
singular values contribute little to the accuracy of the model and can be discarded with little
impact. The index of the highest state you retain is the model order. The plot window includes a
suggestion for the order to use. You can accept this suggestion or enter a different order. For an
example, see “Determine Optimal Estimated Model Order” on page 1-1768.

If you do not specify nx, or if you specify nx as best, the software automatically chooses nx from
the range 1:10.

• If you are identifying a static system, set nx to 0.

opt — Estimation options
ssestOptions option set

Estimation options, specified as an ssestOptions option set. Options specified by opt include:

 ssest

1-1777

• Estimation objective
• Handling of initial conditions
• Regularization
• Numerical search method used for estimation
• Intersample behavior

For examples showing how to use opt, see “Estimate Initial States as Independent Parameters” on
page 1-1772 and “Estimate State-Space Model Using Regularization” on page 1-1772.

init_sys — Linear system that configures initial parameterization of sys
idss model | linear model | structure

Linear system that configures the initial parameterization of sys, specified as an idss model or as a
structure. You obtain init_sys by either performing an estimation using measured data or by direct
construction.

If init_sys is an idss model, ssest uses the parameter values of init_sys as the initial guess for
estimating sys. For information on how to specify idss, see “Estimate State-Space Models with
Structured Parameterization”. ssest honors constraints on the parameters of init_sys, such as
fixed coefficients and minimum/maximum bounds.

Use the Structure property of init_sys to configure initial parameter values and constraints for
the A, B, C, D, and K matrices. For example:

• To specify an initial guess for the A matrix of init_sys, set init_sys.Structure.A.Value as
the initial guess.

• To specify constraints for the B matrix of init_sys:

• Set init_sys.Structure.B.Minimum to the minimum B matrix value
• Set init_sys.Structure.B.Maximum to the maximum B matrix value
• Set init_sys.Structure.B.Free to indicate if entries of the B matrix are free parameters

for estimation

To set more complex constraints, such as interdependence of coefficients, use grey-box estimation
using greyest and idgrey.

You must assign finite initial values for all matrix parameters.

If init_sys is not a state-space (idss) model, the software first converts init_sys to an idss
model. ssest uses the parameters of the resulting model as the initial guess for estimation.

If you do not specify opt and init_sys was obtained by estimation, then the software uses
estimation options from init_sys.Report.OptionsUsed.

For an example, see “Estimate Partially Known State-Space Model Using Structured Estimation” on
page 1-1774.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

1 Functions

1-1778

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: sys = ssest(data,nx,'Ts',0.1)

InputName — Input channel names
" " (default) | string | character vector | array of strings | cell array of character vectors

Input channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets all but the last variable in tt
as input channels. When you want to select a subset of the timetable variables as input channels use
'InputName' to identify them. For example, sys = ssest(tt,__,'InputName',["u1" "u2"])
selects the variables u1 and u2 as the input channels for the estimation.

OutputName — Output signal names
" " (default) | character vector | string | cell array of character vectors or strings

Output channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets the last variable in tt as the
sole output channel. When you want to select a subset of the timetable variables as output channels,
use 'OutputName' to identify them. For example, sys = ssest(tt,__,'OutputName',["y1"
"y3"]) selects the variables y1 and y3 as the output channels for the estimation.

Ts — Sample time of estimated model
0 (continuous time) (default) | sample time of data | positive scalar

Sample time of the estimated model, specified as the comma-separated pair consisting of 'Ts' and
either 0 or a positive scalar.

• For continuous-time models, specify 'Ts' as 0.
• For discrete-time models, specify 'Ts' as the data sample time in units defined by the following:

• For timetable-based data — The timetable Time column
• For matrix-based data — Seconds
• For data objects, such as iddata objects — The data.TimeUnit property

To obtain the data sample time for a timetable tt, use the timetable property
tt.Properties.Timestep.

InputDelay — Input delays
0 (default) | scalar | vector

Input delay for each input channel, specified as the comma-separated pair consisting of
'InputDelay' and a numeric vector.

• For continuous-time models, specify 'InputDelay' in the time units stored in the timetable, the
data object TimeUnit property, or, for matrix data, in seconds.

• For discrete-time models, specify 'InputDelay' in integer multiples of the sample time Ts. For
example, setting 'InputDelay' to 3 specifies a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel. For an example,
see “Identify State-Space Model with Input Delay” on page 1-1769.

To apply the same delay to all channels, specify InputDelay as a scalar.

 ssest

1-1779

Form — Type of canonical form
'free' (default) | 'modal' | 'companion' | 'canonical'

Type of canonical form of sys, specified as the comma-separated pair consisting of 'Form' and one
of the following values:

• 'free' — All entries of the matrices A, B, C, D, and K are treated as free.
• 'modal' — Obtain sys in modal form.
• 'companion' — Obtain sys in companion form.
• 'canonical' — Obtain sys in the observability canonical form.

For definitions of the canonical forms, see “State-Space Realizations”.

For more information, see “Estimate State-Space Models with Canonical Parameterization”. For an
example, see “Modify Form, Feedthrough, and Disturbance-Model Matrices” on page 1-1770.

Feedthrough — Direct feedthrough from input to output
0 (default) | 1 | logical vector

Direct feedthrough from input to output, specified as the comma-separated pair consisting of
'Feedthrough' and a logical vector of length Nu, where Nu is the number of inputs. If you specify
Feedthrough as a logical scalar, that value is applied to all the inputs. For static systems, the
software always assumes 'Feedthrough' is 1.

For an example, see “Modify Form, Feedthrough, and Disturbance-Model Matrices” on page 1-1770.

DisturbanceModel — Option to estimate time-domain noise component parameters
'estimate' (default) | 'none'

Option to estimate time-domain noise component parameters in the K matrix, specified as the comma-
separated pair consisting of 'DisturbanceModel' and one of the following values:

• 'estimate' — Estimate the noise component. The K matrix is treated as a free parameter.
• 'none' — Do not estimate the noise component. The elements of the K matrix are fixed at zero.

For frequency-domain data, the software assumes that 'DisturbanceModel' is 'none'.

For an example, see “Modify Form, Feedthrough, and Disturbance-Model Matrices” on page 1-1770.

Output Arguments
sys — Identified state-space model
idss model

Identified state-space model, returned as an idss model. This model is created using the specified
model orders, delays, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

1 Functions

1-1780

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
InitialSt
ate

How initial states were handled during estimation, returned as one of the following
values:

• 'zero' — The initial state is set to zero.
• 'estimate' — The initial state is treated as an independent estimation parameter.
• 'backcast' — The initial state is estimated using the best least squares fit.
• Column vector of length Nx, where Nx is the number of states. For multi-experiment

data, a matrix with Ne columns, where Ne is the number of experiments.
• Parametric initial condition object (x0obj) created using idpar. Only for discrete-

time state-space models.

This field is especially useful when the InitialState option in the estimation option
set is 'auto'.

N4Weight Weighting scheme used for singular-value decomposition by the N4SID algorithm,
returned as one of the following values:

• 'MOESP' — Uses the MOESP algorithm.
• 'CVA' — Uses the Canonical Variate Algorithm.
• 'SSARX' — A subspace identification method that uses an ARX estimation-based

algorithm to compute the weighting.

This option is especially useful when the N4Weight option in the estimation option set
is 'auto'.

N4Horizon Forward and backward prediction horizons used by the N4SID algorithm, returned as a
row vector with three elements — [r sy su], where r is the maximum forward
prediction horizon. sy is the number of past outputs, and su is the number of past
inputs that are used for the predictions.

 ssest

1-1781

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See ssestOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

1 Functions

1-1782

Report
Field

Description

DataUsed Attributes of the data used for estimation. Structure with the following fields:

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time. This is equivalent to Data.Ts.
InterSam
ple

Input intersample behavior. One of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

The value of Intersample has no effect on estimation results for
discrete-time models.

InputOff
set

Offset removed from time-domain input data during estimation.

OutputOf
fset

Offset removed from time-domain output data during estimation.

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

 ssest

1-1783

For more information on using Report, see “Estimation Report”.

x0 — Initial states computed during estimation
column vector | matrix

Initial states computed during the estimation, returned as an array containing a column vector
corresponding to each experiment.

This array is also stored in the Parameters field of the model Report property.

For an example, see “Estimate Initial States as Independent Parameters” on page 1-1772.

Algorithms
ssest initializes the parameter estimates using either a noniterative subspace approach or an
iterative rational function estimation approach. It then refines the parameter values using the
prediction error minimization approach. For more information, see pem and ssestOptions.

Version History
Introduced in R2012a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

References
[1] Ljung, L. System Identification: Theory for the User, Second Edition. Upper Saddle River, NJ:

Prentice Hall PTR, 1999.

See Also
Functions
ssestOptions | ssregest | idss | n4sid | tfest | procest | polyest | iddata | idfrd | canon
| idgrey | pem

Live Editor Tasks
Estimate State-Space Model

Topics
“Estimate State-Space Models at the Command Line”

1 Functions

1-1784

“Estimate State-Space Models with Free-Parameterization”
“Estimate State-Space Models with Canonical Parameterization”
“Estimate State-Space Models with Structured Parameterization”
“Use State-Space Estimation to Reduce Model Order”
“What Are State-Space Models?”
“Supported State-Space Parameterizations”
“State-Space Model Estimation Methods”
“Regularized Estimates of Model Parameters”
“Estimating Models Using Frequency-Domain Data”

 ssest

1-1785

ssestOptions
Option set for ssest

Description
Use an ssestOptions object to specify options for estimating state-space models using the ssest
function. You can specify options such as the handling of initial states, stability enforcement, and the
numerical search method to be used in estimation.

Creation

Syntax
opt = ssestOptions
opt = ssestOptions(Name,Value)

Description

opt = ssestOptions creates the default option set for ssest. To modify the properties of this
option set for your specific application, use dot notation.

opt = ssestOptions(Name,Value) creates an option set with the properties specified using one
or more name-value arguments.

Properties
InitializeMethod — Algorithm used to initialize the state-space parameters
'auto' (default) | 'n4sid' | 'lsrf'

Algorithm used to initialize the state-space parameter values for ssest, specified as one of the
following values:

• 'auto' — ssest selects automatically:

• lsrf, if the system is non-MIMO, the data is frequency-domain, and the state-space
parameters are real-valued.

• n4sid otherwise (time-domain, MIMO, or with complex-valued state-space parameters).
• 'n4sid' — Subspace state-space estimation approach — can be used with all systems (see

n4sid).
• 'lsrf' — Least-squares rational function estimation-based approach [7] (see “Continuous-Time

Transfer Function Estimation Using Continuous-Time Frequency-Domain Data” on page 1-1925) —
can provide higher-accuracy results for non-MIMO frequency-domain systems with real-valued
state-space parameters, but cannot be used for any other systems (time-domain, MIMO, or with
complex-valued state-space parameters).

1 Functions

1-1786

InitialState — Handling of initial states
'auto' (default) | 'zero' | 'estimate' | 'backcast' | vector | parametric initial condition object
(x0obj)

Handling of initial states during estimation, specified as one of the following values:

• 'zero' — The initial state is set to zero.
• 'estimate' — The initial state is treated as an independent estimation parameter.
• 'backcast' — The initial state is estimated using the best least squares fit.
• 'auto' — ssest chooses the initial state handling method, based on the estimation data. The

possible initial state handling methods are 'zero', 'estimate' and 'backcast'.
• Vector of doubles — Specify a column vector of length Nx, where Nx is the number of states. For

multiple-experiment data, specify a matrix with Ne columns, where Ne is the number of
experiments. The specified values are treated as fixed values during the estimation process.

• Parametric initial condition object (x0obj) — Specify initial conditions by using idpar to create a
parametric initial condition object. You can specify minimum/maximum bounds and fix the values
of specific states using the parametric initial condition object. The free entries of x0obj are
estimated together with the idss model parameters.

Use this option only for discrete-time state-space models.

N4Weight — Weighting scheme used for singular-value decomposition by the N4SID
algorithm
'auto' (default) | 'MOESP' | 'CVA' | 'SSARX'

Weighting scheme used for singular-value decomposition by the N4SID algorithm, specified as one of
the following values:

• 'MOESP' — Uses the MOESP algorithm by Verhaegen [2].
• 'CVA' — Uses the Canonical Variate Algorithm by Larimore [1].
• 'SSARX' — A subspace identification method that uses an ARX estimation based algorithm to

compute the weighting.

Specifying this option allows unbiased estimates when using data that is collected in closed-loop
operation. For more information about the algorithm, see [6].

• 'auto' — The estimating function chooses between the MOESP and CVA algorithms.

N4Horizon — Forward- and backward-prediction horizons used by the N4SID algorithm
'auto' (default) | vector [r sy su] | k-by-3 matrix

Forward and backward prediction horizons used by the N4SID algorithm, specified as one of the
following values:

• A row vector with three elements — [r sy su], where r is the maximum forward prediction
horizon. The algorithm uses up to r step-ahead predictors. sy is the number of past outputs, and
su is the number of past inputs that are used for the predictions. See pages 209 and 210 in [4] for
more information. These numbers can have a substantial influence on the quality of the resulting
model, and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix
means that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to
data is selected. k is the number of guesses of [r sy su] combinations. If you specify
N4Horizon as a single column, r = sy = su is used.

 ssestOptions

1-1787

• 'auto' — The software uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system | 'inv' | 'invsqrt'

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the values in the following table.

Value Description
[] No weighting prefilter is used.
Passbands Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model
and estimation data is optimized. For example, specify [wl,wh], where wl and
wh represent lower and upper limits of a passband. For a matrix with several
rows defining frequency passbands, [w1l,w1h;w2l,w2h;w3l,w3h;...], the
estimation algorithm uses the union of the frequency ranges to define the
estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in
FrequencyUnit for frequency-domain data, where TimeUnit and
FrequencyUnit are the time and frequency units of the estimation data.

SISO filter Specify a single-input-single-output (SISO) linear filter in one of the following
ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with

the same sample time as the estimation data.
• {numerator,denominator} format, which specifies the numerator and

denominator of the filter as a transfer function with the same sample time
as the estimation data.

This option calculates the weighting function as a product of the filter and
the input spectrum to estimate the transfer function.

1 Functions

1-1788

Value Description
Weighting vector Applicable for frequency-domain data only. Specify a column vector of weights.

This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by
the corresponding weight at that frequency.

'inv' Applicable for estimation using frequency-response data only. Use 1/ G(ω) as
the weighting filter, where G(ω) is the complex frequency-response data. Use
this option for capturing relatively low amplitude dynamics in data, or for
fitting data with high modal density. This option also makes it easier to specify
channel-dependent weighting filters for MIMO frequency-response data.

'invsqrt' Applicable for estimation using frequency-response data only. Use 1/ G(ω) as
the weighting filter. Use this option for capturing relatively low amplitude
dynamics in data, or for fitting data with high modal density. This option also
makes it easier to specify channel-dependent weighting filters for MIMO
frequency-response data.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputInterSample — Input-channel intersample behavior
'auto' | 'zoh' | 'foh' | 'bl'

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

 ssestOptions

1-1789

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata
object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weighting of prediction errors in multi-output estimations
[] (default) | 'noise' | positive semidefinite symmetric matrix

Weighting of prediction errors in multi-output estimations, specified as one of the following values:

• 'noise' — Minimize det(E′ * E/N), where E represents the prediction error and N is the number
of data samples. This choice is optimal in a statistical sense and leads to maximum likelihood
estimates if nothing is known about the variance of the noise. It uses the inverse of the estimated
noise variance as the weighting function.

Note OutputWeight must not be 'noise' if SearchMethod is 'lsqnonlin'.
• Positive semidefinite symmetric matrix (W) — Minimize the trace of the weighted prediction error

matrix trace(E'*E*W/N), where:

• E is the matrix of prediction errors, with one column for each output, and W is the positive
semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-output models, or the reliability of corresponding
data.

• N is the number of data samples.
• [] — The software chooses between 'noise' and using the identity matrix for W.

1 Functions

1-1790

This option is relevant for only multi-output models.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as a structure with the fields in the
following table. For more information on regularization, see “Regularized Estimates of Model
Parameters”.

Field Name Description Default
Lambda Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the
estimation cost.

The default value of 0 implies no regularization.

0

R Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-
definite matrix. The length must be equal to the number of free
parameters of the model.

For black-box models, using the default value is recommended. For
structured and grey-box models, you can also specify a vector of np
positive numbers such that each entry denotes the confidence in the
value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where
npfree is the number of free parameters.

1

Nominal The nominal value towards which the free parameters are pulled
during estimation.

The default value of 0 implies that the parameter values are pulled
towards zero. If you are refining a model, you can set the value to
'model' to pull the parameters towards the parameter values of the
initial model. The initial parameter values must be finite for this
setting to work.

0

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

 ssestOptions

1-1791

SearchMethod Description
'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

1 Functions

1-1792

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

 ssestOptions

1-1793

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

1 Functions

1-1794

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

 ssestOptions

1-1795

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

1 Functions

1-1796

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

 ssestOptions

1-1797

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the fields in the following table.

Field Name Description Default
ErrorThreshol
d

Error threshold at which to adjust the weight of large errors from
quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the loss function. The standard
deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors, divided by 0.7.
For more information on robust norm choices, see section 15.2 of [4].

An ErrorThreshold value of 0 disables robustification and leads to
a purely quadratic loss function. When estimating with frequency-
domain data, the software sets ErrorThreshold to 0. For time-
domain data that contains outliers, try setting ErrorThreshold to
1.6.

0

MaxSize Maximum number of elements in a segment when input-output data is
split into segments.

MaxSize must be a positive integer value.

250000

1 Functions

1-1798

Field Name Description Default
StabilityThre
shold

Threshold for stability tests.

Field
Name

Description Defaul
t

s Location of the right-most pole.

The software uses s to test the stability of
continuous-time models. A model is considered
stable when its right-most pole is to the left of
s.

0

z Maximum distance of all poles from the origin.

The software uses z to test the stability of
discrete-time models. A model is considered
stable if all poles are within the distance z from
the origin.

1+sqr
t(eps
)

AutoInitThres
hold

Threshold at which to automatically estimate initial conditions.

The software estimates the initial conditions when:

yp, z − ymeas
yp, e− ymeas

> AutoInitThreshold

1.05

DDC Specifies if the Data Driven Coordinates algorithm [5] is used to
estimate freely parameterized state-space models.

Specify DDC as one of the following values:

• 'on' — The free parameters are projected to a reduced space of
identifiable parameters using the Data Driven Coordinates
algorithm.

• 'off' — All the entries of A, B, and C are updated directly using
the specified SearchMethod.

Examples

Create Default Option Set for State Space Estimation
opt = ssestOptions

Option set for the ssest command:

 InitializeMethod: 'auto'
 InitialState: 'auto'
 N4Weight: 'auto'
 N4Horizon: 'auto'
 Display: 'off'
 InputInterSample: 'auto'
 InputOffset: []
 OutputOffset: []
 EstimateCovariance: 1

 ssestOptions

1-1799

 OutputWeight: []
 Focus: 'prediction'
 WeightingFilter: []
 EnforceStability: 0
 SearchMethod: 'auto'
 SearchOptions: '<Optimization options set>'
 Regularization: [1x1 struct]
 Advanced: [1x1 struct]

Specify Options for State Space Estimation

Create an option set for ssest using the "backcast" algorithm to initialize the state and set the
Display to "on".

opt = ssestOptions("InitialState","backcast","Display","on")

Option set for the ssest command:

 InitializeMethod: 'auto'
 InitialState: 'backcast'
 N4Weight: 'auto'
 N4Horizon: 'auto'
 Display: 'on'
 InputInterSample: 'auto'
 InputOffset: []
 OutputOffset: []
 EstimateCovariance: 1
 OutputWeight: []
 Focus: 'prediction'
 WeightingFilter: []
 EnforceStability: 0
 SearchMethod: 'auto'
 SearchOptions: '<Optimization options set>'
 Regularization: [1x1 struct]
 Advanced: [1x1 struct]

Alternatively, use dot notation to set the values of opt.

opt = ssestOptions;
opt.InitialState = "backcast";
opt.Display = "on";

Version History
Introduced in R2012a

InputInterSample option allows intersample behavior specification for continuous models
estimated from timetables or matrices.

iddata objects contain an InterSample property that describes the behavior of the signal between
sample points. The InputInterSample option implements a version of that property in
ssestOptions so that intersample behavior can be specified also when estimation data is stored in
timetables or matrices.

1 Functions

1-1800

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References
[1] Larimore, Wallace E. "Canonical variate analysis in identification, filtering and adaptive control."

Proceedings of the 29th IEEE Conference on Decision and Control, pp. 596–604, 1990.

[2] Verhaegen, Michel. "Identification of the deterministic part of MIMO state space models given in
innovations form from input-output data." Automatica, Vol. 30, No. 1, 1994, pp. 61–74. https://
doi.org/10.1016/0005-1098(94)90229-1

[3] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates.” Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3–8,
2005. Oxford, UK: Elsevier Ltd., 2005.

[4] Ljung, Lennart. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall
PTR, 1999.

[5] McKelvey, Tomas, A. Helmersson, and T. Ribarits. “Data driven local coordinates for multivariable
linear systems and their application to system identification.” Automatica, Volume 40, No. 9,
2004, pp. 1629–1635.

[6] Jansson, Magnus. “Subspace identification and ARX modeling.” 13th IFAC Symposium on System
Identification , Rotterdam, The Netherlands, 2003.

[7] Ozdemir, Ahmet Arda, and S. Gumossoy. "Transfer Function Estimation in System identification
Toolbox via Vector Fitting." Proceedings of the 20th World Congress of the International
Federation of Automatic Control. Toulouse, France, July 2017.

See Also
ssest

Topics
“Loss Function and Model Quality Metrics”

 ssestOptions

1-1801

ssform
Quick configuration of state-space model structure

Syntax
sys1 = ssform(sys,Name,Value)

Description
sys1 = ssform(sys,Name,Value) specifies the type of parameterization and whether
feedthrough and disturbance dynamics are present for the state-space model sys using one or more
Name,Value pair arguments.

Input Arguments
sys

State-space model

Default:

Name-Value Pair Arguments

Specify comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' '). You can specify
several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Form

Specify structure of A, B and C matrices as one of the following values:

• 'free'

All entries of A, B, C are set free
• 'companion'

Companion form of the model where the characteristic polynomial appears in the far-right column
of the state matrix A

• 'modal'

Modal decomposition form, where the state matrix A is block diagonal. Each block corresponds to
a real or complex-conjugate pair of poles.

You cannot use this value for models with repeated poles.
• 'canonical'

Observability canonical form of A, B, and C matrices, as described in [1].

Default:

1 Functions

1-1802

Feedthrough

Specify whether the model has direct feedthrough from the input u(t) to the output y(t), (whether the
elements of the matrix D are nonzero).

Must be a logical vector (true or false) of length equal to the number of inputs (Nu).

Feedthrough(i) = false sets sys.Structure.D.Value(:,i) to zero and
sys.Structure.D.Free(:,i) to false.

Feedthrough(i) = true sets sys.Structure.D.Free(:,i) to true.

Note Specifying this option for a previously estimated model causes the model parameter covariance
information to be lost. Use translatecov to recompute the covariance.

Default:

DisturbanceModel

Specify whether to estimate the noise component of the model, specified as one of the following
values:

• 'none'

The value of the K matrix is fixed to zero.
• 'estimate'

The K matrix is treated as a free parameter

Note Specifying this option for a previously estimated model causes the model parameter covariance
information to be lost. Use translatecov to recompute the covariance.

Default:

Output Arguments
sys1

State-space model with configured parameterization, feedthrough, and disturbance dynamics

Examples

Convert State-Space Model to Canonical Form

Create a state-space model.

rng('default');
A = randn(2) - 2*eye(2);
B = randn(2,1);
C = randn(1,2);

 ssform

1-1803

D = 0;
K = randn(2,1);
model = idss(A,B,C,D,K,'Ts',0);

The state-space model has free parameterization and no feedthrough.

Convert the model to observability canonical form.

model1 = ssform(model,'Form','canonical');

Estimate State-Space Model Parameters in Canonical Form with Feedthrough

Load the estimation data.

load iddata1 z1;

Create a state-space model.

rng('default');
A = randn(2) - 2*eye(2);
B = randn(2,1);
C = randn(1,2);
D = 0;
K = randn(2,1);
model = idss(A,B,C,D,K,'Ts',0);

The state-space model has free parameterization and no feedthrough.

Convert the model to observability canonical form and specify to estimate its feedthrough behavior.

model1 = ssform(model,'Form','canonical','Feedthrough', true);

Estimate the parameters of the model.

model2 = ssest(z1,model1);

Alternatives
Use the Structure property of an idss model to specify the parameterization, feedthrough, and
disturbance dynamics by modifying the Value and Free attributes of the A, B, C, D and K parameters.

Version History
Introduced in R2012b

References

[1] Ljung, L. System Identification: Theory For the User, Second Edition, Appendix 4A, pp 132-134,
Upper Saddle River, N.J: Prentice Hall, 1999.

1 Functions

1-1804

See Also
idss | ssest | n4sid

Topics
“Estimate State-Space Models at the Command Line”
“Supported State-Space Parameterizations”

 ssform

1-1805

ssregest
Estimate state-space model by reduction of regularized ARX model

Syntax
sys = ssregest(tt,nx)
sys = ssregest(u,y,nx,'Ts',Ts)
sys = ssregest(data,nx)

sys = ssregest(___ ,nx,Name,Value)
sys = ssregest(___ ,opt)

[sys,x0] = ssregest(___)

Description
Estimate State-Space Model

sys = ssregest(tt,nx) estimates a discrete-time state-space model by reduction of a regularized
ARX model, using the all the input and output signals in the timetable tt. You can use this syntax for
SISO and MIMO systems. The function assumes that the last variable in the timetable is the single
output signal. You can also use this syntax to estimate a time-series model if tt contains a single
variable that represents the sole output.

For MIMO systems and for timetables that contain more variables than you plan to use for estimation,
you must also use name-value arguments to specify the names of the input and output channels you
want. For more information, see tt.

To estimate a continuous-time model, set 'Ts' to 0 using name-value syntax.

sys = ssregest(u,y,nx,'Ts',Ts) uses the time-domain input and output signals in the comma-
separated matrices u,y and the model sample time Ts. The software assumes that the data sample
time is also Ts seconds. You can use this syntax for SISO, MISO, and MIMO systems.

Estimating continuous-time models from matrix-based data is not recommended.

sys = ssregest(data,nx) uses the time-domain or frequency-domain data in the data object
data. Use this syntax especially when you want to estimate a state-space model using frequency-
domain or frequency-response data, or when you want to take advantage of the additional
information, such as data sample time or experiment labeling, that data objects provide.

Specify Additional Options

sys = ssregest(___ ,nx,Name,Value) incorporates additional model options specified by one
or more name-value arguments. For example, specify input and output signal variable names that
correspond with the variables to use for MIMO timetable data using sys =
ssregest(data,nx,'InputName',["u1","u2"],'OutputName',["y1","y3"]). Use the
'Form', 'Feedthrough', and 'DisturbanceModel' name-value arguments to modify the default
behavior of the A, B, C, D, and K matrices.

1 Functions

1-1806

sys = ssregest(___ ,opt) specifies estimation options that configure the estimation objective,
ARX orders, and order reduction options. This syntax can include any of the input argument
combinations in the previous syntaxes.
Return Estimated Initial States

[sys,x0] = ssregest(___) returns the value of initial states computed during estimation. This
syntax can include any of the input argument combinations in the previous syntaxes.

Examples

Estimate State-Space Model by Reduction of Regularized ARX Model

Load the time-domain estimation data, which is contained in the timetable tt.

load sdata2.mat tt2;

Identify a third-order state-space model.

sys = ssregest(tt2,3);

Estimate State-Space Model With Input Delay

Load estimation data, which is contained in the input/output matrix pair umat2 and ymat2.

load sdata2.mat umat2 ymat2

Estimate a third-order state-space model with input delay. Specify the sample time Ts as 0.1.

sys = ssregest(umat2,ymat2,3,'InputDelay',2,'Ts',0.1);

Configure the ARX Orders and Estimation Focus

Load estimation data.

load iddata2 z2;

Specify the order of the regularized ARX model used by the software during estimation. Also, set the
estimation focus to simulation.

opt = ssregestOptions('ARXOrder',[100 100 1],'Focus','simulation');

Identify a third-order state-space model.

sys = ssregest(z2,3,opt);

Return Initial State Values Computed During Estimation

Load estimation data.

 ssregest

1-1807

load iddata2 z2;

Obtain the initial state values when identifying a third-order state-space model.

[sys,x0] = ssregest(z2,3);

Compare Regularized State-Space Models Estimated Using Impulse Response and
Reduction of ARX Models

Load data.

load regularizationExampleData eData;

Create a transfer function model used for generating the estimation data (true system).

trueSys = idtf([0.02008 0.04017 0.02008],[1 -1.561 0.6414],1);

Obtain regularized impulse response (FIR) model.

opt = impulseestOptions('RegularizationKernel','DC');
m0 = impulseest(eData,70,opt);

Convert the model into a state-space model and reduce the model order.

m1 = balred(idss(m0),15);

Obtain a second state-space model using regularized reduction of an ARX model.

m2 = ssregest(eData,15);

Compare the impulse responses of the true system and the estimated models.

impulse(trueSys,m1,m2,50);
legend('trueSys','m1','m2');

1 Functions

1-1808

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables.

Estimation data, specified as a uniformly sampled timetable that contains variables representing
input and output channels or, for multiexperiment data, a cell array of timetables.

Use Entire Timetable

If you want to use all the variables in tt as input or output channels, and the variables are organized
so that the set of input channel variables is followed by the set of output channel variables, then:

• For SISO systems, specify tt as an Ns-by-2 timetable, where Ns is the number of samples and the
two timetable variables represent the measured input channel and output channel respectively.

• For MIMO systems, specify tt as an Ns-by-(Nu+Ny) timetable, where Nu is the number of inputs
and Ny is the number of outputs. The first Nu variables must contain the input channels and the
remaining Ny variables must contain the output channels.

When you are estimating state space or transfer function models, you must also explicitly specify
the input and output channels, as the following section describes.

• For multiexperiment data, specify data as an Ne-by-1 cell array of timetables, where Ne is the
number of experiments. The sample times of all the experiments must match.

 ssregest

1-1809

Use Selected Variables from Timetable

If you want to explicitly identify the input and output channels, such as when you want to use only a
subset of the available channels, when the input and output channel variables are intermixed, or
when you are estimating a MIMO state-space or transfer function model, use the 'InputName' and
'OutputName' name-value arguments to specify which variables to use as inputs and outputs.

For example, suppose that tt contains six channel variables: "u1", "u2", "u3", and "y1", "y2",
"y3". For estimation, you want to use the variables "u1" and "u2" as the inputs and the variables
"y1" and "y3" as the outputs. Use the following command to perform the estimation:

sys = ssregest(tt,__,'InputName',["u1" "u2"],'OutputName',["y1" "y3"])

Use Timetable to Estimate Time Series Models

If you want to estimate a time series model rather than an input/output model, use only output
variables from tt. You can either specify tt to contain only the output variables that you want, or
extract the output variables from tt if tt also contains input variables. The specification approach is
similar to that for input/output model estimation.

• For a single-output system, specify tt as an Ns-by-1 timetable.
• For a multivariate system, specify tt as an Ns-by-(Ny) timetable. Even if you plan to use all the

variables in tt, you must specify all of them using the 'OutputName' name-value argument so
that the software does not interpret them as input variables.

For a timetable tt that has variables beyond what you want to use, such as input variables or
additional output variables, specify both the output variables you want to use and, in 'InputName',
an empty array.

For example, suppose that tt contains six variables: "u1", "u2", "u3", and "y1", "y2", "y3". For
time series estimation, you want to use the output variables "y1" and "y3". Use the following
command to perform the estimation:

sys = ssregest(tt,__,'OutputName',["y1" "y3"],'InputName',[])

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued
matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the
number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

For time series data, which contains only outputs and no inputs, specify y only.

1 Functions

1-1810

Limitations

• Matrix-based data does not support estimation from frequency-domain data. You must use a data
object such as an iddata object or idfrd object (see data).

• Using matrices for estimation data is not recommended for continuous-time estimation because
the data does not provide the sample time. The software assumes that the data is sampled at 1 Hz.
For continuous-time estimation, it is recommended that you convert each matrix to a timetable.
For example, to convert the matrices um and ym to a timetable tt with a sample time of 0.5
minutes, use the following command.

tt = timetable(um,ym,'rowtimes',minutes(0.5*(1:size(u,1))))

For a more detailed example of converting matrix-based SISO data to a timetable, see “Convert
SISO Matrix Data to Timetable”. For an example of converting a MIMO matrix pair to a timetable,
see “Convert MIMO Matrix Data to Timetable for Continuous-Time Model Estimation”.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data object
iddata object | frd object | idfrd object

Estimation data object, specified as an iddata object, an frd object, or an idfrd object that
contains uniformly sampled input and output values. For time series models, data can contain only
output values. By default, the software sets the sample time of the model to the sample time of the
estimation data.

For multiexperiment data, the sample times and intersample behavior of all the experiments must
match.

For time-domain estimation, data must be an iddata object containing the input and output signal
values.

For frequency-domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)
• iddata object with properties specified as follows:

• InputData — Fourier transform of the input signal
• OutputData — Fourier transform of the output signal
• Domain — 'Frequency'
• Ts — Nonzero

nx — Order of estimated model
positive scalar | positive vector | 'best'

Order of the estimated model, specified as a positive scalar or vector.

If nx is a vector, then ssregest creates a plot which you can use to choose a suitable model order.
The plot shows the Hankel singular values for models of chosen values in the vector. States with
relatively small Hankel singular values can be safely discarded. A default choice is suggested in the
plot.

 ssregest

1-1811

You can also specify nx = 'best', as in ssregest(data,'best'), in which case the optimal order
is chosen automatically in the 1:10 range.

opt — Options set for ssregest
ssregestOptions options set

Estimation options for ssregest, specified as an options set you create using ssregestOptions.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: sys = ssregest(z2,3,'InputDelay',2) specifies a delay of 2 sampling periods.

Ts — Sample time
sample time of data (data.Ts) (default) | positive scalar | 0

Sample time of the model, specified as 0 or equal to the sample time of data.

For continuous-time models, use Ts = 0. For discrete-time models, specify Ts as a positive scalar
whose value is equal to the data sample time.

InputDelay — Input delays
0 (default) | scalar | vector

Input delay for each input channel, specified as a numeric vector. For continuous-time systems,
specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems,
specify input delays in integer multiples of the sample time Ts. For example, InputDelay = 3
means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Form — Type of canonical form
'free' (default) | 'modal' | 'companion' | 'canonical'

Type of canonical form of sys, specified as one of the following values:

• 'modal' — Obtain sys in modal form on page 1-1815.
• 'companion' — Obtain sys in companion form on page 1-1816.
• 'free' — All entries of the A, B and C matrices are treated as free.
• 'canonical' — Obtain sys in the observability canonical form [1].

Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the
default behavior of the A, B, C, D, and K matrices.

Feedthrough — Direct feedthrough from input to output
0 (default) | 1 | logical vector

1 Functions

1-1812

Direct feedthrough from input to output, specified as a logical vector of length Nu, where Nu is the
number of inputs. If Feedthrough is specified as a logical scalar, it is applied to all the inputs.

Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the
default behavior of the A, B, C, D, and K matrices.

DisturbanceModel — Specify whether to estimate the K matrix
'estimate' (default) | 'none'

Specify whether to estimate the K matrix which specifies the noise component, specified as one of the
following values:

• 'none' — Noise component is not estimated. The value of the K matrix is fixed to zero value.
• 'estimate' — The K matrix is treated as a free parameter.

DisturbanceModel must be 'none' when using frequency-domain data.

Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the
default behavior of the A, B, C, D, and K matrices.

Output Arguments
sys — Estimated state-space model
idss

Estimated state-space model of order nx, returned as an idss model object. The model represents:

ẋ(t) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)

A, B, C, D, and K are state-space matrices. u(t) is the input, y(t) is the output, e(t) is the disturbance
and x(t) is the vector of nx states.

All the entries of A, B, C, and K are free estimable parameters by default. D is fixed to zero by default,
meaning that there is no feedthrough, except for static systems (nx=0).

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields:

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.

 ssregest

1-1813

Report
Field

Description

InitialSt
ate

Handling of initial states during estimation, returned as one of the following values:

• 'zero' — The initial state was set to zero.
• 'estimate' — The initial state was treated as an independent estimation

parameter.

This field is especially useful when the InitialState option in the estimation option
set is 'auto'.

ARXOrder ARX model orders, returned as a matrix of nonnegative integers [na nb nk].
Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function

and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See ssregestOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

1 Functions

1-1814

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

x0 — Initial states computed during estimation
scalar | matrix

Initial states computed during estimation, returned as a scalar. If data contains multiple
experiments, then x0 is a matrix with each column corresponding to an experiment.

This value is also stored in the Parameters field of the model’s Report property.

More About
Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues and
2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby
eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (λ1, σ ± jω, λ2), the modal A matrix is of the form

Am =

λ1 0 0 0
0 σ ω 0
0 −ω σ 0
0 0 0 λ2

.

 ssregest

1-1815

Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the
rightmost column of the A matrix.

For a system with characteristic polynomial

P(s) = sn + αn− 1sn− 1 + αn− 2sn− 2 + … + α1s + α0,

the corresponding companion A matrix is

Accom =

0
1
0
0
⋮
0

0
0
1
0
⋮
0

0
0
0
1
⋮
0

…
…
…
…
⋱
…

0
0
0
0
⋮
1

−α0
−α1
−α2
−α3

 ⋮
−αn− 1

, Bccom =

1
0
⋮
0

.

The companion transformation requires that the system be controllable from the first input. The
companion form is poorly conditioned for most state-space computations; avoid using it when
possible.

Tips
• ssregest function provides improved accuracy than n4sid for short, noisy data sets.
• For some problems, the quality of fit using n4sid is sensitive to options, such as N4Horizon,

whose values can be difficult to determine. In comparison, the quality of fit with ssregest is less
sensitive to its options, which makes ssregest simpler to use.

Algorithms
ssregest estimates a regularized ARX model and converts the ARX model to a state-space model.
The software then uses balanced model reduction techniques to reduce the state-space model to the
specified order.

Version History
Introduced in R2014a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

1 Functions

1-1816

References
[1] Ljung, L. System Identification: Theory For the User, Second Edition, Appendix 4A, pp 132-134,

Upper Saddle River, N.J: Prentice Hall, 1999.

See Also
ssregestOptions | arxRegul | arx | balred | ssest | n4sid

Topics
“Regularized Estimates of Model Parameters”

 ssregest

1-1817

ssregestOptions
Option set for ssregest

Syntax
options = ssregestOptions
options = ssregestOptions(Name,Value)

Description
options = ssregestOptions creates a default option set for ssregest.

options = ssregestOptions(Name,Value) specifies additional options using one or more
Name,Value pair arguments.

Examples

Create Default Option Set for State-Space Estimation Using Reduction of Regularized ARX
Model
options = ssregestOptions;

Specify Options for State-Space Estimation Using Reduction of Regularized ARX Model

Create an option set for ssregest that fixes the value of the initial states to 'zero'. Also, set the
Display to 'on'.

opt = ssregestOptions('InitialState','zero','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = ssregestOptions;
opt.InitialState = 'zero';
opt.Display = 'on';

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: opt = ssregestOptions('InitialState','zero') fixes the value of the initial states
to zero.

1 Functions

1-1818

InitialState — Handling of initial states
'estimate' (default) | 'zero'

Handling of initial states during estimation, specified as one of the following values:

• 'zero' — The initial state is set to zero.
• 'estimate' — The initial state is treated as an independent estimation parameter.

ARXOrder — ARX model orders
'auto' (default) | matrix of nonnegative integers

ARX model orders, specified as a matrix of nonnegative integers [na nb nk]. The max(ARXOrder)
+1 must be greater than the desired state-space model order (number of states). If you specify a
value, it is recommended that you use a large value for nb order. To learn more about ARX model
orders, see arx.

RegularizationKernel — Regularizing kernel
'TC' (default) | 'SE' | 'SS' | 'HF' | 'DI' | 'DC'

Regularizing kernel used for regularized estimates of the underlying ARX model, specified as one of
the following values:

• 'TC' — Tuned and correlated kernel
• 'SE' — Squared exponential kernel
• 'SS' — Stable spline kernel
• 'HF' — High frequency stable spline kernel
• 'DI' — Diagonal kernel
• 'DC' — Diagonal and correlated kernel

For more information, see [1].

Reduction — Options for model order reduction
structure

Options for model order reduction, specified as a structure with the following fields:

• StateElimMethod

State elimination method. Specifies how to eliminate the weakly coupled states (states with
smallest Hankel singular values). Specified as one of the following values:

'MatchDC' Discards the specified states and alters the remaining states to preserve
the DC gain.

'Truncate' Discards the specified states without altering the remaining states. This
method tends to product a better approximation in the frequency
domain, but the DC gains are not guaranteed to match.

Default: 'Truncate'
• AbsTol, RelTol

Absolute and relative error tolerance for stable/unstable decomposition. Positive scalar values. For
an input model G with unstable poles, the reduction algorithm of ssregest first extracts the

 ssregestOptions

1-1819

stable dynamics by computing the stable/unstable decomposition G → GS + GU. The AbsTol and
RelTol tolerances control the accuracy of this decomposition by ensuring that the frequency
responses of G and GS + GU differ by no more than AbsTol + RelTol*abs(G). Increasing these
tolerances helps separate nearby stable and unstable modes at the expense of accuracy. See
stabsep for more information.

Default: AbsTol = 0; RelTol = 1e-8
• Offset

Offset for the stable/unstable boundary. Positive scalar value. In the stable/unstable
decomposition, the stable term includes only poles satisfying

• Re(s) < -Offset * max(1,|Im(s)|) (Continuous time)
• |z| < 1 - Offset (Discrete time)

Increase the value of Offset to treat poles close to the stability boundary as unstable.

Default: 1e-8

Focus — Error to be minimized
'prediction' (default) | 'simulation'

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

• 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

• 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

• [] — No weighting prefilter is used.
• Passbands — Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[w1l,w1h;w2l,w2h;w3l,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

1 Functions

1-1820

• SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample

time as estimation data.
• {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

• Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputInterSample — Input-channel intersample behavior
'auto' | 'zoh' | 'foh' | 'bl'

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata
object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

 ssregestOptions

1-1821

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weight of prediction errors in multi-output estimation
[] (default) | positive semidefinite, symmetric matrix

Weight of prediction errors in multi-output estimation, specified as one of the following values:

• Positive semidefinite, symmetric matrix (W). The software minimizes the trace of the weighted
prediction error matrix trace(E'*E*W/N) where:

• E is the matrix of prediction errors, with one column for each output, and W is the positive
semidefinite, symmetric matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-output models, or the reliability of corresponding
data.

• N is the number of data samples.
• [] — No weighting is used. Specifying as [] is the same as eye(Ny), where Ny is the number of

outputs.

This option is relevant only for multi-output models.

Advanced — Advanced estimation options
structure

Advanced options for regularized estimation, specified as a structure with the following fields:

• MaxSize — Maximum allowable size of Jacobian matrices formed during estimation, specified as a
large positive number.

Default: 250e3
• SearchMethod — Search method for estimating regularization parameters, specified as one of

the following values:

1 Functions

1-1822

• 'gn': Quasi-Newton line search.
• 'fmincon': Trust-region-reflective constrained minimizer. In general, 'fmincon' is better

than 'gn' for handling bounds on regularization parameters that are imposed automatically
during estimation.

Default: 'fmincon'

Output Arguments
options — Option set for ssregest
ssregestOptions options set

Estimation options for ssregest, returned as an ssregestoptions option set.

Version History
Introduced in R2014a

InputInterSample option allows intersample behavior specification for continuous models
estimated from timetables or matrices.

iddata objects contain an InterSample property that describes the behavior of the signal between
sample points. The InputInterSample option implements a version of that property in
ssregestOptions so that intersample behavior can be specified also when estimation data is stored
in timetables or matrices.

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References
[1] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer Functions, Regularizations and

Gaussian Processes - Revisited”, Automatica, Volume 48, August 2012.

See Also
ssregest

Topics
“Loss Function and Model Quality Metrics”

 ssregestOptions

1-1823

stack
Build model array by stacking models or model arrays along array dimensions

Syntax
sys = stack(arraydim,sys1,sys2,...)

Description
sys = stack(arraydim,sys1,sys2,...) produces an array of dynamic system models sys by
stacking (concatenating) the models (or arrays) sys1,sys2,... along the array dimension
arraydim. All models must have the same number of inputs and outputs (the same I/O dimensions),
but the number of states can vary. The I/O dimensions are not counted in the array dimensions. For
more information about model arrays and array dimensions, see “Model Arrays” (Control System
Toolbox).

For arrays of state-space models with variable order, you cannot use the dot operator (e.g., sys.A) to
access arrays. Use the syntax

[A,B,C,D] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell arrays A, B, C, and D.

Examples
Example 1

If sys1 and sys2 are two models:

• stack(1,sys1,sys2) produces a 2-by-1 model array.
• stack(2,sys1,sys2) produces a 1-by-2 model array.
• stack(3,sys1,sys2) produces a 1-by-1-by-2 model array.

Example 2

Stack identified state-space models derived from the same estimation data and compare their bode
responses.

load iddata1 z1
sysc = cell(1,5);
opt = ssestOptions('Focus','simulation');
for i = 1:5
sysc{i} = ssest(z1,i-1,opt);
end
sysArray = stack(1, sysc{:});
bode(sysArray);

1 Functions

1-1824

Version History
Introduced in R2012a

 stack

1-1825

step
Step response plot of dynamic system; step response data

Syntax
step(sys)
step(sys,tFinal)
step(sys,t)
step(sys1,sys2,...,sysN, ___)
step(sys1,LineSpec1,...,sysN,LineSpecN, ___)
step(___ ,opts)

y = step(sys,t)
[y,tOut] = step(sys)
[y,tOut] = step(sys,tFinal)
[y,t,x] = step(sys)
[y,t,x,ysd] = step(sys)
[___] = step(___ ,opts)

Description
Step Response Plots

step(sys) plots the response of a dynamic system model to a step input of unit amplitude. The
model sys can be continuous- or discrete-time, and SISO or MIMO. For MIMO systems, the plot
displays the step responses for each I/O channel. step automatically determines the time steps and
duration of the simulation based on the system dynamics.

step(sys,tFinal) simulates the step response from t = 0 to the final time t = tFinal. The
function uses system dynamics to determine the intervening time steps.

step(sys,t) plots the step response at the times that you specify in the vector t.

step(sys1,sys2,...,sysN, ___) plots the step response of multiple dynamic systems on the
same plot. All systems must have the same number of inputs and outputs. You can use multiple
dynamic systems with any of the previous input-argument combinations.

step(sys1,LineSpec1,...,sysN,LineSpecN, ___) specifies a color, line style, and marker for
each system in the plot. You can use LineSpec with any of the previous input-argument
combinations. When you need additional plot customization options, use stepplot instead.

step(___ ,opts) specifies additional options for computing the step response, such as the step
amplitude or input offset. Use stepDataOptions to create the option set opts. You can use opts
with any of the previous input-argument and output-argument combinations.

Step Response Data

y = step(sys,t) returns the step response of a dynamic system model sys at the times specified
in the vector t. This syntax does not draw a plot.

1 Functions

1-1826

[y,tOut] = step(sys) also returns a vector of times tOut corresponding to the responses in y. If
you do not provide an input vector t of times, step chooses the length and time step of tOut based
on the system dynamics.

[y,tOut] = step(sys,tFinal) computes the step response up to the end time tFinal. step
chooses the time step of tOut based on the system dynamics.

[y,t,x] = step(sys) also returns the state trajectories x, when sys is a state-space model such
as an ss or idss model.

[y,t,x,ysd] = step(sys) also computes the standard deviation ysd of the step response y, when
sys is an identified model such as an idss, idtf, or idnlarx model.

[___] = step(___ ,opts) specifies additional options for computing the step response, such as
the step amplitude or input offset. Use stepDataOptions to create the option set opts. You can use
opts with any of the previous input-argument and output-argument combinations.

Examples

Step Response of Dynamic System

Plot the step response of a continuous-time system represented by the following transfer function.

sys s = 4
s2 + 2s + 10

.

For this example, create a tf model that represents the transfer function. You can similarly plot the
step response of other dynamic system model types, such as zero-pole gain (zpk) or state-space (ss)
models.

sys = tf(4,[1 2 10]);

Plot the step response.

step(sys)

 step

1-1827

The step plot automatically includes a dotted horizontal line indicating the steady-state response. In
a MATLAB® figure window, you can right-click on the plot to view other step-response characteristics
such as peak response and settling time. For more information about these characteristics, see
stepinfo (Control System Toolbox).

Step Response of Discrete-Time System

Plot the step response of a discrete-time system. The system has a sample time of 0.2 s and is
represented by the following state-space matrices.

A = [1.6 -0.7;
 1 0];
B = [0.5; 0];
C = [0.1 0.1];
D = 0;

Create the state-space model and plot its step response.

sys = ss(A,B,C,D,0.2);
step(sys)

1 Functions

1-1828

The step response reflects the discretization of the model, showing the response computed every 0.2
seconds.

Step Response at Specified Times

Examine the step response of the following transfer function.

sys = zpk(-1,[-0.2+3j,-0.2-3j],1) * tf([1 1],[1 0.05])

sys =

 (s+1)^2

 (s+0.05) (s^2 + 0.4s + 9.04)

Continuous-time zero/pole/gain model.

step(sys)

 step

1-1829

By default, step chooses an end time that shows the steady state that the response is trending
toward. This system has fast transients, however, which are obscured on this time scale. To get a
closer look at the transient response, limit the step plot to t = 15 s.

step(sys,15)

1 Functions

1-1830

Alternatively, you can specify the exact times at which you want to examine the step response,
provided they are separated by a constant interval. For instance, examine the response from the end
of the transient until the system reaches steady state.

t = 20:0.2:120;
step(sys,t)

 step

1-1831

Even though this plot begins at t = 20, step always applies the step input at t = 0.

Step Response Plot of MIMO Systems

Consider the following second-order state-space model:

ẋ1

ẋ2
=
−0 . 5572 −0 . 7814
0 . 7814 0

x1
x2

+
1 −1
0 2

u1
u2

y = 1 . 9691 6 . 4493
x1
x2

A = [-0.5572,-0.7814;0.7814,0];
B = [1,-1;0,2];
C = [1.9691,6.4493];
sys = ss(A,B,C,0);

This model has two inputs and one output, so it has two channels: from the first input to the output,
and from the second input to the output. Each channel has its own step response.

When you use step, it computes the responses of all channels.

step(sys)

1 Functions

1-1832

The left plot shows the step response of the first input channel, and the right plot shows the step
response of the second input channel. Whenever you use step to plot the responses of a MIMO
model, it generates an array of plots representing all the I/O channels of the model. For instance,
create a random state-space model with five states, three inputs, and two outputs, and plot its step
response.

sys = rss(5,2,3);
step(sys)

 step

1-1833

In a MATLAB figure window, you can restrict the plot to a subset of channels by right-clicking on the
plot and selecting I/O Selector.

Compare Responses of Multiple Systems

step allows you to plot the responses of multiple dynamic systems on the same axis. For instance,
compare the closed-loop response of a system with a PI controller and a PID controller. Create a
transfer function of the system and tune the controllers.

H = tf(4,[1 2 10]);
C1 = pidtune(H,'PI');
C2 = pidtune(H,'PID');

Form the closed-loop systems and plot their step responses.

sys1 = feedback(H*C1,1);
sys2 = feedback(H*C2,1);
step(sys1,sys2)
legend('PI','PID','Location','SouthEast')

1 Functions

1-1834

By default, step chooses distinct colors for each system that you plot. You can specify colors and line
styles using the LineSpec input argument.

 step(sys1,'r--',sys2,'b')
 legend('PI','PID','Location','SouthEast')

 step

1-1835

The first LineSpec 'r--' specifies a dashed red line for the response with the PI controller. The
second LineSpec 'b' specifies a solid blue line for the response with the PID controller. The legend
reflects the specified colors and linestyles. For more plot customization options, use stepplot.

Step Response of Systems in a Model Array

The example Compare Responses of Multiple Systems shows how to plot responses of several
individual systems on a single axis. When you have multiple dynamic systems arranged in a model
array, step plots all their responses at once.

Create a model array. For this example, use a one-dimensional array of second-order transfer
functions having different natural frequencies. First, preallocate memory for the model array. The
following command creates a 1-by-5 row of zero-gain SISO transfer functions. The first two
dimensions represent the model outputs and inputs. The remaining dimensions are the array
dimensions.

 sys = tf(zeros(1,1,1,5));

Populate the array.

w0 = 1.5:1:5.5; % natural frequencies
zeta = 0.5; % damping constant
for i = 1:length(w0)

1 Functions

1-1836

 sys(:,:,1,i) = tf(w0(i)^2,[1 2*zeta*w0(i) w0(i)^2]);
end

(For more information about model arrays and how to create them, see “Model Arrays” (Control
System Toolbox).) Plot the step responses of all models in the array.

step(sys)

step uses the same linestyle for the responses of all entries in the array. One way to distinguish
among entries is to use the SamplingGrid property of dynamic system models to associate each
entry in the array with the corresponding w0 value.

sys.SamplingGrid = struct('frequency',w0);

Now, when you plot the responses in a MATLAB figure window, you can click a trace to see which
frequency value it corresponds to.

Step Response Data

When you give it an output argument, step returns an array of response data. For a SISO system, the
response data is returned as a column vector of length equal to the number of time points at which
the response is sampled. You can provide the vector t of time points, or allow step to select time
points for you based on system dynamics. For instance, extract the step response of a SISO system at
101 time points between t = 0 and t = 5 s.

 step

1-1837

sys = tf(4,[1 2 10]);
t = 0:0.05:5;
y = step(sys,t);
size(y)

ans = 1×2

 101 1

For a MIMO system, the response data is returned in an array of dimensions N-by-Ny-by-Nu, where
Ny and Nu are the number of outputs and inputs of the dynamic system. For instance, consider the
following state-space model, representing a two-input, one-output system.

A = [-0.5572,-0.7814;0.7814,0];
B = [1,-1;0,2];
C = [1.9691,6.4493];
sys = ss(A,B,C,0);

Extract the step response of this system at 200 time points between t = 0 and t = 20 s.

t = linspace(0,20,200);
y = step(sys,t);
size(y)

ans = 1×3

 200 1 2

y(:,i,j) is a column vector containing the step response from the jth input to the ith output at the
times t. For instance, extract the step response from the second input to the output.

y12 = y(:,1,2);
plot(t,y12)

1 Functions

1-1838

Step Response Plot of Feedback Loop with Delay

Create a feedback loop with delay and plot its step response.

s = tf('s');
G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
sys = feedback(ss(G),1);
step(sys)

 step

1-1839

The system step response displayed is chaotic. The step response of systems with internal delays may
exhibit odd behavior, such as recurring jumps. Such behavior is a feature of the system and not
software anomalies.

Response to Custom Step Input

By default, step applies an input signal that changes from 0 to 1 at t = 0. To customize the amplitude
and offset, use stepDataOptions. For instance, compute the response of a SISO state-space model
to a signal that changes from 1 to –1 to at t = 0.

A = [1.6 -0.7;
 1 0];
B = [0.5; 0];
C = [0.1 0.1];
D = 0;
sys = ss(A,B,C,D,0.2);

opt = stepDataOptions;
opt.InputOffset = 1;
opt.StepAmplitude = -2;

step(sys,opt)

1 Functions

1-1840

For responses to arbitrary input signals, use lsim (Control System Toolbox).

Step Responses of Identified Models with Confidence Regions

Compare the step response of a parametric identified model to a non-parametric (empirical) model.
Also view their 3 σ confidence regions.

Load the data.

load iddata1 z1

Estimate a parametric model.

sys1 = ssest(z1,4);

Estimate a non-parametric model.

sys2 = impulseest(z1);

Plot the step responses for comparison.

t = (0:0.1:10)';
[y1, ~, ~, ysd1] = step(sys1,t);
[y2, ~, ~, ysd2] = step(sys2,t);
plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')

 step

1-1841

hold on
plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')

Step Response of Identified Time-Series Model

Compute the step response of an identified time-series model.

A time-series model, also called a signal model, is one without measured input signals. The step plot
of this model uses its (unmeasured) noise channel as the input channel to which the step signal is
applied.

Load the data.

load iddata9;

Estimate a time-series model.

sys = ar(z9, 4);

sys is a model of the form A y(t) = e(t) , where e(t) represents the noise channel. For
computation of step response, e(t) is treated as an input channel, and is named e@y1.

Plot the step response.

step(sys)

1 Functions

1-1842

Validate Linearization of Identified Nonlinear ARX Model

Validate the linearization of a nonlinear ARX model by comparing the small amplitude step responses
of the linear and nonlinear models.

Load the data.

load iddata2 z2;

Estimate a nonlinear ARX model.

nlsys = nlarx(z2,[4 3 10],idTreePartition,'custom',...
 {'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
 'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

Determine an equilibrium operating point for nlsys corresponding to a steady-state input value of 1.

u0 = 1;
[X,~,r] = findop(nlsys, 'steady', 1);
y0 = r.SignalLevels.Output;

Obtain a linear approximation of nlsys at this operating point.

sys = linearize(nlsys,u0,X);

Validate the usefulness of sys by comparing its small-amplitude step response to that of nlsys.

 step

1-1843

The nonlinear system nlsys is operating at an equilibrium level dictated by (u0, y0). Introduce a
step perturbation of size 0.1 about this steady-state and compute the corresponding response.

opt = stepDataOptions;
opt.InputOffset = u0;
opt.StepAmplitude = 0.1;
t = (0:0.1:10)';
ynl = step(nlsys, t, opt);

The linear system sys expresses the relationship between the perturbations in input to the
corresponding perturbation in output. It is unaware of the nonlinear system's equilibrium values.

Plot the step response of the linear system.

opt = stepDataOptions;
opt.StepAmplitude = 0.1;
yl = step(sys, t, opt);

Add the steady-state offset, y0 , to the response of the linear system and plot the responses.

plot(t, ynl, t, yl+y0)
legend('Nonlinear', 'Linear with offset')

1 Functions

1-1844

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value for
both plotting and returning response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model. When you use output arguments, the function returns response data for the
nominal model only.

• Sparse state-space models such as sparss and mechss models.
• Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can

also plot confidence intervals and return standard deviations of the frequency response. See “Step
Responses of Identified Models with Confidence Regions” on page 1-1841.

step does not support frequency-response data models such as frd, genfrd, or idfrd models.

If sys is an array of models, the function plots the responses of all models in the array on the same
axes. See “Step Response of Systems in a Model Array” on page 1-1836.

tFinal — End time for step response
positive scalar

End time for the step response, specified as a positive scalar value. step simulates the step response
from t = 0 to t = tFinal.

• For continuous-time systems, the function determines the step size and number of points
automatically from system dynamics. Express tFinal in the system time units, specified in the
TimeUnit property of sys.

• For discrete-time systems, the function uses the sample time of sys as the step size. Express
tFinal in the system time units, specified in the TimeUnit property of sys.

• For discrete-time systems with unspecified sample time (Ts = -1), step interprets tFinal as
the number of sampling periods to simulate.

t — Time vector
vector

Time vector at which to compute the step response, specified as a vector of positive scalar values.
Express t in the system time units, specified in the TimeUnit property of sys.

• For continuous-time models, specify t in the form Ti:dt:Tf. To obtain the response at each time
step, the function uses dt as the sample time of a discrete approximation to the continuous system
(see “Algorithms” on page 1-1847).

• For discrete-time models, specify t in the form Ti:Ts:Tf, where Ts is the sample time of sys.

step always applies the step input at t = 0, regardless of Ti.

 step

1-1845

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

opts — Input offset and amplitude
stepDataOptions options set

Input offset and amplitude of the applied step signal, specified as a stepDataOptions option set. By
default, step applies an input that goes from 0 to 1 at time t = 0. Use this input argument to
change the initial and final values of the step input. See “Response to Custom Step Input” on page 1-
1840 for an example.

Output Arguments
y — Step response data
array

Step response data, returned as an array.

• For SISO systems, y is a column vector of the same length as t (if provided) or tOut (if you do not
provide t).

• For single-input, multi-output systems, y is a matrix with as many rows as there are time samples
and as many columns as there are outputs. Thus, the jth column of y, or y(:,j), contains the step
response of from the input to the jth output.

• For MIMO systems, the step responses of each input channel are stacked up along the third
dimension of y. The dimensions of y are then N-by-Ny-by-Nu, where:

• N is the number of time samples.
• Ny is the number of system outputs.
• Nu is the number of system inputs.

Thus, y(:,i,j) is a column vector containing the step response from the jth input to the ith
output at the times specified in t or tOut.

tOut — Times at which step response is computed
vector

Times at which step response is computed, returned as a vector. When you do not provide a specific
vector t of times, step chooses this time vector based on the system dynamics. The times are
expressed in the time units of sys.

x — State trajectories
array

1 Functions

1-1846

State trajectories, returned as an array. When sys is a state-space model, x contains the evolution of
the states of sys at each time in t or tOut. The dimensions of x are N-by-Nx-by-Nu, where:

• N is the number of time samples.
• Nx is the number of states.
• Nu is the number of system inputs.

Thus, the evolution of the states in response to a step injected at the kth input is given by the array
x(:,:,k). The row vector x(i,:,k) contains the state values at the ith time step.

ysd — Standard deviation of step response
array

Standard deviation of the step response of an identified model, returned as an array of the same
dimensions as y. If sys does not contain parameter covariance information, then ysd is empty.

Tips
• When you need additional plot customization options, use stepplot instead.
• To simulate system responses to arbitrary input signals, use lsim.

Algorithms
To obtain samples of continuous-time models without internal delays, step converts such models to
state-space models and discretizes them using a zero-order hold on the inputs. step chooses the
sampling time for this discretization automatically based on the system dynamics, except when you
supply the input time vector t in the form t = 0:dt:Tf. In that case, step uses dt as the sampling
time. The resulting simulation time steps tOut are equisampled with spacing dt.

For systems with internal delays, Control System Toolbox software uses variable step solvers. As a
result, the time steps tOut are not equisampled.

Version History
Introduced before R2006a

References
[1] L.F. Shampine and P. Gahinet, "Delay-differential-algebraic equations in control theory," Applied

Numerical Mathematics, Vol. 56, Issues 3–4, pp. 574–588.

See Also
Functions
impulse | stepDataOptions | initial | lsim | stepplot

Apps
Linear System Analyzer

 step

1-1847

External Websites
Transfer Function Analysis of Dynamic Systems (MathWorks Teaching Resources)

1 Functions

1-1848

https://www.mathworks.com/matlabcentral/fileexchange/94635-transfer-function-analysis-of-dynamic-systems

step
Update model parameters and output online using recursive estimation algorithm

Syntax
[EstimatedParameters,EstimatedOutput] = step(obj,y,InputData)

Description
[EstimatedParameters,EstimatedOutput] = step(obj,y,InputData) updates parameters
and output of the model specified in System object, obj, using measured output, y, and input data.

step puts the object into a locked state. In a locked state you cannot change any nontunable
properties of the object, such as model order, data type, or estimation algorithm.

The EstimatedParameters and InputData depend on the online estimation System object:

• recursiveAR — step returns the estimated polynomial A(q) coefficients of a single output AR
model using time-series output data.
[A,EstimatedOutput] = step(obj,y)

• recursiveARMA — step returns the estimated polynomial A(q) and C(q) coefficients of a single
output ARMA model using time-series output data, y.
[A,C,EstimatedOutput] = step(obj,y)

• recursiveARX — step returns the estimated polynomial A(q) and B(q) coefficients of a SISO or
MISO ARX model using measured input and output data, u and y, respectively.
[A,B,EstimatedOutput] = step(obj,y,u).

• recursiveARMAX — step returns the estimated polynomial A(q), B(q), and C(q) coefficients of a
SISO ARMAX model using measured input and output data, u and y, respectively.
[A,B,C,EstimatedOutput] = step(obj,y,u).

• recursiveOE — step returns the estimated polynomial B(q), and F(q) coefficients of a SISO
Output-Error polynomial model using measured input and output data, u and y, respectively.
[B,F,EstimatedOutput] = step(obj,y,u).

• recursiveBJ — step returns the estimated polynomial B(q), C(q), D(q), and F(q) coefficients of a
SISO Box-Jenkins polynomial model using measured input and output data, u and y, respectively.
[B,C,D,F,EstimatedOutput] = step(obj,y,u).

• recursiveLS — step returns the estimated system parameters, θ, of a single output system that
is linear in estimated parameters, using regressors H and output data y.
[theta,EstimatedOutput] = step(obj,y,H).

Examples

Estimate an ARMAX Model Online

Create a System object for online parameter estimation of an ARMAX model.

obj = recursiveARMAX;

 step

1-1849

The ARMAX model has a default structure with polynomials of order 1 and initial polynomial
coefficient values, eps.

Load the estimation data. In this example, use a static data set for illustration.

load iddata1 z1;
output = z1.y;
input = z1.u;

Estimate ARMAX model parameters online using step.

for i = 1:numel(input)
[A,B,C,EstimatedOutput] = step(obj,output(i),input(i));
end

View the current estimated values of polynomial A coefficients.

obj.A

ans = 1×2

 1.0000 -0.8298

View the current covariance estimate of the parameters.

obj.ParameterCovariance

ans = 3×3

 0.0001 0.0001 0.0001
 0.0001 0.0032 0.0000
 0.0001 0.0000 0.0001

View the current estimated output.

EstimatedOutput

EstimatedOutput = -4.5595

Tune Recursive Estimation Algorithm Properties During Online Parameter Estimation

Create a System object for online parameter estimation of an ARMAX model.

obj = recursiveARMAX;

The ARMAX model has a default structure with polynomials of order 1 and initial polynomial
coefficient values, eps.

Load the estimation data. In this example, use a static data set for illustration.

load iddata1 z1;
output = z1.y;
input = z1.u;
dataSize = numel(input);

1 Functions

1-1850

Estimate ARMAX model parameters online using the default recursive estimation algorithm,
Forgetting Factor. Change the ForgettingFactor property during online parameter estimation.

for i = 1:dataSize
 if i == dataSize/2
 obj.ForgettingFactor = 0.98;
 end
[A,B,C,EstimatedOutput] = step(obj,output(i),input(i));
end

Estimate Parameters of System Using Recursive Least Squares Algorithm

The system has two parameters and is represented as:

y t = a1u t + a2u t − 1

Here,

• u and y are the real-time input and output data, respectively.
• u t and u t − 1 are the regressors, H, of the system.
• a1 and a2 are the parameters, theta, of the system.

Create a System object for online estimation using the recursive least squares algorithm.

obj = recursiveLS(2);

Load the estimation data, which for this example is a static data set.

load iddata3
input = z3.u;
output = z3.y;

Create a variable to store u(t-1). This variable is updated at each time step.

oldInput = 0;

Estimate the parameters and output using step and input-output data, maintaining the current
regressor pair in H. Invoke the step function implicitly by calling the obj system object with input
arguments.

for i = 1:numel(input)
 H = [input(i) oldInput];
 [theta, EstimatedOutput] = obj(output(i),H);
 estimatedOut(i)= EstimatedOutput;
 theta_est(i,:) = theta;
 oldInput = input(i);
end

Plot the measured and estimated output data.

numSample = 1:numel(input);
plot(numSample,output,'b',numSample,estimatedOut,'r--');
legend('Measured Output','Estimated Output');

 step

1-1851

Plot the parameters.

plot(numSample,theta_est(:,1),numSample,theta_est(:,2))
title('Parameter Estimates for Recursive Least Squares Estimation')
legend("theta1","theta2")

1 Functions

1-1852

View the final estimates.

theta_final = theta

theta_final = 2×1

 -1.5322
 -0.0235

Input Arguments
obj — System object for online parameter estimation
recursiveAR object | recursiveARMA object | recursiveARX object | recursiveARMAX object |
recursiveOE object | recursiveBJ object | recursiveLS object

System object for online parameter estimation, created using one of the following commands:

• recursiveAR
• recursiveARMA
• recursiveARX
• recursiveARMAX
• recursiveOE

 step

1-1853

• recursiveBJ
• recursiveLS

The step command updates parameters of the model using the recursive estimation algorithm
specified in obj and the incoming input-output data.

y — Output data
real scalar

Output data acquired in real time, specified as a real scalar.

InputData — Input data
scalar | vector of real values

Input data acquired in real time, specified as a scalar or vector of real values depending on the type
of System object.

System object Model Type InputData
recursiveAR Time-series Not Applicable
recursiveARMA Time-series Not Applicable
recursiveARX SISO ARX Real scalar

MISO ARX with N inputs Column vector of length N,
specified as real values

recursiveARMAX SISO Real scalar
recursiveOE SISO Real scalar
recursiveBJ SISO Real scalar
recursiveLS Single output system with Np

system parameters
Regressors, H, specified as a
vector of real values of length
Np

Output Arguments
EstimatedParameters — Estimated model parameters
vector of real values for each parameter

Estimated model parameters, returned as vectors of real values. The number of estimated
parameters, and so the step syntax, depend on the type of System object:

Online Estimation System Object Estimated Parameters
recursiveAR Polynomial A(q) coefficients
recursiveARMA Polynomials A(q) and C(q) coefficients
recursiveARX Polynomials A(q) and B(q) coefficients
recursiveARMAX Polynomials A(q), B(q), and C(q) coefficients
recursiveOE Polynomials B(q) and F(q)
recursiveBJ Polynomials B(q), C(q), D(q), and F(q) coefficients
recursiveLS System parameters, θ

1 Functions

1-1854

EstimatedOutput — Estimated output
real scalar

Estimated output, returned as a real scalar. The output is estimated using input-output estimation
data, current parameter values, and recursive estimation algorithm specified in obj.

Tips
• Starting in R2016b, instead of using the step command to update model parameter estimates,

you can call the System object with input arguments, as if it were a function. For example,
[A,EstimatedOutput] = step(obj,y) and [A,EstimatedOutput] = obj(y) perform
equivalent operations.

Version History
Introduced in R2015b

See Also
release | reset | clone | isLocked | recursiveAR | recursiveARX | recursiveARMA |
recursiveARMAX | recursiveBJ | recursiveOE | recursiveLS

Topics
“Perform Online Parameter Estimation at the Command Line”
“Validate Online Parameter Estimation at the Command Line”
“Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics”
“Line Fitting with Online Recursive Least Squares Estimation”
“What Is Online Estimation?”

 step

1-1855

stepDataOptions
Options for the step command

Syntax
opt = stepDataOptions
opt = stepDataOptions(Name,Value)

Description
opt = stepDataOptions creates the default options for step.

opt = stepDataOptions(Name,Value) creates an options set with the options specified by one or
more Name,Value pair arguments.

Examples

Specify Input Offset and Step Amplitude Level for Step Response

Create a transfer function model.

sys = tf(1,[1,1]);

Create an option set for step to specify input offset and step amplitude level.

opt = stepDataOptions('InputOffset',-1,'StepAmplitude',2);

Calculate the step response using the specified options.

[y,t] = step(sys,opt);

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ...,'InputOffset',2

InputOffset — Input signal offset level
0 (default) | scalar

Input signal offset level, specified as the comma-separated pair consisting of 'InputOffset' and a
scalar, for all time t < 0, as shown in the following figure.

1 Functions

1-1856

StepAmplitude — Change of input signal offset
1 (default) | scalar

Change of input signal offset level, specified as the comma-separated pair consisting of
'StepAmplitude' and a scalar, which occurs at time t = 0, as shown in the previous figure.

Output Arguments
opt — Options for the step command
step options set

Options for the step command, returned as a step options set.

Version History
Introduced in R2012a

See Also
step

 stepDataOptions

1-1857

stepinfo
Rise time, settling time, and other step-response characteristics

Syntax
S = stepinfo(sys)

S = stepinfo(y,t)
S = stepinfo(y,t,yfinal)
S = stepinfo(y,t,yfinal,yinit)

S = stepinfo(___ ,'SettlingTimeThreshold',ST)
S = stepinfo(___ ,'RiseTimeLimits',RT)

Description
stepinfo lets you compute step-response characteristics for a dynamic system model or for an array
of step-response data. For a step response y(t), stepinfo computes characteristics relative to yinit
and yfinal, where yinit is the initial offset, that is, the value before the step is applied, and yfinal is the
steady-state value of the response. These values depend on the syntax you use.

• For a dynamic system model sys, stepinfo uses yinit = 0 and yfinal = steady-state value.
• For an array of step-response data [y,t], stepinfo uses yinit = 0 and yfinal = last sample value of

y, unless you explicitly specify these values.

For more information on how stepinfo computes the step-response characteristics, see
“Algorithms” on page 1-1871.

The following figure illustrates some of the characteristics stepinfo computes for a step response.
For this response, assume that y(t) = 0 for t < 0, so yinit = 0.

1 Functions

1-1858

S = stepinfo(sys) computes the step-response characteristics for a dynamic system model sys.
This syntax uses yinit = 0 and yfinal = steady-state value for computing the characteristics that depend
on these values.

Using this syntax requires a Control System Toolbox license.

S = stepinfo(y,t) computes step-response characteristics from an array of step-response data y
and a corresponding time vector t. For SISO system responses, y is a vector with the same number of
entries as t. For MIMO response data, y is an array containing the responses of each I/O channel.
This syntax uses yinit = 0 and the last value in y (or the last value in each channel's corresponding
response data) as yfinal.

S = stepinfo(y,t,yfinal) computes step-response characteristics relative to the steady-state
value yfinal. This syntax is useful when you know that the expected steady-state system response
differs from the last value in y for reasons such as measurement noise. This syntax uses yinit = 0.

For SISO responses, t and y are vectors with the same length NS. For systems with NU inputs and NY
outputs, you can specify y as an NS-by-NY-by-NU array (see step) and yfinal as an NY-by-NU array.
stepinfo then returns a NY-by-NU structure array S of response characteristics corresponding to
each I/O pair.

 stepinfo

1-1859

S = stepinfo(y,t,yfinal,yinit) computes step-response characteristics relative to the
response initial value yinit. This syntax is useful when your y data has an initial offset; that is, y is
nonzero before the step occurs.

For SISO responses, t and y are vectors with the same length NS. For systems with NU inputs and NY
outputs, you can specify y as an NS-by-NY-by-NU array and yinit as an NY-by-NU array. stepinfo
then returns a NY-by-NU structure array S of response characteristics corresponding to each I/O pair.

S = stepinfo(___ ,'SettlingTimeThreshold',ST) lets you specify the threshold ST used in
the definition of settling and transient times. The default value is ST = 0.02 (2%). You can use this
syntax with any of the previous input-argument combinations.

S = stepinfo(___ ,'RiseTimeLimits',RT) lets you specify the lower and upper thresholds
used in the definition of rise time. By default, the rise time is the time the response takes to rise from
10% to 90% of the way from the initial value to the steady-state value (RT = [0.1 0.9]). The upper
threshold RT(2) is also used to calculate SettlingMin and SettlingMax. These values are the
minimum and maximum values of the response occurring after the response reaches the upper
threshold. You can use this syntax with any of the previous input-argument combinations.

Examples

Step-Response Characteristics of Dynamic System

Compute step-response characteristics, such as rise time, settling time, and overshoot, for a dynamic
system model. For this example, use a continuous-time transfer function:

sys = s2 + 5s + 5
s4 + 1 . 65s3 + 5s2 + 6 . 5s + 2

Create the transfer function and examine its step response.

sys = tf([1 5 5],[1 1.65 5 6.5 2]);
step(sys)

1 Functions

1-1860

The plot shows that the response rises in a few seconds, and then rings down to a steady-state value
of about 2.5. Compute the characteristics of this response using stepinfo.

S = stepinfo(sys)

S = struct with fields:
 RiseTime: 3.8456
 TransientTime: 27.9762
 SettlingTime: 27.9762
 SettlingMin: 2.0689
 SettlingMax: 2.6873
 Overshoot: 7.4915
 Undershoot: 0
 Peak: 2.6873
 PeakTime: 8.0530

Here, the function uses yinit= 0 to compute characteristics for the dynamic system model sys.

By default, the settling time is the time it takes for the error to stay below 2% of yinit− yfinal . The
result S.SettlingTime shows that for sys, this condition occurs after about 28 seconds. The
default definition of rise time is the time it takes for the response to go from 10% to 90% of the way
from yinit= 0 to yfinal. S.RiseTime shows that for sys, this rise occurs in less than 4 seconds. The
maximum overshoot is returned in S.Overshoot. For this system, the peak value S.Peak, which
occurs at the time S.PeakTime, overshoots by about 7.5% of the steady-state value.

 stepinfo

1-1861

Step-Response Characteristics of MIMO System

For a MIMO system, stepinfo returns a structure array in which each entry contains the response
characteristics of the corresponding I/O channel of the system. For this example, use a two-output,
two-input discrete-time system. Compute the step-response characteristics.

A = [0.68 -0.34; 0.34 0.68];
B = [0.18 -0.05; 0.04 0.11];
C = [0 -1.53; -1.12 -1.10];
D = [0 0; 0.06 -0.37];
sys = ss(A,B,C,D,0.2);

S = stepinfo(sys)

S=2×2 struct array with fields:
 RiseTime
 TransientTime
 SettlingTime
 SettlingMin
 SettlingMax
 Overshoot
 Undershoot
 Peak
 PeakTime

Access the response characteristics for a particular I/0 channel by indexing into S. For instance,
examine the response characteristics for the response from the first input to the second output of
sys, corresponding to S(2,1).

S(2,1)

ans = struct with fields:
 RiseTime: 0.4000
 TransientTime: 2.8000
 SettlingTime: 3
 SettlingMin: -0.6724
 SettlingMax: -0.5188
 Overshoot: 24.6476
 Undershoot: 11.1224
 Peak: 0.6724
 PeakTime: 1

To access a particular value, use dot notation. For instance, extract the rise time of the (2,1) channel.

rt21 = S(2,1).RiseTime

rt21 = 0.4000

1 Functions

1-1862

Specify Percentage for Settling Time or Rise Time

You can use SettlingTimeThreshold and RiseTimeThreshold to change the default percentage
for settling and rise times, respectively, as described in the “Algorithms” on page 1-1871 section. For
this example, use the system given by:

sys = s2 + 5s + 5
s4 + 1 . 65s3 + 6 . 5s + 2

Create the transfer function.

sys = tf([1 5 5],[1 1.65 5 6.5 2]);

Compute the time it takes for the error in the response of sys to stay below 0.5% of the gap
|yfinal− yinit|. To do so, set SettlingTimeThreshold to 0.5%, or 0.005.

S1 = stepinfo(sys,'SettlingTimeThreshold',0.005);
st1 = S1.SettlingTime

st1 = 46.1325

Compute the time it takes the response of sys to rise from 5% to 95% of the way from yinit to yfinal.
To do so, set RiseTimeThreshold to a vector containing those bounds.

S2 = stepinfo(sys,'RiseTimeThreshold',[0.05 0.95]);
rt2 = S2.RiseTime

rt2 = 4.1690

You can define percentages for both settling time and rise time in the same computation.

S3 = stepinfo(sys,'SettlingTimeThreshold',0.005,'RiseTimeThreshold',[0.05 0.95])

S3 = struct with fields:
 RiseTime: 4.1690
 TransientTime: 46.1325
 SettlingTime: 46.1325
 SettlingMin: 2.0689
 SettlingMax: 2.6873
 Overshoot: 7.4915
 Undershoot: 0
 Peak: 2.6873
 PeakTime: 8.0530

Step-Response Characteristics from Response Data

You can extract step-response characteristics from step-response data even if you do not have a
model of your system. For instance, suppose you have measured the response of your system to a step
input and saved the resulting response data in a vector y of response values at the times stored in
another vector t. Load the response data and examine it.

load StepInfoData t y
plot(t,y)

 stepinfo

1-1863

Compute step-response characteristics from this response data using stepinfo. If you do not specify
the steady-state response value yfinal, then stepinfo assumes that the last value in the response
vector y is the steady-state response. Because the data has some noise, the last value in y is likely not
the true steady-state response value. When you know what the steady-state value should be, you can
provide it to stepinfo. For this example, suppose that the steady-state response is 2.4.

S1 = stepinfo(y,t,2.4)

S1 = struct with fields:
 RiseTime: 1.2897
 TransientTime: 19.6478
 SettlingTime: 19.6439
 SettlingMin: 2.0219
 SettlingMax: 3.3302
 Overshoot: 38.7575
 Undershoot: 0
 Peak: 3.3302
 PeakTime: 3.4000

Because of the noise in the data, the default definition of the settling time is too stringent, resulting in
an arbitrary value of almost 20 seconds. To allow for the noise, increase the settling-time threshold
from the default 2% to 5%.

S2 = stepinfo(y,t,2.4,'SettlingTimeThreshold',0.05)

S2 = struct with fields:
 RiseTime: 1.2897

1 Functions

1-1864

 TransientTime: 10.4201
 SettlingTime: 10.4149
 SettlingMin: 2.0219
 SettlingMax: 3.3302
 Overshoot: 38.7575
 Undershoot: 0
 Peak: 3.3302
 PeakTime: 3.4000

Difference Between Transient Time and Settling Time for Step Responses

Settling time and transient time are equal when the peak error emax is equal to the gap |yfinal− yinit|
(see “Algorithms” (Control System Toolbox)), which is the case for models with no undershoot or
feedthrough and with less than 100% overshoot. They tend to differ for models with feedthrough,
zeros at the origin, unstable zeros (undershoot), or large overshoot.

Consider the following models.

s = tf('s');
sys1 = 1+tf(1,[1 1]); % feedthrough
sys2 = tf([1 0],[1 1]); % zero at the origin
sys3 = tf([-3 1],[1 2 1]); % non-minimum phase with undershoot
sys4 = (s/0.5 + 1)/(s^2 + 0.2*s + 1); % large overshoot

step(sys1,sys2,sys3,sys4)
grid on
legend('Feedthrough','Zero at origin','Non-minimum phase with undershoot','Large overshoot')

 stepinfo

1-1865

Compute the step-response characteristics.

S1 = stepinfo(sys1)

S1 = struct with fields:
 RiseTime: 1.6095
 TransientTime: 3.9121
 SettlingTime: 3.2190
 SettlingMin: 1.8005
 SettlingMax: 2.0000
 Overshoot: 0
 Undershoot: 0
 Peak: 2.0000
 PeakTime: 10.5458

S2 = stepinfo(sys2)

S2 = struct with fields:
 RiseTime: 0
 TransientTime: 3.9121
 SettlingTime: NaN
 SettlingMin: 2.6303e-05
 SettlingMax: 1
 Overshoot: Inf
 Undershoot: 0
 Peak: 1

1 Functions

1-1866

 PeakTime: 0

S3 = stepinfo(sys3)

S3 = struct with fields:
 RiseTime: 2.9198
 TransientTime: 6.5839
 SettlingTime: 7.3229
 SettlingMin: 0.9004
 SettlingMax: 0.9991
 Overshoot: 0
 Undershoot: 88.9466
 Peak: 0.9991
 PeakTime: 10.7900

S4 = stepinfo(sys4)

S4 = struct with fields:
 RiseTime: 0.3896
 TransientTime: 40.3317
 SettlingTime: 46.5052
 SettlingMin: -0.2796
 SettlingMax: 2.7571
 Overshoot: 175.7137
 Undershoot: 27.9629
 Peak: 2.7571
 PeakTime: 1.8850

Examine the plots and characteristics. For these models, the settling time and transient time differ
because the peak error exceeds the gap between the initial and the final value. For models such as
sys2, the settling time is returned as NaN because the steady-state value is zero.

Step Response Characteristics for Data with Initial Offset

In this example, you compute the step-response characteristics from step-response data that has an
initial offset. This means that the value of the response data is nonzero before the step occurs.

Load the step-response data and examine the plot.

load stepDataOffset.mat
plot(stepOffset.Time,stepOffset.Data)

 stepinfo

1-1867

If you do not specify yfinal and yinit, then stepinfo assumes that yfinal is the last value in the
response vector y and yinit is zero. When you know what the steady-state and initial values are, you
can provide them to stepinfo. Here, the steady state of the response yfinal is 0.9 and the initial
offset yinit is 0.2.

Compute step-response characteristics from this response data.

S = stepinfo(stepOffset.Data,stepOffset.Time,0.9,0.2)

S = struct with fields:
 RiseTime: 0.0084
 TransientTime: 1.0662
 SettlingTime: 1.0662
 SettlingMin: 0.8461
 SettlingMax: 1.0878
 Overshoot: 26.8259
 Undershoot: 0.0429
 Peak: 0.8878
 PeakTime: 1.0225

Here, the peak value of this response is 0.8878 because stepinfo measures the maximum deviation
from yinit.

1 Functions

1-1868

Input Arguments
sys — Dynamic system
dynamic system model

Dynamic system, specified as a SISO or MIMO dynamic system model. Dynamic systems that you can
use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models

requires Robust Control Toolbox software.) For generalized models, stepinfo computes the step-
response characteristics using the current value of tunable blocks and the nominal value of
uncertain blocks.

• Identified LTI models, such as idtf, idss, or idproc models.

y — Step-response data
vector | array

Step-response data, specified as one of the following:

• For SISO response data, a vector of length Ns, where Ns is the number of samples in the response
data

• For MIMO response data, an Ns-by-Ny-by-Nu array, where Ny is the number of system outputs and
Nu is the number of system inputs

t — Time vector
vector

Time vector corresponding to the response data in y, specified as a vector of length Ns.

yfinal — Steady-state value
scalar | array

Steady-state value, specified as a scalar or an array.

• For SISO response data, specify a scalar value.
• For MIMO response data, specify an Ny-by-Nu array, where each entry provides the steady-state

response value for the corresponding system channel.

If you do not provide yfinal, then stepinfo uses the last value in the corresponding channel of y
as the steady-state response value.

This argument is only supported when you provide step-response data as an input. For a dynamic
system model sys as an input, stepinfo uses yfinal = steady-state value to compute the
characteristics that depend on this value.

yinit — Initial value
scalar | array

Value of y before the step occurs, specified as a scalar or an array.

• For SISO response data, specify a scalar value.
• For MIMO response data, specify an Ny-by-Nu array, where each entry provides the response

initial value for the corresponding system channel.

 stepinfo

1-1869

If you do not provide yinit, then stepinfo uses zero as the response initial value.

The response y(0) at t = 0 is equal to yinit for systems without feedthrough. However, the two
quantities differ in the presence of feedthrough because of the discontinuity at t = 0.

For example, the following figure shows the step response of a system with feedthrough sys =
tf([-1 0.2 1],[1 0.7 1]).

Here, yinit is zero and the feedthrough value is –1.

This argument is only supported when you provide step-response data as an input. For a dynamic
system model sys as an input, stepinfo uses yinit = 0 to compute the characteristics that depend on
this value.

ST — Settling time threshold
0.02 (default) | scalar between 0 and 1

Threshold for defining settling and transient times, specified as a scalar value between 0 and 1. To
change the default settling and transient time definitions (see “Algorithms” on page 1-1871), set ST to
a different value. For instance, to measure when the error falls below 5%, set ST to 0.05.

RT — Rise time thresholds
[0.1 0.9] (default) | 2-element row vector

Threshold for defining rise time, specified as a 2-element row vector of nondescending values
between 0 and 1. To change the default rise time definition (see “Algorithms” on page 1-1871), set RT
to a different value. For instance, to define the rise time as the time it takes for the response to rise
from 5% to 95% from the initial value to the steady-state value, set RT to [0.05 0.95].

Output Arguments
S — Step-response characteristics
structure

Step-response characteristics, returned as a structure containing the fields:

1 Functions

1-1870

• RiseTime
• TransientTime
• SettlingTime
• SettlingMin
• SettlingMax
• Overshoot
• Undershoot
• Peak
• PeakTime

For more information on how stepinfo defines these characteristics, see “Algorithms” on page 1-
1871.

For MIMO models or responses data, S is a structure array in which each entry contains the step-
response characteristics of the corresponding I/O channel. For instance, if you provide a 3-input, 3-
output model or an array of response data, then S(2,3) contains the characteristics of the response
from the third input to the second output. For an example, see “Step-Response Characteristics of
MIMO System” on page 1-1862.

If sys is unstable, then all step-response characteristics are NaN, except for Peak and PeakTime,
which are Inf.

Algorithms
For a step response y(t), stepinfo computes characteristics relative to yinit and yfinal. For a dynamic
system model sys, stepinfo uses yinit = 0 and yfinal = steady-state value.

This table shows how stepinfo computes each characteristic.

Step-Response
Characteristic

Description

RiseTime Time it takes for the response to rise from 10% to 90% of the way from yinit
to yfinal

TransientTime The first time T such that the error |y(t) – yfinal| ≤ SettlingTimeThreshold ×
emax for t ≥ T, where emax is the maximum error |y(t) – yfinal| for t ≥ 0.

By default, SettlingTimeThreshold = 0.02 (2% of the peak error). Transient
time measures how quickly the transient dynamics die off.

SettlingTime The first time T such that the error |y(t) – yfinal| ≤ SettlingTimeThreshold ×
|yfinal – yinit| for t ≥ T.

By default, SettlingTime measures the time it takes for the error to stay
below 2% of |yfinal – yinit|.

SettlingMin Minimum value of y(t) once the response has risen
SettlingMax Maximum value of y(t) once the response has risen

 stepinfo

1-1871

Step-Response
Characteristic

Description

Overshoot Percentage overshoot. Relative to the normalized response ynorm(t) = (y(t) –
yinit)/(yfinal – yinit), the overshoot is the larger of zero and 100 × max(ynorm(t)
– 1).

Undershoot Percentage undershoot. Relative to the normalized response ynorm(t), the
undershoot is the smaller of zero and –100 × max(ynorm(t) – 1).

Peak Peak value of |y(t) – yinit|
PeakTime Time at which the peak value occurs

Version History
Introduced in R2006a

Response characteristics computation changes
Behavior changed in R2021b

The computation method of some response characteristics has changed. Additionally, the settling time
calculation is now based on how quickly the response stays below a specified threshold of the gap
between the initial and the final value.

The following table summarizes the changes to the fields of the structure returned by stepinfo.

Before R2021b R2021b
RiseTime — Time it takes for the response to
rise from 10% to 90% of the way from y(1) to
yfinal.

RiseTime — Time it takes to go from 10% to
90% of the way from yinit to yfinal.

SettlingTime — The first time T such that the
error |y(t) – yfinal| ≤ SettlingTimeThreshold × emax
for t ≥ T, where emax is the maximum error |y(t) –
yfinal| for t ≥ 0.

By default, SettlingTimeThreshold = 0.02 (2% of
the peak error). SettlingTime measures the
time for the error to fall below 2% of the peak
value of the error.

SettlingTime — The first time T such that the
error |y(t) – yfinal| ≤ SettlingTimeThreshold × |yfinal
– yinit| for t ≥ T.

By default, SettlingTime measures the time it
takes for the error to stay below 2% of |yfinal –
yinit|.

Peak — Peak absolute value of y(t). Peak — Peak absolute value of y(t) – yinit.

Additionally, the output structure S now contains a TransientTime field. This characteristic
contains the peak-error-based settling time calculation used in releases before R2021b. Transient
time measures how quickly the transient dynamics die off.

These changes also apply to the characteristics of step, impulse, and initial plots. Additionally:

• For step plots, yinit is always assumed to be zero and yfinal is the steady-state value.
• For the step response, transient time and settling time tend to differ for models with feedthrough,

zeros at the origin, unstable zeros (undershoot), or large overshoot. They match for models with
no undershoot or feedthrough, and with less than 100% overshoot. For an example, see
“Difference Between Transient Time and Settling Time for Step Responses” on page 1-1865.

1 Functions

1-1872

• For the step response of models with feedthrough, the new RiseTime value can differ because
y(1) is nonzero whereas yinit is zero by default. Before R2021b, the rise time computed was the
time it takes to go from 10% to 90% of the way from y(1) to yfinal, instead of yinit to yfinal now.

See Also
step | lsiminfo

 stepinfo

1-1873

stepplot
Plot step response with additional plot customization options

Syntax
h = stepplot(sys)
h = stepplot(sys1,sys2,...,sysN)
h = stepplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = stepplot(___ ,tFinal)
h = stepplot(___ ,t)
h = stepplot(AX, ___)
h = stepplot(___ ,plotoptions)
h = stepplot(___ ,dataoptions)

Description
stepplot lets you plot dynamic system step responses with a broader range of plot customization
options than step. You can use stepplot to obtain the plot handle and use it to customize the plot,
such as modify the axes labels, limits and units. You can also use stepplot to draw a step response
plot on an existing set of axes represented by an axes handle. To customize an existing step plot using
the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options

For more information, see “Customizing Response Plots from the Command Line” (Control System
Toolbox). To create step plots with default options or to extract step response data, use step.

h = stepplot(sys) plots the step response of the dynamic system model sys and returns the plot
handle h to the plot. You can use this handle h to customize the plot with the getoptions and
setoptions commands.

h = stepplot(sys1,sys2,...,sysN) plots the step response of multiple dynamic systems
sys1,sys2,…,sysN on the same plot. All systems must have the same number of inputs and outputs
to use this syntax.

h = stepplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and
color for the step response of each system. All systems must have the same number of inputs and
outputs to use this syntax.

h = stepplot(___ ,tFinal) simulates the step response from t = 0 to the final time t =
tFinal. Specify tFinal in the system time units, specified in the TimeUnit property of sys. For
discrete-time systems with unspecified sample time (Ts = -1), stepplot interprets tFinal as the
number of sampling intervals to simulate.

h = stepplot(___ ,t) simulates the step response using the time vector t. Specify t in the
system time units, specified in the TimeUnit property of sys.

1 Functions

1-1874

h = stepplot(AX, ___) plots the step response on the Axes object in the current figure with the
handle AX.

h = stepplot(___ ,plotoptions) plots the step response with the options set specified in
plotoptions. You can use these options to customize the step plot appearance using the command
line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session
in which you run stepplot. Therefore, this syntax is useful when you want to write a script to
generate multiple plots that look the same regardless of the local preferences.

h = stepplot(___ ,dataoptions) plots the step response with the options set specified in
dataoptions. You can use this syntax to specify options such as the step amplitude and input offset
using the options set dataoptions. This syntax is useful when you want to write a script to generate
multiple plots with the same option set. Use stepDataOptions to create the options set.

Examples

Customize Step Plot using Plot Handle

For this example, use the plot handle to change the time units to minutes and turn on the grid.

Generate a random state-space model with 5 states and create the step response plot with plot
handle h.

rng("default")
sys = rss(5);
h = stepplot(sys);

Change the time units to minutes and turn on the grid. To do so, edit properties of the plot handle, h
using setoptions.

setoptions(h,'TimeUnits','minutes','Grid','on');

 stepplot

1-1875

The step plot automatically updates when you call setoptions.

Alternatively, you can also use the timeoptions command to specify the required plot options. First,
create an options set based on the toolbox preferences.

plotoptions = timeoptions('cstprefs');

Change properties of the options set by setting the time units to minutes and enabling the grid.

plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
stepplot(sys,plotoptions);

1 Functions

1-1876

You can use the same option set to create multiple step plots with the same customization. Depending
on your own toolbox preferences, the plot you obtain might look different from this plot. Only the
properties that you set explicitly, in this example TimeUnits and Grid, override the toolbox
preferences.

Display Normalized Response on Step Plot

Generate a step response plot for two dynamic systems.

sys1 = rss(3);
sys2 = rss(3);
h = stepplot(sys1,sys2);

 stepplot

1-1877

Each step response settles at a different steady-state value. Use the plot handle to normalize the
plotted response.

setoptions(h,'Normalize','on')

1 Functions

1-1878

Now, the responses settle at the same value expressed in arbitrary units.

Plot Step Responses of Identified Models with Confidence Region

Compare the step response of a parametric identified model to a nonparametric (empirical) model,
and view their 3-σ confidence regions. (Identified models require System Identification Toolbox™
software.)

Identify a parametric and a nonparametric model from sample data.

load iddata1 z1
sys1 = ssest(z1,4);
sys2 = impulseest(z1);

Plot the step responses of both identified models. Use the plot handle to display the 3-σ confidence
regions.

t = -1:0.1:5;
h = stepplot(sys1,'r',sys2,'b',t);
showConfidence(h,3)
legend('parametric','nonparametric')

 stepplot

1-1879

The nonparametric model sys2 shows higher uncertainty.

Customized Step Response Plot at Specified Time

For this example, examine the step response of the following zero-pole-gain model and limit the step
plot to tFinal = 15 s. Use 15-point blue text for the title. This plot should look the same, regardless
of the preferences of the MATLAB session in which it is generated.

sys = zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]);
tFinal = 15;

First, create a default options set using timeoptions.

plotoptions = timeoptions;

Next change the required properties of the options set plotoptions.

plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];

Now, create the step response plot using the options set plotoptions.

h = stepplot(sys,tFinal,plotoptions);

1 Functions

1-1880

Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox
preferences of the MATLAB session.

Plot Step Response of Nonlinear Identified Model

Load data for estimating a nonlinear Hammerstein-Wiener model.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','twotankdata'));
z = iddata(y,u,0.2,'Name','Two tank system');

z is an iddata object that stores the input-output estimation data.

Estimate a Hammerstein-Wiener Model of order [1 5 3] using the estimation data. Specify the input
nonlinearity as piecewise linear and output nonlinearity as one-dimensional polynomial.

sys = nlhw(z,[1 5 3],idPiecewiseLinear,idPolynomial1D);

Create an option set to specify input offset and step amplitude level.

opt = stepDataOptions('InputOffset',2,'StepAmplitude',0.5);

Plot the step response until 60 seconds using the specified options.

stepplot(sys,60,opt);

 stepplot

1-1881

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

• Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
• Sparse state-space models, such as sparss or mechss models. Final time tFinal must be
specified when using sparse models.

• Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models
requires Robust Control Toolbox software.)

• For tunable control design blocks, the function evaluates the model at its current value to plot
the step response data.

• For uncertain control design blocks, the function plots the nominal value and random samples
of the model.

• Identified LTI models, such as idtf, idss, or idproc models.

If sys is an array of models, the function plots the step response of all models in the array on the
same axes.

1 Functions

1-1882

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Pentagram
'h' Hexagram

Color Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

 stepplot

1-1883

tFinal — Final time for step response computation
scalar

Final time for step response computation, specified as a scalar. Specify tFinal in the system time
units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sample
time (Ts = -1), stepplot interprets tFinal as the number of sampling intervals to simulate.

t — Time for step response simulation
vector

Time for step response simulation, specified as a vector. Specify the time vector t in the system time
units, specified in the TimeUnit property of sys. The time vector must be real, finite, and must
contain monotonically increasing and evenly spaced time samples.

The time vector t is:

• t = Tinitial:Tsample:Tfinal, for discrete-time systems.
• t = Tinitial:dt:Tfinal, for continuous-time systems. Here, dt is the sample time of a discrete

approximation of the continuous-time system.

AX — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are
Cartesian axes, then stepplot plots on the current axes. Use AX to plot into specific axes when
creating a step plot.

plotoptions — Step plot options set
TimePlotOptions object

Step plot options set, specified as a TimePlotOptions object. You can use this option set to
customize the step plot appearance. Use timeoptions to create the option set. Settings you specify
in plotoptions overrides the preference settings in the MATLAB session in which you run
stepplot. Therefore, plotoptions is useful when you want to write a script to generate multiple
plots that look the same regardless of the local preferences.

For the list of available options, see timeoptions.

dataoptions — Step response data options set
step object

Step response data options set, specified as a step object. Specify options such as the step amplitude
and input offset using the options set dataoptions. This is useful when you want to write a script to
generate multiple plots with the same step amplitude and input offset values. Use stepDataOptions
to create the options set.

Output Arguments
h — Plot handle
handle object

Plot handle, returned as a handle object. Use the handle h to get and set the properties of the step
plot using getoptions and setoptions. For the list of available options, see the Properties and

1 Functions

1-1884

Values Reference section in “Customizing Response Plots from the Command Line” (Control System
Toolbox).

Version History
Introduced in R2012a

See Also
getoptions | setoptions | showConfidence | step | stepDataOptions | timeoptions

Topics
“Customizing Response Plots from the Command Line” (Control System Toolbox)

 stepplot

1-1885

strseq
Create sequence of indexed character vectors

Syntax
txtarray = strseq(TXT,INDICES)

Description
txtarray = strseq(TXT,INDICES) creates a sequence of indexed character vectors in the cell
array txtarray by appending the integer values INDICES to the character vector TXT.

Note You can use strvec to aid in system interconnection. For an example, see the sumblk
reference page.

Examples

Create a Cell Array of Indexed Text

Index the text 'e' with the numbers 1, 2, and 4.

txtarray = strseq('e',[1 2 4])

txtarray = 3x1 cell
 {'e1'}
 {'e2'}
 {'e4'}

Version History
Introduced in R2012a

See Also
strcat | connect

1 Functions

1-1886

struc
Generate model-order combinations for single-output ARX model estimation

Syntax
nn = struc(na,nb,nk)
nn = struc(na,nb_1,...,nb_nu,nk_1,...,nk_nu)

Description
nn = struc(na,nb,nk) generates model-order combinations for single-input, single-output ARX
model estimation. na and nb are row vectors that specify ranges of model orders. nk is a row vector
that specifies a range of model delays. nn is a matrix that contains all combinations of the orders and
delays.

nn = struc(na,nb_1,...,nb_nu,nk_1,...,nk_nu) generates model-order combinations for an
ARX model with nu input channels.

Examples

Generate Model-Order Combinations and Estimate ARX Model Using IV Method

Create estimation and validation data sets

load iddata1;
ze = z1(1:150);
zv = z1(151:300);

Generate model-order combinations for estimation, specifying ranges for model orders and delays.

NN = struc(1:3,1:2,2:4);

Estimate ARX models using the instrumental variable method, and compute the loss function for each
model order combination.

V = ivstruc(ze,zv,NN);

Select the model order with the best fit to the validation data.

order = selstruc(V,0);

Estimate an ARX model of selected order.

M = iv4(ze,order);

Generate Model-Order Combinations and Estimate Multi-Input ARX Model

Create estimation and validation data sets.

 struc

1-1887

load co2data;
Ts = 0.5; % Sample time is 0.5 min
ze = iddata(Output_exp1,Input_exp1,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);

Generate model-order combinations for:

• na = 2:4
• nb = 2:5 for the first input, and 1 or 4 for the second input.
• nk = 1:4 for the first input, and 0 for the second input.

NN = struc(2:4,2:5,[1 4],1:4,0);

Estimate an ARX model for each model order combination.

V = arxstruc(ze,zv,NN);

Select the model order with the best fit to the validation data.

order = selstruc(V,0);

Estimate an ARX model of selected order.

M = arx(ze,order);

Tips
• Use with arxstruc or ivstruc to compute loss functions for ARX models, one for each model

order combination returned by struc.

Version History
Introduced before R2006a

See Also
arxstruc | ivstruc | selstruc

Topics
“Estimating Model Orders Using an ARX Model Structure”
“Preliminary Step – Estimating Model Orders and Input Delays”

1 Functions

1-1888

System Identification
Identify models of dynamic systems from measured data

Description
The System Identification app enables you to identify models of dynamic systems from measured
input-output data. You can estimate both linear and nonlinear models and compare responses of
different models.

Using this app you can:

• Import, plot, and preprocess measured input-output data.
• Estimate linear models such as transfer functions, process models, polynomial models, and state-

space models using time-domain, time series, or frequency-domain data.
• Estimate nonlinear ARX and Hammerstein-Wiener models using time-domain data.
• Validate estimated models using independent data sets.
• Export estimated models for further analysis to MATLAB workspace or to the Linear System

Analyzer app in Control System Toolbox.

For more information, in the System Identification app, select Help > System Identification App
Help.

 System Identification

1-1889

Open the System Identification App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app

icon.
• MATLAB command prompt: Enter systemIdentification.

Examples
• “Working with System Identification App”
• “Identify Linear Models Using System Identification App”
• “Identify Nonlinear Black-Box Models Using System Identification App”

Programmatic Use
systemIdentification opens the System Identification app. If the app is already open, the
command brings the app into focus.

systemIdentification(sessionFile) opens the app and loads a previously saved session file,
sessionFile, on the MATLAB path. A session includes data sets and models in the app at the time
of saving. If the app is already open, the command merges the contents of the session file with those
already present in the app.

For example, systemIdentification('mySession') opens the app and loads the previously
saved app session mySession.sid.

To save a session, in the System Identification app, select File > Save session. The session is
saved to a file with a .sid extension.

systemIdentification(sessionFile,path) specifies the path to the session file. Use this
syntax if the file is not on the MATLAB path.

For example, systemIdentification('mySession','C:\matlab\work') opens the app and
loads the previously saved app session mySession.sid located at C:\matlab\work.

Version History
Introduced before R2006a

See Also
Functions
iddata | tfest | ssest | procest | polyest | arx | nlarx | nlhw | midprefs

Topics
“Working with System Identification App”
“Identify Linear Models Using System Identification App”
“Identify Nonlinear Black-Box Models Using System Identification App”

1 Functions

1-1890

tfdata
Access transfer function data

Syntax
[num,den] = tfdata(sys)
[num,den,ts] = tfdata(sys)
[num,den,ts,sdnum,sdden] = tfdata(sys)
___ = tfdata(sys,J1,...,JN)
[num,den] = tfdata(sys,'v')

Description
[num,den] = tfdata(sys) returns the numerator and denominator coefficients of the transfer
function for the tf, ss and zpk model objects or the array of model objects represented by sys.

The outputs num and den are two-dimensional cell arrays if sys contains a single LTI model. When
sys is an array of models, num and den are returned as multidimensional cell arrays.

[num,den,ts] = tfdata(sys) also returns the sample time ts.

[num,den,ts,sdnum,sdden] = tfdata(sys) also returns the uncertainties in the numerator and
denominator coefficients of identified system sys. sdnum{i,j}(k) is the 1 standard uncertainty in
the value num{i,j}(k) and sdden{i,j}(k) is the 1 standard uncertainty in the value den{i,j}
(k). If sys does not contain uncertainty information, sdnum and sdden are empty [].

___ = tfdata(sys,J1,...,JN) extracts the data for the J1,...,JN entry in the model array
sys.

[num,den] = tfdata(sys,'v') returns the numerator and denominator coefficients as row
vectors rather than cell arrays for a SISO transfer function represented by sys.

Examples

Extract Numerator and Denominator Coefficients from Transfer Function

For this example, consider tfData.mat which contains a continuous-time SISO transfer function
sys1.

Load the data and use tfdata to extract the numerator and denominator coefficients.

load('tfData.mat','sys1');
[num,den] = tfdata(sys1);

num and den are returned as cell arrays. To display data, use celldisp.

celldisp(num)

num{1} =

 tfdata

1-1891

 0 1 5 2

celldisp(den)

den{1} =

 7 4 2 1

You can also extract the numerator and denominator coefficients as row vectors with the following
syntax.

[num,den] = tfdata(sys1,'v');

Extract Discrete-Time Transfer Function Data

For this example, consider tfData.mat which contains a discrete-time SISO transfer function sys2.

Load the data and use tfdata to extract the numerator and denominator coefficients along with the
sample time.

load('tfData.mat','sys2');
[num,den,ts] = tfdata(sys2)

num = 1x1 cell array
 {[0 0 2 0]}

den = 1x1 cell array
 {[4 0 3 -1]}

ts = 0.1000

num and den are returned as cell arrays. To display data, use celldisp.

celldisp(num)

num{1} =

 0 0 2 0

celldisp(den)

den{1} =

 4 0 3 -1

1 Functions

1-1892

Extract Identified Transfer Function Data

For this example, estimate a transfer function with 2 poles and 1 zero from identified data contained
in iddata7.mat with an input delay value.

Load the identified data and estimate the transfer function.

load('iddata7.mat');
sys = tfest(z7,2,1,'InputDelay',[1 0]);

Extract the numerator, denominator and their standard deviations for the 2-input, 1 output identified
transfer function.

[num,den,~,sdnum,sdden] = tfdata(sys)

num=1×2 cell array
 {[0 -0.5212 1.1886]} {[0 0.0552 -0.0013]}

den=1×2 cell array
 {[1 0.3390 0.2353]} {[1 0.0360 0.0314]}

sdnum=1×2 cell array
 {[0 0.1311 0.0494]} {[0 0.0246 0.0033]}

sdden=1×2 cell array
 {[0 0.0183 0.0085]} {[0 0.0278 0.0048]}

Extract Data from Specific Model in Transfer Function Array

For this example, extract numerator and denominator coefficients for a specific transfer function
contained in the 3x1 array of continuous-time transfer functions sys.

Load the data and extract the numerator and denominator coefficients of the second model in the
array.

load('tfArray.mat','sys');
[num,den] = tfdata(sys,2);

Use celldisp to visualize the data in the cell array num and den.

celldisp(num)

num{1} =

 0 0 2

 tfdata

1-1893

celldisp(den)

den{1} =

 1 1 2

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO
dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time
numeric LTI models such as tf, ss and zpk models.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer function form using tf.
For more information on the format of transfer function model data, see the tf reference page.

For SISO transfer functions, use the following syntax to return the numerator and denominator
coefficients directly as row vectors rather than as cell arrays:

[num,den] = tfdata(sys,'v')

J1,...,JN — Indices of models in array whose data you want to access
positive integer

Indices of models in array whose data you want to access, specified as a positive integer. You can
provide as many indices as there are array dimensions in sys. For example, if sys is a 4-by-5 array of
transfer functions, the following command accesses the data for entry (2,3) in the array.

[num,den] = tfdata(sys,2,3);

Output Arguments
num — Coefficients of the numerator
cell array | row vector

Coefficients of the numerator of the transfer function, returned as a cell array or row vector.

When sys contains a single LTI model, the output num is returned as a cell array with the following
characteristics:

• num has as many rows as outputs and as many columns as inputs of sys.
• The (i,j) entries in num{i,j} are row vectors specifying the numerator coefficients of the

transfer function from input j to output i. tfdata orders these coefficients in descending powers
of s or z.

1 Functions

1-1894

When sys contains an array of LTI models, num is returned as a multidimensional cell array of the
same size as sys.

den — Coefficients of the denominator
cell array | row vector

Coefficients of the denominator of the transfer function, returned as a cell array or row vector.

When sys contains a single LTI model, the output den is returned as a cell array with the following
characteristics:

• den has as many rows as outputs and as many columns as inputs of sys.
• The (i,j) entries in den{i,j} are row vectors specifying the denominator coefficients of the

transfer function from input j to output i. tfdata orders these coefficients in descending powers
of s or z.

When sys contains an array of LTI models, den is returned as a multidimensional cell array of the
same size as sys.

ts — Sample time
non-negative scalar

Sample time, returned as a non-negative scalar.

sdnum — Standard uncertainty of the numerator coefficients
cell array

Standard uncertainty of the numerator coefficients of the identified system sys, returned as a cell
array of the same size as num. sdnum{i,j}(k) is the 1 standard uncertainty in the value num{i,j}
(k). If sys does not contain uncertainty information, sdnum is empty [].

sdden — Standard uncertainty the denominator coefficients
cell array

Standard uncertainty of the denominator coefficients of the identified system sys, returned as a cell
array of the same size as den. sdden{i,j}(k) is the 1 standard uncertainty in the value den{i,j}
(k). If sys does not contain uncertainty information, sdden is empty [].

Version History
Introduced before R2006a

See Also
tf | ss | zpk | get | ssdata | zpkdata

 tfdata

1-1895

tfest
Estimate transfer function model

Syntax
sys = tfest(tt,np)
sys = tfest(u,y,np)
sys = tfest(data,np)
sys = tfest(___ ,nz)
sys = tfest(___ ,nz,iodelay)
sys = tfest(___ ,Name,Value)

sys = tfest(tt,init_sys)
sys = tfest(u,y,init_sys)
sys = tfest(data,init_sys)

sys = tfest(___ ,opt)

[sys,ic] = tfest(___)

Description
Estimate Transfer Function Model

sys = tfest(tt,np) estimates the continuous-time transfer function sys with np poles, using all
the input and output signals in the timetable tt. The number of zeros in sys is max(np-1,0). You can
use this syntax for SISO and MISO systems. The function assumes that the last variable in the
timetable is the single output signal.

You cannot use tfest to estimate time-series models, which are models that contain no inputs. Use
ar, arx, or armax for time-series models instead.

sys = tfest(u,y,np) estimates a continuous-time transfer function using the time-domain input
signals and output signals in the matrices u,y. The software assumes that the data sample time is 1
second. You cannot change this assumed sample time. If you want to estimate a model from data with
a sample time other than 1 second, you have two alternatives:

1 Estimate a discrete-time system instead by setting the sample time using the 'Ts' name-value
argument. For example, sys = tfest(u,y,np,'Ts',0.1) sets the sample time to 0.1. You
can use this use syntax with SISO, MISO, and MIMO systems.

2 Convert your matrix data to a timetable or iddata object prior to estimating a continuous-
time system. These formats allow you to incorporate sample-time knowledge into the data. For
more information, see u,y.

Estimating continuous-time models from matrix-based data is not recommended.

sys = tfest(data,np) uses the time-domain or frequency-domain data in data. Use this syntax
especially when you want to estimate a transfer function using frequency-domain or frequency
response data, or when you want to take advantage of the additional information, such as intersample
behavior, data sample time, or experiment labeling, that data objects provide.

1 Functions

1-1896

sys = tfest(___ ,nz) specifies the number of zeros nz. You can use this syntax with any of the
previous input-argument combinations.

sys = tfest(___ ,nz,iodelay) specifies the transport delays iodelay for the input/output
pairs.

sys = tfest(___ ,Name,Value) uses additional model options specified by one or more name-
value pair arguments. For example, specify a discrete-time system from matrix data that has a sample
time of 0.1 using sys = tfest(um,ym,np,'Ts',0.1). Specify input and output signal variable
names that correspond with the variables to use for MIMO timetable data using sys =
tfest(data,np,nz,'InputNames',["u1","u2"],'OutputNames',["y1","y3"]).
Configure Initial Parameters

sys = tfest(tt,init_sys) uses the linear system init_sys to configure the initial
parameterization of sys for estimation using the timetable tt.

sys = tfest(u,y,init_sys) uses matrix data u,y for estimation. If init_sys is a continuous-
time model, using a timetable instead of matrices is recommended.

sys = tfest(data,init_sys) uses the data object data for estimation.
Specify Additional Estimation Options

sys = tfest(___ ,opt) incorporates an option set opt that specifies options such as estimation
objective, handling of initial conditions, regularization, and numerical search method used for
estimation. You can specify opt after any of the previous input-argument combinations..
Return Estimated Initial Conditions

[sys,ic] = tfest(___) returns the estimated initial conditions as an initialCondition
object. Use this syntax if you plan to simulate or predict the model response using the same
estimation input data and then compare the response with the same estimation output data.
Incorporating the initial conditions yields a better match between measured and simulated or
predicted data during the early stage of the simulation.

Examples

Estimate Transfer Function Model by Specifying Number of Poles

Load the time-domain system-response data in timetable tt1.

load sdata1.mat tt1;

Set the number of poles np to 2 and estimate a transfer function.

np = 2;
sys = tfest(tt1,np);

sys is an idtf model containing the estimated two-pole transfer function.

View the numerator and denominator coefficients of the resulting estimated model sys.

sys.Numerator

ans = 1×2

 tfest

1-1897

 2.4554 176.9856

sys.Denominator

ans = 1×3

 1.0000 3.1625 23.1631

To view the uncertainty in the estimates of the numerator and denominator and other information,
use tfdata.

Specify Number of Poles and Zeros in Estimated Transfer Function

Load time-domain system response data z2 and use it to estimate a transfer function that contains
two poles and one zero.

load iddata2 z2;
np = 2;
nz = 1;
sys = tfest(z2,np,nz);

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function Containing Known Transport Delay

Load the data z2, which is an iddata object that contains time-domain system response data.

load iddata2 z2;

Estimate a transfer function model sys that contains two poles and one zero, and which includes a
known transport delay iodelay.

np = 2;
nz = 1;
iodelay = 0.2;
sys = tfest(z2,np,nz,iodelay);

sys is an idtf model containing the estimated transfer function, with the IODelay property set to
0.2 seconds.

Estimate Transfer Function Containing Unknown Transport Delay

Load time-domain system response data z2 and use it to estimate a two-pole one-zero transfer
function for the system. Specify an unknown transport delay for the transfer function by setting the
value of iodelay to NaN.

load iddata2 z2;
np = 2;

1 Functions

1-1898

nz = 1;
iodelay = NaN;
sys = tfest(z2,np,nz,iodelay);

sys is an idtf model containing the estimated transfer function, whose IODelay property is
estimated using the data.

Estimate Discrete-Time Transfer Function

Load time-domain system response data, which is contained in input and output matrices umat2 and
ymat2.

load sdata2.mat umat2 ymat2

Estimate a discrete-time transfer function with two poles and one zero. Specify the sample time Ts as
0.1 seconds and the transport delay iodelay as 2 seconds.

np = 2;
nz = 1;
iodelay = 2;
Ts = 0.1;
sysd = tfest(umat2,ymat2,np,nz,iodelay,'Ts',Ts)

sysd =
 From input "u1" to output "y1":
 1.8 z^-1
 z^(-2) * ----------------------------
 1 - 1.418 z^-1 + 0.6613 z^-2

Sample time: 0.1 seconds
Discrete-time identified transfer function.

Parameterization:
 Number of poles: 2 Number of zeros: 1
 Number of free coefficients: 3
 Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using TFEST on time domain data.
Fit to estimation data: 80.26%
FPE: 2.095, MSE: 2.063

By default, the model has no feedthrough, and the numerator polynomial of the estimated transfer
function has a zero leading coefficient b0. To estimate b0, specify the Feedthrough property during
estimation.

Estimate Discrete-Time Transfer Function with Feedthrough

Load the estimation data z5.

load iddata5 z5

 tfest

1-1899

First, estimate a discrete-time transfer function model with two poles, one zero, and no feedthrough.
Get the sample time from the Ts property of z5.

np = 2;
nz = 1;
sys = tfest(z5,np,nz,'Ts',z5.Ts);

The estimated transfer function has the following form:

H(z−1) = b1z−1 + b2z−2

1 + a1z−1 + a2z−2

By default, the model has no feedthrough, and the numerator polynomial of the estimated transfer
function has a zero leading coefficient b0. To estimate b0, specify the Feedthrough property during
estimation.

sys = tfest(z5,np,nz,'Ts',z5.Ts,'Feedthrough',true);

The numerator polynomial of the estimated transfer function now has a nonzero leading coefficient:

H(z−1) = b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2

Analyze Origin of Delay in Measured Data

Compare two discrete-time models with and without feedthrough and transport delay.

If there is a delay from the measured input to output, it can be attributed either to a lack of
feedthrough or to an actual transport delay. For discrete-time models, absence of feedthrough
corresponds to a lag of one sample between the input and output. Estimating a model using
Feedthrough = false and iodelay = 0 thus produces a discrete-time system that is equivalent
to a system estimated using Feedthrough = true and iodelay = 1. Both systems show the same
time- and frequency-domain responses, for example, on step and Bode plots. However, you get
different results if you reduce these models using balred or convert them to their continuous-time
representations. Therefore, a best practice is to check if the observed delay can be attributed to a
transport delay or to a lack of feedthrough.

Estimate a discrete-time model with no feedthrough.

load iddata1 z1
np = 2;
nz = 2;
sys1 = tfest(z1,np,nz,'Ts',z1.Ts);

Because sys1 has no feedthrough and therefore has a numerator polynomial that beings with z−1,
sys1 has a lag of one sample. The IODelay property is 0.

Estimate another discrete-time model with feedthrough and with a reduction from two zeros to one,
incurring a one-sample input-output delay.

sys2 = tfest(z1,np,nz-1,1,'Ts',z1.Ts,'Feedthrough',true);

Compare the Bode responses of the models.

1 Functions

1-1900

bode(sys1,sys2);

The discrete equations that underlie sys1 and sys2 are equivalent, and so are the Bode responses.

Convert the models to continuous time and compare the Bode responses for these models.

sys1c = d2c(sys1);
sys2c = d2c(sys2);
bode(sys1c,sys2c);
legend

 tfest

1-1901

As the plot shows, the Bode responses of the two models do not match when you convert them to
continuous time. When there is no feedthrough, as with sys1c, there must be some lag. When there
is feedthrough, as with sys2c, there can be no lag. Continuous-time feedthrough maps to discrete-
time feedthrough. Continuous-time lag maps to discrete-time delays.

Estimate MISO Discrete-Time Transfer Function with Feedthrough and Delay Specifications
for Individual Channels

Estimate a two-input, one-output discrete-time transfer function with a delay of two 2 samples on the
first input and zero samples on the second input. Both inputs have no feedthrough.

Load the data and split the data into estimation and validation data sets.

load iddata7 z7
ze = z7(1:300);
zv = z7(200:400);

Estimate a two-input, one-output transfer function with two poles and one zero for each input-to-
output transfer function.

Lag = [2;0];
Ft = [false,false];
model = tfest(ze,2,1,'Ts',z7.Ts,'Feedthrough',Ft,'InputDelay',Lag);

1 Functions

1-1902

The Feedthrough value you choose dictates whether the leading numerator coefficient is zero (no
feedthrough) or not (nonzero feedthrough). Delays are generally expressed separately using the
InputDelay or IODelay property. This example uses InputDelay only to express the delays.

Validate the estimated model. Exclude the data outliers for validation.

I = 1:201;
I(114:118) = [];
opt = compareOptions('Samples',I);
compare(zv,model,opt)

Estimate Transfer Function Model Using Regularized Impulse Response Model

Identify a 15th order transfer function model by using regularized impulse response estimation.

Load the data.

load regularizationExampleData m0simdata;

Obtain a regularized impulse response (FIR) model.

opt = impulseestOptions('RegularizationKernel','DC');
m0 = impulseest(m0simdata,70,opt);

Convert the model into a transfer function model after reducing the order to 15.

 tfest

1-1903

m = idtf(balred(idss(m0),15));

Compare the model output with the data.

compare(m0simdata,m);

Estimate Transfer Function Using Estimation Option Set

Create an option set for tfest that specifies the initialization and search methods. Also set the
display option, which specifies that the loss-function values for each iteration be shown.

opt = tfestOptions('InitializeMethod','n4sid','Display','on','SearchMethod','lsqnonlin');

Load time-domain system response data z2 and use it to estimate a transfer function with two poles
and one zero. Specify opt for the estimation options.

load iddata2 z2;
np = 2;
nz = 1;
iodelay = 0.2;
sys = tfest(z2,np,nz,iodelay,opt);

sys is an idtf model containing the estimated transfer function.

1 Functions

1-1904

Specify Model Properties of Estimated Transfer Function

Load the time-domain system response data z2, and use it to estimate a two-pole, one-zero transfer
function. Specify an input delay.

load iddata2 z2;
np = 2;
nz = 1;
input_delay = 0.2;
sys = tfest(z2,np,nz,'InputDelay',input_delay);

sys is an idtf model containing the estimated transfer function with an input delay of 0.2 seconds.

Convert Frequency-Response Data into Transfer Function

Use bode to obtain the magnitude and phase response for the following system:

H(s) = s + 0 . 2
s3 + 2s2 + s + 1

Use 100 frequency points, ranging from 0.1 rad/s to 10 rad/s, to obtain the frequency-response data.
Use frd to create a frequency-response data object.

freq = logspace(-1,1,100);
[mag,phase] = bode(tf([1 0.2],[1 2 1 1]),freq);
data = frd(mag.*exp(1j*phase*pi/180),freq);

Estimate a three-pole, one-zero transfer function using data.

np = 3;
nz = 1;
sys = tfest(data,np,nz);

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function with Known Transport Delays for Multiple Inputs

Load the time-domain system response data co2data, which contains the data from two experiments,
each with two inputs and one output. Convert the data from the first experiment into an iddata
object data with a sample time of 0.5 seconds.

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);

Specify estimation options for the search method and the input and output offsets. Also specify the
maximum number of search iterations.

opt = tfestOptions('SearchMethod','gna');
opt.InputOffset = [170;50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOptions.MaxIterations = 50;

 tfest

1-1905

Estimate a transfer function using the measured data and the estimation option set opt. Specify the
transport delays from the inputs to the output.

np = 3;
nz = 1;
iodelay = [2 5];
sys = tfest(data,np,nz,iodelay,opt);

iodelay specifies the input-to-output delay from the first and second inputs to the output as 2
seconds and 5 seconds, respectively.

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function with Known and Unknown Transport Delays

Load time-domain system response data and use it to estimate a transfer function for the system.
Specify the known and unknown transport delays.

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);

data is an iddata object with two input channels and one output channels, and which has a sample
rate of 0.5 seconds.

Create an option set opt. Specify estimation options for the search method and the input and output
offsets. Also specify the maximum number of search iterations.

opt = tfestOptions('Display','on','SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOptions.MaxIterations = 50;

Specify the unknown and known transport delays in iodelay, using 2 for a known delay of 2 seconds
and nan for the unknown delay. Estimate the transfer function using iodelay and opt.

np = 3;
nz = 1;
iodelay = [2 nan];
sys = tfest(data,np,nz,iodelay,opt);

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function with Unknown, Constrained Transport Delays

Create a transfer function model with the expected numerator and denominator structure and delay
constraints.

In this example, the experiment data consists of two inputs and one output. Both transport delays are
unknown and have an identical upper bound. Additionally, the transfer functions from both inputs to
the output are identical in structure.

1 Functions

1-1906

init_sys = idtf(NaN(1,2),[1,NaN(1,3)],'IODelay',NaN);
init_sys.Structure(1).IODelay.Free = true;
init_sys.Structure(1).IODelay.Maximum = 7;

init_sys is an idtf model describing the structure of the transfer function from one input to the
output. The transfer function consists of one zero, three poles, and a transport delay. The use of NaN
indicates unknown coefficients.

init_sys.Structure(1).IODelay.Free = true indicates that the transport delay is not fixed.

init_sys.Structure(1).IODelay.Maximum = 7 sets the upper bound for the transport delay to
7 seconds.

Specify the transfer function from both inputs to the output.

init_sys = [init_sys,init_sys];

Load time-domain system response data and use it to estimate a transfer function. Specify options in
the tfestOptions option set opt.

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);
opt = tfestOptions('Display','on','SearchMethod','gna');
opt.InputOffset = [170;50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOptions.MaxIterations = 50;
sys = tfest(data,init_sys,opt);

sys is an idtf model containing the estimated transfer function.

Analyze the estimation result by comparison. Create a compareOptions option set opt2 and specify
input and output offsets, and then use compare.

opt2 = compareOptions;
opt2.InputOffset = opt.InputOffset;
opt2.OutputOffset = opt.OutputOffset;
compare(data,sys,opt2)

 tfest

1-1907

Estimate Transfer Function Containing Different Numbers of Poles for Input-Output Pairs

Estimate a multiple-input, single-output transfer function containing different numbers of poles for
input-output pairs for given data.

Obtain frequency-response data.

For example, use frd to create a frequency-response data model for the following system:

G =
e−4s s + 2

s3 + 2s2 + 4s + 5

e−0 . 6s 5
s4 + 2s3 + s2 + s

Use 100 frequency points, ranging from 0.01 rad/s to 100 rad/s, to obtain the frequency-response
data.

G = tf({[1 2],[5]},{[1 2 4 5],[1 2 1 1 0]},0,'IODelay',[4 0.6]);
data = frd(G,logspace(-2,2,100));

data is an frd object containing the continuous-time frequency response for G.

Estimate a transfer function for data.

1 Functions

1-1908

 np = [3 4];
 nz = [1 0];
 iodelay = [4 0.6];
 sys = tfest(data,np,nz,iodelay);

np specifies the number of poles in the estimated transfer function. The first element of np indicates
that the transfer function from the first input to the output contains three poles. Similarly, the second
element of np indicates that the transfer function from the second input to the output contains four
poles.

nz specifies the number of zeros in the estimated transfer function. The first element of nz indicates
that the transfer function from the first input to the output contains one zero. Similarly, the second
element of np indicates that the transfer function from the second input to the output does not
contain any zeros.

iodelay specifies the transport delay from the first input to the output as 4 seconds. The transport
delay from the second input to the output is specified as 0.6 seconds.

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function for Unstable System

Estimate a transfer function describing an unstable system using frequency-response data.

Use idtf to construct a transfer function model G of the following system:

G =

s + 2
s3 + 2s2 + 4s + 5

5
s4 + 2s3 + s2 + s + 1

G = idtf({[1 2], 5},{[1 2 4 5],[1 2 1 1 1]});

Use idfrd to obtain a frequency-response data model data for G. Specify 100 frequency points
ranging from 0.01 rad/s to 100 rad/s.

data = idfrd(G,logspace(-2,2,100));

data is an idfrd object.

Estimate a transfer function for data.

np = [3 4];
nz = [1 0];
sys = tfest(data,np,nz);

np specifies the number of poles in the estimated transfer function. The first element of np indicates
that the transfer function from the first input to the output contains three poles. Similarly, the second
element of np indicates that the transfer function from the second input to the output contains four
poles.

nz specifies the number of zeros in the estimated transfer function. The first element of nz indicates
that the transfer function from the first input to the output contains one zero. Similarly, the second

 tfest

1-1909

element of nz indicates that the transfer function from the second input to the output does not
contain any zeros.

sys is an idtf model containing the estimated transfer function.

pole(sys)

ans = 7×1 complex

 -1.5260 + 0.0000i
 -0.2370 + 1.7946i
 -0.2370 - 1.7946i
 -1.4656 + 0.0000i
 -1.0000 + 0.0000i
 0.2328 + 0.7926i
 0.2328 - 0.7926i

sys is an unstable system, as the pole display indicates.

Estimate Transfer Function using High Modal Density Frequency Response Data

Load the high-density frequency-response measurement data. The data corresponds to an unstable
process maintained at equilibrium using feedback control.

load HighModalDensityData FRF f

Package the data as an idfrd object for identification and find the Bode magnitude response.

G = idfrd(permute(FRF,[2 3 1]),f,0,'FrequencyUnit','Hz');
bodemag(G)

1 Functions

1-1910

Estimate a transfer function with 32 poles and 32 zeros, and compare the Bode magnitude response.

sys = tfest(G,32,32);
bodemag(G, sys)
xlim([0.01,2e3])
legend

 tfest

1-1911

Obtain and Apply Estimated Initial Conditions

Load and plot the data.

load iddata1ic z1i
plot(z1i)

1 Functions

1-1912

Examine the initial value of the output data y(1).

ystart = z1i.y(1)

ystart = -3.0491

The measured output does not start at 0.

Estimate a second-order transfer function sys and return the estimated initial condition ic.

[sys,ic] = tfest(z1i,2,1);
ic

ic =
 initialCondition with properties:

 A: [2x2 double]
 X0: [2x1 double]
 C: [0.2957 5.2441]
 Ts: 0

ic is an initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0.

Simulate sys using the estimation data but without incorporating the initial conditions. Plot the
simulated output with the measured output.

 tfest

1-1913

y_no_ic = sim(sys,z1i);
plot(y_no_ic,z1i)
legend('Model Response','Output Data')

The measured and simulated outputs do not agree at the beginning of the simulation.

Incorporate the initial condition into the simOptions option set.

opt = simOptions('InitialCondition',ic);
y_ic = sim(sys,z1i,opt);
plot(y_ic,z1i)
legend('Model Response','Output Data')

1 Functions

1-1914

The simulation combines the model response to the input signal with the free response to the initial
condition. The measured and simulated outputs now have better agreement at the beginning of the
simulation. This initial condition is valid only for the estimation data z1i.

Input Arguments
tt — Timetable-based estimation data
timetable | cell array of timetables

Estimation data, specified as a uniformly sampled timetable that contains both input and output
signal variables or, for multiexperiment data, a cell array of timetables.
Use Entire Timetable

If you want to use all the input and output variables in tt, and the variables are organized so that the
set of input variables is followed by the set of output variables, then:

• For SISO systems, specify tt as an Ns-by-2 timetable, where Ns is the number of samples and
the two timetable variables represent the measured input signal and output signal respectively.

• For MIMO systems, specify tt as an Ns-by-(Nu+Ny) timetable, where Nu is the number of inputs
and Ny is the number of outputs. The first Nu variables must contain the input signals and the
remaining Ny variables must contain the output signals.

When you are estimating state space or transfer function models, you must also explicitly specify
the input and output channels, as the following section describes.

 tfest

1-1915

• For multiexperiment data, specify data as an Ne-by-1 cell array of timetables, where Ne is the
number of experiments. The sample times of all the experiments must match.

Use Selected Variables from Timetable

If you want to use a subset of variables from the timetable, or if the input and output variables are
intermixed, use the 'InputName' and 'OutputName' name-value arguments to specify which
variables to use.

For example, suppose that tt contains six variables: "u1", "u2", "u3", and "y1", "y2", "y3". For
estimation, you want to use the variables "u1" and "u2" as the inputs and the variables "y1" and
"y3" as the outputs. Use the following command to perform the estimation:

sys = tfest(tt,__,'InputName',["u1" "u2"],'OutputName',["y1" "y3"])

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

u, y — Matrix-based estimation data
matrices | cell array of matrices

Estimation data, specified for SISO systems as a pair of Ns-by-1 real-valued matrices that contain
uniformly sampled input and output time-domain signal values. Here, Ns is the number of samples.

For MIMO systems, specify u,y as an input/output matrix pair with the following dimensions:

• u — Ns-by-Nu, where Nu is the number of inputs.
• y — Ns-by-Ny, where Ny is the number of outputs.

For multiexperiment data, specify u,y as a pair of 1-by-Ne cell arrays, where Ne is the number of
experiments. The sample times of all the experiments must match.

Limitations

• Matrix-based data does not support estimation from frequency-domain data. You must use a data
object such as an iddata object or idfrd object (see data).

• Using matrices for estimation data is not recommended for continuous-time estimation since the
data does not provide the sample time. The software assumes that the data is sampled at 1 Hz. For
continuous-time estimation, it is recommended that you convert the input and output matrix pair
into a single timetable. For example, to convert the single-column matrices um and ym to a
timetable tt with a sample time of 0.5 minutes, use the following command.

tt = timetable(um,ym,'rowtimes',minutes(0.5*(1:size(u,1))))

For a more detailed example of converting matrix-based SISO data to a timetable, see “Convert
SISO Matrix Data to Timetable”. For an example of converting a MIMO matrix pair to a timetable,
see “Convert MIMO Matrix Data to Timetable for Continuous-Time Model Estimation”.

For more information about working with estimation data types, see “Data Types in System
Identification Toolbox”.

data — Estimation data object
iddata object | frd object | idfrd object

1 Functions

1-1916

Estimation data object, specified as an iddata object, an frd object, or an idfrd object that
contains uniformly sampled input and output values. By default, the software sets the sample time of
the model to the sample time of the estimation data.

For multiexperiment data, the sample times and intersample behavior of all the experiments must
match.

For time-domain estimation, data must be an iddata object containing the input and output signal
values.

For frequency-domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)
• iddata object with properties specified as follows:

• InputData — Fourier transform of the input signal
• OutputData — Fourier transform of the output signal
• Domain — 'Frequency'

Limitations

You cannot estimate continuous-time models using discrete-time frequency-domain data.

np — Number of poles
nonnegative integer | matrix

Number of poles in the estimated transfer function, specified as a nonnegative integer or a matrix.

For systems that have multiple inputs and/or multiple outputs, you can apply either a global value or
individual values of np to the input/output pairs, as follows:

• Same number of poles for every pair — Specify np as a scalar.
• Individual number of poles for each pair — Specify np as an Ny-by-Nu matrix. Ny is the number of

outputs and Nu is the number of inputs.

For an example, see “Estimate Transfer Function Model by Specifying Number of Poles” on page 1-
1897.

nz — Number of zeros
nonnegative integer | matrix

Number of zeros in the estimated transfer function, specified as a nonnegative integer or a matrix.

For systems that have multiple inputs, multiple outputs, or both, you can apply either a global value
or individual values of nz to the input/output pairs, as follows:

• Same number of poles for every pair — Specify nz as a scalar.
• Individual number of poles for each pair — Specify nz as an Ny-by-Nu matrix. Ny is the number of

outputs and Nu is the number of inputs.

For a continuous-time model estimated using discrete-time data, set nz <= np.

For discrete-time model estimation, specify nz as the number of zeros of the numerator polynomial of
the transfer function. For example, tfest(tt,2,1,'Ts',data.Ts) estimates a transfer function of

 tfest

1-1917

the form b1z−1/(1 + a1z−1 + b2z−2), while tfest(tt,2,2,'Ts',data.Ts) estimates
(b1z−1 + b2z−2)/(1 + a1z−1 + b2z−2). Here, z-1 is the Z-transform lag variable. For more information
about discrete-time transfer functions, see “Discrete-Time Representation”. For an example, see
“Estimate Discrete-Time Transfer Function” on page 1-1899.

iodelay — Transport delay
[] (default) | nonnegative integer | matrix

Transport delay, specified as a nonnegative integer, a NaN scalar, or a matrix.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit
property of data. For discrete-time systems, specify transport delays as integers denoting delays of a
multiple of the sample time Ts.

For a MIMO system with Ny outputs and Nu inputs, set iodelay to an Ny-by-Nu array. Each entry of
this array is a numerical value that represents the transport delay for the corresponding input/output
pair. You can also set iodelay to a scalar value to apply the same delay to all input/output pairs.

The specified values are treated as fixed delays. To denote unknown transport delays, specify NaN in
the iodelay matrix.

Use [] or 0 to indicate no transport delay.

For an example, see “Estimate Transfer Function Containing Known Transport Delay” on page 1-
1898.

opt — Estimation options
tfestOptions option set

Estimation options, specified as a tfestOptions option set. Options specified by opt include:

• Estimation objective
• Handling of initial conditions
• Numerical search method to be used in estimation
• Intersample behavior

For an example, see “Estimate Transfer Function Using Estimation Option Set” on page 1-1904.

init_sys — Linear system that configures initial parameterization of sys
idtf model | linear model | structure

Linear system that configures the initial parameterization of sys, specified as an idtf model, a
linear model , or a structure. You obtain init_sys either by performing an estimation using
measured data or by direct construction.

If init_sys is an idtf model, tfest uses the parameter values of init_sys as the initial guess for
estimating sys.

Use the Structure property of init_sys to configure initial parameter values and constraints for
the numerator, denominator, and transport lag. For instance:

• To specify an initial guess for the A matrix of init_sys, set
init_sys.Structure.Numerator.Value to the initial guess.

1 Functions

1-1918

• To specify constraints for the B matrix of init_sys:

• Set init_sys.Structure.Numerator.Minimum to the minimum numerator coefficient
values.

• Set init_sys.Structure.Numerator.Maximum to the maximum numerator coefficient
values.

• Set init_sys.Structure.Numerator.Free to indicate which numerator coefficients are
free for estimation.

For an example, see “Estimate Transfer Function with Unknown, Constrained Transport Delays”
on page 1-1906.

If init_sys is not an idtf model, the software first converts init_sys to a transfer function.
tfest uses the parameters of the resulting model as the initial guess for estimation.

If you do not specify opt, and init_sys was obtained by estimation rather than construction, then
the software uses estimation options from init_sys.Report.OptionsUsed.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: sys = tfest(data,np,nz,'Ts',0.1)

InputName — Input channel names
" " (default) | string | character vector | array of strings | cell array of character vectors

Input channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets all but the last variable in tt
as input channels. When you want to select a subset of the timetable variables as input channels use
'InputName' to identify them. For example, sys = tfest(tt,__,'InputName',["u1" "u2"])
selects the variables u1 and u2 as the input channels for the estimation.

OutputName — Output signal names
" " (default) | character vector | string | cell array of character vectors or strings

Output channel names for timetable data, specified as a string, a character vector, or an array or cell
array of strings or character vectors. By default, the software interprets the last variable in tt as the
sole output channel. When you want to select a subset of the timetable variables as output channels,
use 'OutputName' to identify them. For example, sys = tfest(tt,__,'OutputName',["y1"
"y3"]) selects the variables y1 and y3 as the output channels for the estimation.

Ts — Sample time of estimated model
0 (continuous time) (default) | positive scalar

Sample time of the estimated model, specified as either 0 or a positive scalar.

• For continuous-time models, specify 'Ts' as 0.
• For discrete-time models, specify 'Ts' as the data sample time in units defined by the following:

 tfest

1-1919

• For timetable-based data — The timetable Time column
• For matrix-based data — Seconds
• For data objects, such as iddata objects — The data.TimeUnit property

In the discrete case, np and nz refer to the number of roots of z-1 for the numerator and
denominator polynomials.

To obtain the data sample time for a timetable tt, use the timetable property
tt.Properties.Timestep.

For an example, see “Estimate Discrete-Time Transfer Function” on page 1-1899.

InputDelay — Input delays
0 (default) | scalar | vector

Input delay for each input channel, specified as a scalar or a numeric vector.

• For continuous-time models, specify 'InputDelay' in the time units stored in the TimeUnit
property.

• For discrete-time models, specify 'InputDelay' in integer multiples of the sample time Ts. For
example, setting 'InputDelay' to 3 specifies a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a
numerical value that represents the input delay for the corresponding input channel.

To apply the same delay to all channels, specify InputDelay as a scalar.

For an example, see “Specify Model Properties of Estimated Transfer Function” on page 1-1904.

Feedthrough — Feedthrough for discrete-time transfer function
0 (default) | 1 | logical matrix

Feedthrough for discrete-time transfer functions, specified as a logical scalar or an Ny-by-Nu logical
matrix. Ny is the number of outputs and Nu is the number of inputs. To use the same feedthrough for
all input/output channels, specify Feedthrough as a scalar.

Consider a discrete-time model with two poles and three zeros:

H(z−1) = b0 + b1z−1 + b2z−2 + b3z−3

1 + a1z−1 + a2z−2

When the model has direct feedthrough, b0 is a free parameter whose value is estimated along with
the rest of the model parameters b1, b2, b3, a1, and a2. When the model has no feedthrough, b0 is
fixed to zero. For an example, see “Estimate Discrete-Time Transfer Function with Feedthrough” on
page 1-1899.

Output Arguments
sys — Identified transfer function
idtf model

Identified transfer function, returned as an idtf model. This model is created using the specified
model orders, delays, and estimation options.

1 Functions

1-1920

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report
Field

Description

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.
Initializ
eMethod

Algorithm used to initialize the numerator and denominator for estimation of
continuous-time transfer functions using time-domain data, returned as one of the
following values:

• 'iv' — Instrument Variable approach
• 'svf' — State Variable Filters approach
• 'gpmf' — Generalized Poisson Moment Functions approach
• 'n4sid' — Subspace state-space estimation approach

This field is especially useful to view the algorithm used when the InitializeMethod
option in the estimation option set is 'all'.

N4Weight Weighting matrices used in the singular-value decomposition step when
InitializeMethod is 'n4sid', returned as one of the following values:

• 'MOESP' — Use the MOESP algorithm by Verhaegen.
• 'CVA' — Use the canonical variate algorithm (CVA) by Larimore.
• 'SSARX' — Use a subspace identification method that uses an ARX estimation-

based algorithm to compute the weighting.

This field is especially useful to view the weighting matrices used when the N4Weight
option in the estimation option set is 'auto'.

N4Horizon Forward and backward prediction horizons used when InitializeMethod is
'n4sid', returned as a row vector with three elements — [r sy su], where r is the
maximum forward prediction horizon, sy is the number of past outputs, and su is the
number of past inputs that are used for the predictions.

InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:

• 'zero' — The initial conditions were set to zero.
• 'estimate' — The initial conditions were treated as independent estimation

parameters.
• 'backcast' — The initial conditions were estimated using the best least squares
fit.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option set is 'auto'.

 tfest

1-1921

Report
Field

Description

Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description
FitPerce
nt

Normalized root mean squared error (NRMSE) measure of how well the
response of the model fits the estimation data, expressed as the
percentage fitpercent = 100(1-NRMSE).

LossFcn Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small-sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).

Parameter
s

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See polyestOptions for more information.

RandState State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

1 Functions

1-1922

Report
Field

Description

DataUsed Attributes of the data used for estimation, returned as a structure with the following
fields.

Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam
ple

Input intersample behavior, returned as one of the following values:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.

• 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

• 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff
set

Offset removed from time-domain input data during estimation. For
nonlinear models, it is [].

OutputOf
fset

Offset removed from time-domain output data during estimation. For
nonlinear models, it is [].

Terminati
on

Termination conditions for the iterative search used for prediction error minimization,
returned as a structure with the following fields:

Field Description
WhyStop Reason for terminating the numerical search.
Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

∞-norm of the gradient search vector when the search algorithm
terminates.

FcnCount Number of times the objective function was called.
UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is 'lsqnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is 'lsqnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsqnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information on using Report, see “Estimation Report”.

 tfest

1-1923

ic — Initial conditions
initialCondition object | object array of initialCondition values

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

• For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x0).

• For a multiple-experiment data set with Ne experiments, ic is an object array of length Ne that
contains one set of initialCondition values for each experiment.

If tfest returns ic values of 0 and you know that you have non-zero initial conditions, set the
'InitialCondition' option in tfestOptions to 'estimate' and pass the updated option set to
tfest. For example:

opt = tfestOptions('InitialCondition','estimate')
[sys,ic] = tfest(data,np,nz,opt)

The default 'auto' setting of 'InitialCondition' uses the 'zero' method when the initial
conditions have a negligible effect on the overall estimation-error minimization process. Specifying
'estimate' ensures that the software estimates values for ic.

For more information, see initialCondition. For an example of using this argument, see “Obtain
and Apply Estimated Initial Conditions” on page 1-1912.

Algorithms
The details of the estimation algorithms used by tfest vary depending on various factors, including
the sampling of the estimated model and the estimation data.

Continuous-Time Transfer Function Estimation Using Time-Domain Data
Parameter Initialization

The estimation algorithm initializes the estimable parameters using the method specified by the
InitializeMethod estimation option. The default method is the Instrument Variable (IV) method.

The State-Variable Filters (SVF) approach and the Generalized Poisson Moment Functions (GPMF)
approach to continuous-time parameter estimation use prefiltered data [1] [2]. The constant 1λ in [1]
and [2] corresponds to the initialization option (InitializeOptions) field FilterTimeConstant.
IV is the simplified refined IV method and is called SRIVC in [3]. This method has a prefilter that is
the denominator of the current model, initialized with SVF. This prefilter is iterated up to
MaxIterations times, until the model change is less than Tolerance. MaxIterations and
Tolerance are options that you can specify using the InitializeOptions structure. The 'n4sid'
initialization option estimates a discrete-time model, using the N4SID estimation algorithm, that it
transforms to continuous-time using d2c.

Use tfestOptions to create the option set used to estimate a transfer function.
Parameter Update

The initialized parameters are updated using a nonlinear least-squares search method, specified by
the SearchMethod estimation option. The objective of the search method is to minimize the
weighted prediction error norm.

1 Functions

1-1924

Discrete-Time Transfer Function Estimation Using Time-Domain Data

For discrete-time data, tfest uses the same algorithm as oe to determine the numerator and
denominator polynomial coefficients. In this algorithm, the initialization is performed using arx,
followed by nonlinear least-squares search-based updates to minimize a weighted prediction error
norm.

Continuous-Time Transfer Function Estimation Using Continuous-Time Frequency-Domain
Data

The estimation algorithm performs the following tasks:

1 Perform a bilinear mapping to transform the domain (frequency grid) of the transfer function. For
continuous-time models, the imaginary axis is transformed to the unit disk. For discrete-time
models, the original domain unit disk is transformed to another unit disk.

2 Perform S-K iterations [4] to solve a nonlinear least-squares problem — Consider a multi-input
single-output system. The nonlinear least-squares problem is to minimize the following loss
function:

minimize
D, Ni

∑
k = 1

nf
W(ωk) y(ωk)− ∑

i = 1

nu Ni(ωk)
D(ωk) ui(ωk)

2

Here, W is a frequency-dependent weight that you specify. D is the denominator of the transfer
function model that is to be estimated, and Ni is the numerator corresponding to the ith input. y
and u are the measured output and input data, respectively. nf and nu are the number of
frequencies and inputs, and w is the frequency. Rearranging the terms gives

minimize
D, Ni

∑
k = 1

nf W(ωk)
D(ωk) D(ωk)y(ωk)− ∑

i = 1

nu
Ni(ωk)ui(ωk)

2

To perform the S-K iterations, the algorithm iteratively solves

minimize
Dm, Ni, m

∑
k = 1

nf W(ωk)
Dm− 1(ωk) Dm(ωk)y(ωk)− ∑

i = 1

nu
Ni, m(ωk)ui(ωk)

2

Here, m is the current iteration, and Dm-1(ω) is the denominator response identified at the
previous iteration. Now each step of the iteration is a linear least-squares problem, where the
identified parameters capture the responses Dm(ω) and Ni,m(ω) for i = 1,2,...nu. The iteration is
initialized by choosing D0(ω) = 1.

• The first iteration of the algorithm identifies D1(ω). The D1(ω) and Ni,1(ω) polynomials are
expressed in monomial basis.

• The second and following iterations express the polynomials Dm(ω) and Ni,m(ω) in terms of
orthogonal rational basis functions on the unit disk. These basis functions have the form

B j, m(ω) =
1− λ j, m− 1

2

q− λ j, m− 1
∏

r = 0

j− 1 1− (λ j, m− 1)*q(ω)
q(ω)− λr, m− 1

Here, λj,m-1 is the jth pole that is identified at the previous step m-1 of the iteration. λj,m-1
* is

the complex conjugate of λj,m-1, and q is the frequency-domain variable on the unit disk.

 tfest

1-1925

• The algorithm runs for a maximum of 20 iterations. The iterations are terminated early if the
relative change in the value of the loss function is less than 0.001 in the last three iterations.

If you specify bounds on transfer function coefficients, these bounds correspond to affine
constraints on the identified parameters. If you have only equality constraints (fixed transfer
function coefficients), the corresponding equality constrained least-squares problem is solved
algebraically. To do so, the software computes an orthogonal basis for the null space of the
equality constraint matrix, and then solves the least-squares problem within this null space. If
you have upper or lower bounds on transfer function coefficients, the corresponding inequality
constrained least-squares problem is solved using interior-point methods.

3 Perform linear refinements — The S-K iterations, even when they converge, do not always yield a
locally optimal solution. To find a critical point of the optimization problem that can yield a locally
optimal solution, a second set of iterations are performed. The critical points are solutions to a
set of nonlinear equations. The algorithm searches for a critical point by successively
constructing a linear approximation to the nonlinear equations and solving the resulting linear
equations in the least-squares sense. The equations follow.

• Equation for the jth denominator parameter:

0 = 2 ∑
k = 1

nf
Re

W(ωk) 2B j*(ωk) ∑
i = 1

nu
Ni, m− 1* (ωk)ui*(ωk)

Dm− 1* (ωk) Dm− 1(ωk) 2 Dm(ωk)y(ωk)− ∑
i = 1

nu
Ni, m(ωk)ui(ωk)

• Equation for the jth numerator parameter that corresponds to input l:

0 = − 2 ∑
k = 1

nf
Re

W(ωk) 2B j*(ωk)ul*(ωk)
Dm− 1(ωk) 2 Dm(ωk)y(ωk)− ∑

i = 1

nu
Ni, m(ωk)ui(ωk)

The first iteration is started with the best solution found for the numerators Ni and denominator
D parameters during S-K iterations. Unlike S-K iterations, the basis functions Bj(ω) are not
changed at each iteration; the iterations are performed with the basis functions that yielded the
best solution in the S-K iterations. As before, the algorithm runs for a maximum of 20 iterations.
The iterations are terminated early if the relative change in the value of the loss function is less
than 0.001 in the last three iterations.

If you specify bounds on transfer function coefficients, these bounds are incorporated into the
necessary optimality conditions using generalized Lagrange multipliers. The resulting
constrained linear least-squares problems are solved using the same methods explained in the S-
K iterations step.

4 Return the transfer function parameters corresponding to the optimal solution — Both the S-K
and linear refinement iteration steps do not guarantee an improvement in the loss function value.
The algorithm tracks the best parameter value observed during these steps, and returns these
values.

5 Invert the bilinear mapping performed in step 1.
6 Perform an iterative refinement of the transfer function parameters using the nonlinear least-

squares search method specified in the SearchMethod estimation option. This step is
implemented in the following situations:

• When you specify the EnforceStability estimation option as true (stability is requested),
and the result of step 5 of this algorithm is an unstable model. The unstable poles are

1 Functions

1-1926

reflected inside the stability boundary and the resulting parameters are iteratively refined.
For information about estimation options, see tfestOptions.

• When you add a regularization penalty to the loss function using the Regularization
estimation option. For an example about regularization, see “Regularized Identification of
Dynamic Systems”.

• You estimate a continuous-time model using discrete-time data (see “Discrete-Time Transfer
Function Estimation Using Discrete-Time Frequency-Domain Data” on page 1-1927).

• You use frequency domain input/output data to identify a multi-input model.

If you are using the estimation algorithm from R2016a or earlier (see “tfest Estimation Algorithm
Update” on page 1-1928) for estimating a continuous-time model using continuous-time frequency-
domain data, then for continuous-time data and fixed delays, the Output-Error algorithm is used for
model estimation. For continuous-time data and free delays, the state-space estimation algorithm is
used. In this algorithm, the model coefficients are initialized using the N4SID estimation method. This
initialization is followed by nonlinear least-squares search-based updates to minimize a weighted
prediction error norm.

Discrete-Time Transfer Function Estimation Using Discrete-Time Frequency-Domain Data

The estimation algorithm is the same as for continuous-time transfer function estimation using
continuous-time frequency-domain data on page 1-1925, except discrete-time data is used.

If you are using the estimation algorithm from R2016a or earlier (see “tfest Estimation Algorithm
Update” on page 1-1928), the algorithm is the same as the algorithm for discrete-time transfer
function estimation using time-domain data on page 1-1925.

Note The software does not support estimation of a discrete-time transfer function using continuous-
time frequency-domain data.

Continuous-Time Transfer Function Estimation Using Discrete-Time Frequency-Domain Data

The tfest command first estimates a discrete-time model from the discrete-time data. The estimated
model is then converted to a continuous-time model using the d2c command. The frequency response
of the resulting continuous-time model is then computed over the frequency grid of the estimation
data. A continuous-time model of the desired (user-specified) structure is then fit to this frequency
response. The estimation algorithm for using the frequency-response data to obtain the continuous-
time model is the same as the algorithm for continuous-time transfer function estimation using
continuous-time data on page 1-1925.

If you are using the estimation algorithm from R2016a or earlier (see “tfest Estimation Algorithm
Update” on page 1-1928), the state-space estimation algorithm is used for estimating continuous-time
models from discrete-time data. In this algorithm, the model coefficients are initialized using the
N4SID estimation method. This initialization is followed by nonlinear least-squares search-based
updates to minimize a weighted prediction error norm.

Delay Estimation

• When delay values are specified as NaN, the software uses delayest to estimate them separately
from the model numerator and denominator coefficients. tfest then treats these delay values as
fixed during the iterative update of the rest of the model. Therefore, the delay values are not
iteratively updated.

 tfest

1-1927

• By default, for discrete-time data (Ts>0), delayest limits the search for delays to a range of 0–30
samples. For continuous-time models, this range translates to 0–30Ts time units. For continuous-
time data (Ts = 0), delayest limits the search range to 0–10 time units. You can change these
limits by first creating a template model init_sys using idtf and then, setting the values of
init_sys.Structure.IODelay.Minimum and
init_sys.Structure(i,j).IODelay.Maximum.

• For an initial model, init_sys, with:

• init_sys.Structure.IODelay.Value specified as finite values
• init_sys.Structure.IODelay.Free specified as true

the initial delay values are left unchanged.

Estimation of delays is often a difficult problem. A best practice is to assess the presence and the
value of a delay. To do so, use physical insight of the process being modeled and functions such as
arxstruc, delayest, and impulseest. For an example of determining input delay, see “Model
Structure Selection: Determining Model Order and Input Delay”.

Version History
Introduced in R2012a

Time-domain estimation data is accepted in the form of timetables and matrices

Most estimation, validation, analysis, and utility functions now accept time-domain input/output data
in the form of a single timetable that contains both input and output data or a pair of matrices that
contain the input and output data separately. These functions continue to accept iddata objects as a
data source as well, for both time-domain and frequency-domain data.

Advanced Options are deprecated for SearchOptions when SearchMethod is 'lsqnonlin'
Not recommended starting in R2018a

Specification of lsqnonlin- related advanced options are deprecated, including the option to invoke
parallel processing when estimating using the lsqnonlin search method, or solver, in Optimization
Toolbox.

tfest Estimation Algorithm Update

Starting in R2016b, a new algorithm is used for performing transfer function estimation from
frequency-domain data. You are likely to see faster and more accurate results with the new algorithm,
particularly for data with dynamics over a large range of frequencies and amplitudes. However, the
estimation results might not match results from previous releases. To perform estimation using the
previous estimation algorithm, append '-R2016a' to the syntax.

For example, suppose that you are estimating a transfer function model with np poles using the
frequency-domain data data.

sys = tfest(data,np)

To use the previous estimation algorithm, use the following syntax.

sys = tfest(data,np,'-R2016a')

1 Functions

1-1928

References
[1] Garnier, H., M. Mensler, and A. Richard. “Continuous-Time Model Identification from Sampled

Data: Implementation Issues and Performance Evaluation.” International Journal of Control
76, no. 13 (January 2003): 1337–57. https://doi.org/10.1080/0020717031000149636.

[2] Ljung, Lennart. “Experiments with Identification of Continuous Time Models.” IFAC Proceedings
Volumes 42, no. 10 (2009): 1175–80. https://doi.org/10.3182/20090706-3-FR-2004.00195.

[3] Young, Peter, and Anthony Jakeman. “Refined Instrumental Variable Methods of Recursive Time-
Series Analysis Part III. Extensions.” International Journal of Control 31, no. 4 (April 1980):
741–64. https://doi.org/10.1080/00207178008961080.

[4] Drmač, Z., S. Gugercin, and C. Beattie. “Quadrature-Based Vector Fitting for Discretized H2
Approximation.” SIAM Journal on Scientific Computing 37, no. 2 (January 2015): A625–52.
https://doi.org/10.1137/140961511.

[5] Ozdemir, Ahmet Arda, and Suat Gumussoy. “Transfer Function Estimation in System Identification
Toolbox via Vector Fitting.” IFAC-PapersOnLine 50, no. 1 (July 2017): 6232–37. https://doi.org/
10.1016/j.ifacol.2017.08.1026.

See Also
tfestOptions | idtf | timetable | ssest | procest | ar | arx | oe | bj | polyest | greyest

Topics
“Estimate Transfer Function Models at the Command Line”
“Estimate Transfer Function Models with Transport Delay to Fit Given Frequency-Response Data”
“Estimate Transfer Function Models with Prior Knowledge of Model Structure and Constraints”
“Apply Initial Conditions When Simulating Identified Linear Models”
“Troubleshoot Frequency-Domain Identification of Transfer Function Models”
“What are Transfer Function Models?”
“Regularized Estimates of Model Parameters”
“Estimating Models Using Frequency-Domain Data”

 tfest

1-1929

tfestOptions
Option set for tfest

Description
Use a tfestOptions object to specify options for estimating transfer function models using the
tfest function. You can specify options such as the estimation objective, the handling of initial
conditions, and the numerical search method to be used in estimation.

Creation
Syntax
opt = tfestOptions
opt = tfestOptions(Name,Value)

Description

opt = tfestOptions creates the default option set for estimating a transfer function model using
tfest. To modify the properties of this option set for your specific application, use dot notation.

opt = tfestOptions(Name,Value) creates an option set with properties specified using one or
more name-value arguments.

Properties
InitializeMethod — Algorithm used to initialize numerator and denominator
'iv' (default) | 'svf' | 'gpmf' | 'n4sid' | 'all'

Algorithm used to initialize the values of the numerator and denominator of the output of tfest,
specified as one of the following values:

• 'iv' — Instrument Variable approach.
• 'svf' — State Variable Filters approach.
• 'gpmf' — Generalized Poisson Moment Functions approach.
• 'n4sid' — Subspace state-space estimation approach.
• 'all' — Combination of all of the preceding approaches. The software tries all these methods

and selects the method that yields the smallest value of the prediction error norm.

This property is applicable only for estimation of continuous-time transfer functions using time-
domain data

InitializeOptions — Option set for initialization algorithm
structure

Option set for the initialization algorithm used to initialize the values of the numerator and
denominator of the output of tfest, specified as a structure with the fields in the following table.

1 Functions

1-1930

Field Name Description Default
N4Weight Calculates the weighting matrices used in the singular-value

decomposition step of the 'n4sid' algorithm. Applicable when
InitializeMethod is 'n4sid'. Options are shown in the following
table.

Option Description
'MOESP' Uses the MOESP (Multivariable Output

Error State Space) algorithm by
Verhaegen.

'CVA' Uses the canonical variate algorithm
(CVA) by Larimore.

'SSARX' A subspace identification method that
uses an ARX-estimation-based algorithm
to compute the weighting.

Specifying this option allows unbiased
estimates when using data that is
collected in closed-loop operation. For
more information about the algorithm,
see [6].

'auto' The software automatically determines if
the MOESP algorithm or the CVA
algorithm is used in the singular-value
decomposition step.

'auto'

N4Horizon Determines the forward and backward prediction horizons used by
the 'n4sid' algorithm. Applicable when InitializeMethod is
'n4sid'.

N4Horizon is a row vector with three elements, [r sy su], where:

• r is the maximum forward prediction horizon. The algorithm uses
up to r step-ahead predictors.

• sy is the number of past outputs.
• su is the number of past inputs that are used for the predictions.

See pages 209 and 210 in [1] for more information. These numbers
can have a substantial influence on the quality of the resulting model,
and there are no simple rules for choosing them. Making
'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon'
is tried, and the value that gives the best (prediction) fit to data is
selected. k is the number of guesses of [r sy su] combinations.

If N4Horizon = 'auto', the software uses the Akaike Information
Criterion (AIC) for the selection of sy and su.

'auto'

 tfestOptions

1-1931

Field Name Description Default
FilterTimeCon
stant

Time constant of the differentiating filter used by the iv, svf, and
gpmf initialization methods (see [4] and [5]).

FilterTimeConstant specifies the cutoff frequency of the
differentiating filter, Fcutoff, as:

Fcutof f = FilterTimeConstant
Ts

Ts is the sample time of the estimation data.

Specify FilterTimeConstant as a positive number, typically less
than 1. A good value of FilterTimeConstant is the ratio of Ts to the
dominating time constant of the system.

0.1

MaxIterations Maximum number of iterations. Applicable when InitializeMethod
is 'iv'.

30

Tolerance Convergence tolerance. Applicable when InitializeMethod is
'iv'.

0.01

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate' | 'backcast'

Handling of initial conditions during estimation, specified as one of the following values:

• 'zero' — All initial conditions are taken as zero.
• 'estimate' — The necessary initial conditions are treated as estimation parameters.
• 'backcast' — The necessary initial conditions are estimated by a backcasting (backward
filtering) process, described in [2].

• 'auto' — An automatic choice among the preceding options is made, guided by the data.

WeightingFilter — Weighting prefilter
[] (default) | vector | matrix | cell array | linear system | 'inv' | 'invsqrt'

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the values in the following table.

Value Description
[] No weighting prefilter is used.

1 Functions

1-1932

Value Description
Passbands Specify a row vector or matrix containing frequency values that define desired

passbands. You select a frequency band where the fit between estimated model
and estimation data is optimized. For example, specify [wl,wh], where wl and
wh represent lower and upper limits of a passband. For a matrix with several
rows defining frequency passbands, [w1l,w1h;w2l,w2h;w3l,w3h;...], the
estimation algorithm uses the union of the frequency ranges to define the
estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in
FrequencyUnit for frequency-domain data, where TimeUnit and
FrequencyUnit are the time and frequency units of the estimation data.

SISO filter Specify a single-input-single-output (SISO) linear filter in one of the following
ways:

• A SISO LTI model
• {A,B,C,D} format, which specifies the state-space matrices of a filter with

the same sample time as the estimation data.
• {numerator,denominator} format, which specifies the numerator and

denominator of the filter as a transfer function with the same sample time
as the estimation data.

This option calculates the weighting function as a product of the filter and
the input spectrum to estimate the transfer function.

Weighting vector Applicable for frequency-domain data only. Specify a column vector of weights.
This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by
the corresponding weight at that frequency.

'inv' Applicable for estimation using frequency-response data only. Use 1/ G(ω) as
the weighting filter, where G(ω) is the complex frequency-response data. Use
this option for capturing relatively low amplitude dynamics in data, or for
fitting data with high modal density. This option also makes it easier to specify
channel-dependent weighting filters for MIMO frequency-response data.

'invsqrt' Applicable for estimation using frequency-response data only. Use 1/ G(ω) as
the weighting filter. Use this option for capturing relatively low amplitude
dynamics in data, or for fitting data with high modal density. This option also
makes it easier to specify channel-dependent weighting filters for MIMO
frequency-response data.

EnforceStability — Option to enforce stability of model
false (default) | true

Option to enforce stability of the estimated model, specified as true or false.

Use this option when estimating models using frequency-domain data. Models estimated using time-
domain data are always stable.

EstimateCovariance — Option to generate parameter covariance data
true (default) | false

Option to generate parameter covariance data, specified as true or false.

 tfestOptions

1-1933

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Option to display estimation progress
'off' (default) | 'on'

Option to display the estimation progress, specified as one of the following values:

• 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

• 'off' — No progress or results information is displayed.

InputInterSample — Input-channel intersample behavior
'auto' | 'zoh' | 'foh' | 'bl'

Input-channel intersample behavior for transformations between discrete time and continuous time,
specified as 'auto', 'zoh','foh', or 'bl'.

The definitions of the three behavior values are as follows:

• 'zoh' — Zero-order hold maintains a piecewise-constant input signal between samples.
• 'foh' — First-order hold maintains a piecewise-linear input signal between samples.
• 'bl' — Band-limited behavior specifies that the continuous-time input signal has zero power

above the Nyquist frequency.

iddata objects have a similar property, data.InterSample, that contains the same behavior value
options. When the InputInterSample value is 'auto' and the estimation data is in an iddata
object data, the software uses the data.InterSample value. When the estimation data is instead
contained in a timetable or a matrix pair, with the 'auto' option, the software uses 'zoh'.

The software applies the same option value to all channels and all experiments.

InputOffset — Removal of offset from time-domain input data during estimation
[] (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as one of the following:

• A column vector of positive integers of length Nu, where Nu is the number of inputs.
• [] — Indicates no offset.
• Nu-by-Ne matrix — For multi-experiment data, specify InputOffset as an Nu-by-Ne matrix. Nu

is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[] (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as one of the following:

• A column vector of length Ny, where Ny is the number of outputs.
• [] — Indicates no offset.
• Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is

the number of outputs, and Ne is the number of experiments.

1 Functions

1-1934

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weighting of prediction errors in multi-output estimations
[] (default) | 'noise' | positive semidefinite symmetric matrix

Weighting of prediction errors in multi-output estimations, specified as one of the following values:

• 'noise' — Minimize det(E′ * E/N), where E represents the prediction error and N is the number
of data samples. This choice is optimal in a statistical sense and leads to maximum likelihood
estimates if nothing is known about the variance of the noise. It uses the inverse of the estimated
noise variance as the weighting function.

Note OutputWeight must not be 'noise' if SearchMethod is 'lsqnonlin'.
• Positive semidefinite symmetric matrix (W) — Minimize the trace of the weighted prediction error

matrix trace(E'*E*W/N), where:

• E is the matrix of prediction errors, with one column for each output, and W is the positive
semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-output models, or the reliability of corresponding
data.

• N is the number of data samples.
• [] — The software chooses between 'noise' and using the identity matrix for W.

This option is relevant for only multi-output models.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters, specified as a structure with the fields in the
following table. For more information on regularization, see “Regularized Estimates of Model
Parameters”.

Field Name Description Default
Lambda Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the
estimation cost.

The default value of 0 implies no regularization.

0

 tfestOptions

1-1935

Field Name Description Default
R Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-
definite matrix. The length must be equal to the number of free
parameters of the model.

For black-box models, using the default value is recommended. For
structured and grey-box models, you can also specify a vector of np
positive numbers such that each entry denotes the confidence in the
value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where
npfree is the number of free parameters.

1

Nominal The nominal value towards which the free parameters are pulled
during estimation.

The default value of 0 implies that the parameter values are pulled
towards zero. If you are refining a model, you can set the value to
'model' to pull the parameters towards the parameter values of the
initial model. The initial parameter values must be finite for this
setting to work.

0

SearchMethod — Numerical search method used for iterative parameter estimation
'auto' (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsqnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the one of the values
in the following table.

SearchMethod Description
'auto' Automatic method selection

A combination of the line search algorithms, 'gn', 'lm', 'gna', and 'grad',
is tried in sequence at each iteration. The first descent direction leading to a
reduction in estimation cost is used.

'gn' Subspace Gauss-Newton least-squares search

Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J) are discarded when
computing the search direction. J is the Jacobian matrix. The Hessian matrix is
approximated as JTJ. If this direction shows no improvement, the function tries
the gradient direction.

1 Functions

1-1936

SearchMethod Description
'gna' Adaptive subspace Gauss-Newton search

Eigenvalues less than gamma*max(sv) of the Hessian are ignored, where sv
contains the singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more
information). This value is increased by the factor LMStep each time the
search fails to find a lower value of the criterion in fewer than five bisections.
This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'lm' Levenberg-Marquardt least squares search

Each parameter value is -pinv(H+d*I)*grad from the previous value. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a number
that is increased until a lower value of the criterion is found.

'grad' Steepest descent least-squares search
'lsqnonlin' Trust-region-reflective algorithm of lsqnonlin

This algorithm requires Optimization Toolbox software.
'fmincon' Constrained nonlinear solvers

You can use the sequential quadratic programming (SQP) and trust-region-
reflective algorithms of the fmincon solver. If you have Optimization Toolbox
software, you can also use the interior-point and active-set algorithms of the
fmincon solver. Specify the algorithm in the SearchOptions.Algorithm
option. The fmincon algorithms might result in improved estimation results in
the following scenarios:

• Constrained minimization problems when bounds are imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or nonsmooth
function of the parameters.

• Multiple-output model estimation. A determinant loss function is minimized
by default for multiple-output model estimation. fmincon algorithms are
able to minimize such loss functions directly. The other search methods
such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a
given noise variance value. Hence, the fmincon algorithms can offer better
efficiency and accuracy for multiple-output model estimations.

SearchOptions — Option set for search algorithm
search option set

Option set for the search algorithm, specified as a search option set with fields that depend on the
value of SearchMethod.

 tfestOptions

1-1937

SearchOptions Structure When SearchMethod is Specified as 'gn', 'gna', 'lm', 'grad', or
'auto'

Field
Name

Description Default

Toleran
ce

Minimum percentage difference between the current value of the loss
function and its expected improvement after the next iteration, specified as
a positive scalar. When the percentage of expected improvement is less
than Tolerance, the iterations stop. The estimate of the expected loss-
function improvement at the next iteration is based on the Gauss-Newton
vector computed for the current parameter value.

0.01

MaxIter
ations

Maximum number of iterations during loss-function minimization, specified
as a positive integer. The iterations stop when MaxIterations is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

20

1 Functions

1-1938

Field
Name

Description Default

Advance
d

Advanced search settings, specified as a structure with the following fields.

Field Name Description Default
GnPinvCons
tant

Jacobian matrix singular value threshold, specified as a
positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethod is 'gn'.

10000

InitialGna
Tolerance

Initial value of gamma, specified as a positive scalar.
Applicable when SearchMethod is 'gna'.

0.0001

LMStartVal
ue

Starting value of search-direction length d in the
Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm'.

0.001

LMStep Size of the Levenberg-Marquardt step, specified as a
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is 'lm'.

2

MaxBisecti
ons

Maximum number of bisections used for line search along
the search direction, specified as a positive integer.

25

MaxFunctio
nEvaluatio
ns

Maximum number of calls to the model file, specified as a
positive integer. Iterations stop if the number of calls to
the model file exceeds this value.

Inf

MinParamet
erChange

Smallest parameter update allowed per iteration,
specified as a nonnegative scalar.

0

RelativeIm
provement

Relative improvement threshold, specified as a
nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.

0

StepReduct
ion

Step reduction factor, specified as a positive scalar that is
greater than 1. The suggested parameter update is
reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for a SearchMethod of
'lm' (Levenberg-Marquardt method).

2

 tfestOptions

1-1939

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin'

Field
Name

Description Default

Function
Toleranc
e

Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values,
specified as a positive scalar.

The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.

1e-5

StepTole
rance

Termination tolerance on the estimated parameter values,
specified as a positive scalar.

The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.

1e-6

MaxItera
tions

Maximum number of iterations during loss-function
minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.

The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.

20

1 Functions

1-1940

SearchOptions Structure When SearchMethod is Specified as 'fmincon'

Field Name Description Default
Algorithm fmincon optimization

algorithm, specified as one of
the following:

• 'sqp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

• 'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

• 'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

• 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

'sqp'

 tfestOptions

1-1941

Field Name Description Default
FunctionTolerance Termination tolerance on the

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

1e-6

StepTolerance Termination tolerance on the
estimated parameter values,
specified as a positive scalar.

1e-6

MaxIterations Maximum number of iterations
during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

100

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the fields in the following table.

Field Name Description Default
ErrorThreshol
d

Error threshold at which to adjust the weight of large errors from
quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the loss function. The standard
deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors, divided by 0.7.
For more information on robust norm choices, see section 15.2 of [1].

An ErrorThreshold value of 0 disables robustification and leads to
a purely quadratic loss function. When estimating with frequency-
domain data, the software sets ErrorThreshold to 0. For time-
domain data that contains outliers, try setting ErrorThreshold to
1.6.

0

MaxSize Maximum number of elements in a segment when input-output data is
split into segments.

MaxSize must be a positive integer value.

250000

1 Functions

1-1942

Field Name Description Default
StabilityThre
shold

Threshold for stability tests.

Field
Name

Description Defaul
t

s Location of the right-most pole.

The software uses s to test the stability of
continuous-time models. A model is considered
stable when its right-most pole is to the left of
s.

0

z Maximum distance of all poles from the origin.

The software uses z to test the stability of
discrete-time models. A model is considered
stable if all poles are within the distance z from
the origin.

1+sqr
t(eps
)

AutoInitThres
hold

Threshold at which to automatically estimate initial conditions.

The software estimates the initial conditions when:

yp, z − ymeas
yp, e− ymeas

> AutoInitThreshold

1.05

Examples

Create Default Options Set for Transfer Function Estimation

opt = tfestOptions;

Specify Options for Transfer Function Estimation

Create an options set for tfest using the 'n4sid' initialization algorithm and set the Display to
'on'.

opt = tfestOptions('InitializeMethod','n4sid','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = tfestOptions;
opt.InitializeMethod = 'n4sid';
opt.Display = 'on';

Version History
Introduced in R2012b

 tfestOptions

1-1943

InputInterSample option allows intersample behavior specification for continuous models
estimated from timetables or matrices.

iddata objects contain an InterSample property that describes the behavior of the signal between
sample points. The InputInterSample option implements a version of that property in
tfestOptions so that intersample behavior can be specified also when estimation data is stored in
timetables or matrices.

References
[1] Ljung, Lennart. System Identification: Theory for the User. 2nd Ed. Upper Saddle River, NJ:

Prentice-Hall PTR, 1999.

[2] Knudsen, T. "A New method for estimating ARMAX models," IFAC Proceedings Volumes 27, no. 8
(July 1994): 895–901. https://doi.org/10.1016/S1474-6670(17)47823-2.

[3] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates.” IFAC Proceedings Volumes 38, No 1 (2005): 832–837. https://doi.org/
10.3182/20050703-6-CZ-1902.00140.

[4] Garnier, H., M. Mensler, and A. Richard. “Continuous-time Model Identification From Sampled
Data: Implementation Issues and Performance Evaluation” International Journal of Control
76, no 13 (January 2003): 1337–57. https://doi.org/10.1080/0020717031000149636.

[5] Ljung, Lennart. “Experiments With Identification of Continuous-Time Models.” IFAC Proceedings
Volumes 42, no. 10 (2009):1175–80. https://doi.org/10.3182/20090706-3-FR-2004.00195.

[6] Jansson, Magnus. “Subspace identification and ARX modeling.” IFAC Proceedings Volumes 36 no.
16 (September 2003): 1585–90. https://doi.org/10.1016/S1474-6670(17)34986-8

See Also
tfest

Topics
“Loss Function and Model Quality Metrics”

1 Functions

1-1944

https://doi.org/10.3182/20050703-6-CZ-1902.00140
https://doi.org/10.3182/20050703-6-CZ-1902.00140
https://doi.org/10.1080/0020717031000149636
https://doi.org/10.3182/20090706-3-FR-2004.00195

timeoptions
Create list of time plot options

Description
Use the timeoptions command to create a TimeOptions object to customize time plot appearance.
You can also use the command to override the plot preference settings in the MATLAB session in
which you create the time plots.

Creation

Syntax
plotoptions = timeoptions
plotoptions = timeoptions('cstprefs')

Description

plotoptions = timeoptions returns a list of available options for time plots with default values
set. You can use these options to customize the time plot appearance from the command line.

plotoptions = timeoptions('cstprefs') initializes the plot options with options you selected
in the Control System Toolbox and System Identification Toolbox Preferences Editor. For more
information about the editor, see “Toolbox Preferences Editor”. This syntax is useful when you want
to change a few plot options but otherwise use your default preferences. A script that uses this syntax
may generate results that look different when run in a session with different preferences.

Properties
Normalize — Toggle response normalization
'off' (default) | 'on'

Toggle response normalization, specified as either 'on' or 'off'.

SettleTimeThreshold — Settling time threshold
0.02 (default) | positive scalar

Settling time threshold, specified as a positive scalar between values 0 and 1.

RiseTimeLimits — Rise time limits
[0.1,0.9] (default) | two-element vector of the form [min,max]

Rise time limits between the values of 0 and 1, specified as a two-element vector of the form
[min,max].

TimeUnits — Time units
'seconds' (default)

 timeoptions

1-1945

Time units, specified as one of the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

You can also specify 'auto' which uses time units specified in the TimeUnit property of the input
system. For multiple systems with different time units, the units of the first system is used.

ConfidenceRegionNumberSD — Number of standard deviations to use to plot the confidence
region
1 (default) | scalar

Number of standard deviations to use to plot the confidence region, specified as a scalar. This is
applicable to identified models only.

IOGrouping — Grouping of input-output pairs
'none' (default) | 'inputs' | 'outputs' | 'all'

Grouping of input-output (I/O) pairs, specified as one of the following:

• 'none' — No input-output grouping.
• 'inputs' — Group only the inputs.
• 'outputs' — Group only the outputs.
• 'all' — Group all the I/O pairs.

InputLabels — Input label style
structure (default)

Input label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet
[0.4,0.4,0.4].

• Interpreter — Text interpreter, specified as one of these values:

1 Functions

1-1946

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

OutputLabels — Output label style
structure (default)

Output label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet
[0.4,0.4,0.4].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

InputVisible — Toggle display of inputs
{'on'} (default) | {'off'}

Toggle display of inputs, specified as either {'on'} or {'off'}.

OutputVisible — Toggle display of outputs
{'on'} (default) | {'off'}

Toggle display of outputs, specified as either {'on'} or {'off'}.

Title — Title text and style
structure (default)

Title text and style, specified as a structure with the following fields:

• String — Label text, specified as a character vector. By default, the plot is titled 'Time Response'.
• FontSize — Font size, specified as a scalar value greater than zero in point units. The default

font size depends on the specific operating system and locale. One point equals 1/72 inch.
• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the

FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

 timeoptions

1-1947

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

XLabel — X-axis label text and style
structure (default)

X-axis label text and style, specified as a structure with the following fields:

• String — Label text, specified as a character vector. By default, the axis is titled 'Time'.
• FontSize — Font size, specified as a scalar value greater than zero in point units. The default

font size depends on the specific operating system and locale. One point equals 1/72 inch.
• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the

FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

YLabel — Y-axis label text and style
structure (default)

Y-axis label text and style, specified as a structure with the following fields:

• String — Label text, specified as a cell array of character vectors. By default, the axis is titled
'Amplitude'.

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

• Interpreter — Text interpreter, specified as one of these values:

• 'tex' — Interpret characters using a subset of TeX markup. This is the default value of
Interpreter.

1 Functions

1-1948

• 'latex' — Interpret characters using LaTeX markup.
• 'none' — Display literal characters.

TickLabel — Tick label style
structure (default)

Tick label style, specified as a structure with the following fields:

• FontSize — Font size, specified as a scalar value greater than zero in point units. The default
font size depends on the specific operating system and locale. One point equals 1/72 inch.

• FontWeight — Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the
FontWeight property to select a font from those available on your system. Not all fonts have a
bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.

• FontAngle — Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font
styles. Therefore, the italic font might look the same as the normal font.

• Color — Text color, specified as an RGB triplet. The default color is black specified by the RGB
triplet [0,0,0].

Grid — Toggle grid display
'off' (default) | 'on'

Toggle grid display on the plot, specified as either 'off' or 'on'.

GridColor — Color of the grid lines
[0.15,0.15,0.15] (default) | RGB triplet

Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB
triplet [0.15,0.15,0.15].

XLimMode — X-axis limit selection mode
'auto' (default) | 'manual'

Selection mode for the x-axis limits, specified as one of these values:

• 'auto' — Enable automatic limit selection, which is based on the total span of the plotted data.
• 'manual' — Manually specify the axis limits. To specify the axis limits, set the XLim property.

YLimMode — Y-axis limit selection mode
'auto' (default) | 'manual'

Selection mode for the y-axis limits, specified as one of these values:

• 'auto' — Enable automatic limit selection, which is based on the total span of the plotted data.
• 'manual' — Manually specify the axis limits. To specify the axis limits, set the YLim property.

XLim — X-axis limits
'{[1,10]}' (default) | cell array of two-element vector of the form [min,max]

X-axis limits, specified as a cell array of two-element vector of the form [min,max].

YLim — Y-axis limits
'{[1,10]}' (default) | cell array of two-element vector of the form [min,max]

Y-axis limits, specified as a cell array of two-element vector of the form [min,max].

 timeoptions

1-1949

Object Functions
getoptions Return plot options handle or plot options property
impulseplot Plot impulse response with additional plot customization options
initialplot Plot initial condition response with additional plot customization options
lsimplot Plot simulated time response of dynamic system to arbitrary inputs with additional plot

customization options
setoptions Set plot options handle or plot options property
stepplot Plot step response with additional plot customization options

Examples

Plot Normalized Step Response

Create a default time options set.

opt = timeoptions;

Enable plotting of normalized responses.

opt.Normalize = 'on';

Plot the step response of two transfer function models using the specified options.

sys1 = tf(10,[1,1]);
sys2 = tf(5,[1,5]);
stepplot(sys1,sys2,opt);

1 Functions

1-1950

The plot shows the normalized step response for the two transfer function models.

Customize Step Plot using Plot Handle

For this example, use the plot handle to change the time units to minutes and turn on the grid.

Generate a random state-space model with 5 states and create the step response plot with plot
handle h.

rng("default")
sys = rss(5);
h = stepplot(sys);

Change the time units to minutes and turn on the grid. To do so, edit properties of the plot handle, h
using setoptions.

setoptions(h,'TimeUnits','minutes','Grid','on');

The step plot automatically updates when you call setoptions.

Alternatively, you can also use the timeoptions command to specify the required plot options. First,
create an options set based on the toolbox preferences.

plotoptions = timeoptions('cstprefs');

 timeoptions

1-1951

Change properties of the options set by setting the time units to minutes and enabling the grid.

plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
stepplot(sys,plotoptions);

You can use the same option set to create multiple step plots with the same customization. Depending
on your own toolbox preferences, the plot you obtain might look different from this plot. Only the
properties that you set explicitly, in this example TimeUnits and Grid, override the toolbox
preferences.

Customized Step Response Plot at Specified Time

For this example, examine the step response of the following zero-pole-gain model and limit the step
plot to tFinal = 15 s. Use 15-point blue text for the title. This plot should look the same, regardless
of the preferences of the MATLAB session in which it is generated.

sys = zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]);
tFinal = 15;

First, create a default options set using timeoptions.

plotoptions = timeoptions;

Next change the required properties of the options set plotoptions.

1 Functions

1-1952

plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];

Now, create the step response plot using the options set plotoptions.

h = stepplot(sys,tFinal,plotoptions);

Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox
preferences of the MATLAB session.

Custom Plot of System Evolution from Initial Condition

By default, lsimplot simulates the model assuming all states are zero at the start of the simulation.
When simulating the response of a state-space model, use the optional x0 input argument to specify
nonzero initial state values. Consider the following two-state SISO state-space model.

A = [-1.5 -3;
 3 -1];
B = [1.3; 0];
C = [1.15 2.3];
D = 0;
sys = ss(A,B,C,D);

 timeoptions

1-1953

Suppose that you want to allow the system to evolve from a known set of initial states with no input
for 2 s, and then apply a unit step change. Specify the vector x0 of initial state values, and create the
input vector.

x0 = [-0.2 0.3];
t = 0:0.05:8;
u = zeros(length(t),1);
u(t>=2) = 1;

First, create a default options set using timeoptions.

plotoptions = timeoptions;

Next change the required properties of the options set plotoptions and plot the simulated
response with the zero order hold option.

plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];
plotoptions.Grid = 'on';
h = lsimplot(sys,u,t,x0,plotoptions,'zoh');
hold on
title('Simulated Time Response with Initial Conditions')

The first half of the plot shows the free evolution of the system from the initial state values [-0.2
0.3]. At t = 2 there is a step change to the input, and the plot shows the system response to this
new signal beginning from the state values at that time. Because plotoptions begins with a fixed
set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

1 Functions

1-1954

Customized Plot of Simulated Response to Arbitrary Input Signal

For this example, change time units to minutes and turn the grid on for the simulated response plot.
Consider the following transfer function.

sys = tf(3,[1 2 3]);

To compute the response of this system to an arbitrary input signal, provide lsimplot with a vector
of the times t at which you want to compute the response and a vector u containing the
corresponding signal values. For instance, plot the system response to a ramping step signal that
starts at 0 at time t = 0, ramps from 0 at t = 1 to 1 at t = 2, and then holds steady at 1. Define t
and compute the values of u.

t = 0:0.04:8;
u = max(0,min(t-1,1));

Use lsimplot plot the system response to the signal with a plot handle h.

h = lsimplot(sys,u,t);

The plot shows the applied input (u,t) in gray and the system response in blue.

Use the plot handle to change the time units to minutes and to turn the grid on. To do so, edit
properties of the plot handle, h using setoptions.

 timeoptions

1-1955

setoptions(h,'TimeUnits','minutes','Grid','on')

The plot automatically updates when you call setoptions.

Alternatively, you can also use the timeoptions command to specify the required plot options. First,
create an options set based on the toolbox preferences.

plotoptions = timeoptions('cstprefs');

Change properties of the options set by setting the time units to minutes and enabling the grid.

plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
lsimplot(sys,u,t,plotoptions);

1 Functions

1-1956

Version History
Introduced in R2012a

See Also
getoptions | impulseplot | initialplot | lsimplot | setoptions | stepplot

Topics
“Toolbox Preferences Editor”

 timeoptions

1-1957

totaldelay
Total combined I/O delays for LTI model

Syntax
td = totaldelay(sys)

Description
td = totaldelay(sys) returns the total combined I/O delays for an LTI model sys. The matrix td
combines contributions from the InputDelay, OutputDelay, and ioDelayMatrix properties.

Delays are expressed in seconds for continuous-time models, and as integer multiples of the sample
period for discrete-time models. To obtain the delay times in seconds, multiply td by the sample time
sys.Ts.

Examples

Compute Combined Input-Output Delay for Transfer Function

Create the transfer function model, 1/s.

sys = tf(1,[1 0]);

Specify a 2 second input delay, and a 1.5 second output delay.

sys.InputDelay = 2;
sys.Outputdelay = 1.5;

Compute the combined input-output delay for sys.

td = totaldelay(sys)

td = 3.5000

The resulting transfer function has the following form:

e−2sx1
s e−1 . 5s = e−3 . 5s1

s

This result is equivalent to specifying an input-output delay of 3.5 seconds for the original transfer
function, 1/s.

Version History
Introduced in R2012a

1 Functions

1-1958

See Also
absorbDelay | hasdelay

 totaldelay

1-1959

translatecov
Translate parameter covariance across model transformation operations

Syntax
sys_new = translatecov(fcn,sys)
sys_new = translatecov(fcn,Input1,...,InputN)

Description
sys_new = translatecov(fcn,sys) transforms sys into sys_new = fcn(sys), and translates
the parameter covariance of sys to the parameter covariance of the transformed model. fcn is a
transformation function that you specify. The command computes the parameter covariance of
sys_new by applying the Gauss Approximation formula. To view the translated parameter covariance,
use getcov.

Applying model transformations directly does not always translate the parameter covariance of the
original model to that of the transformed model. For example, d2c(sys) does not translate the
parameter covariance of sys. In contrast, translatecov(@(x)d2c(x),sys) produces a
transformed model that has the same coefficients as d2c(sys) and has the translated parameter
covariance of sys.

sys_new = translatecov(fcn,Input1,...,InputN) returns the model sys_new =
fcn(Input1,...,InputN) and its parameter covariance. At least one of the N inputs must be a
linear model with parameter covariance information.

Input Arguments
fcn

Model transformation function, specified as a function handle.

For single-input functions, sys_new = fcn(sys). The input to fcn must be an identified model with
parameter covariance information. Typical single-input transformation operations include:

• Model-type conversion, such as idpoly and idss. For example, fcn = @(x)idpoly(x)
converts the model x to a polynomial model.

• Sample time conversion, such as c2d and d2c. For example, fcn = @(x)c2d(x,Ts) converts
the continuous-time model x to discrete-time using the specified sample time Ts.

For multi-input functions, sys_new = fcn(Input1,..InputN). At least one of the input arguments
Input1,...,InputN must be an identified model with parameter covariance information. Typical
multi-input operations include merging and concatenation of multiple models. For example, fcn =
@(x,y)[x,y] performs horizontal concatenation of the models x and y.

sys

Linear model with parameter covariance information, specified as one of the following model types:

1 Functions

1-1960

• idtf
• idproc
• idss
• idpoly
• idgrey

The model must contain parameter covariance information, that is getcov(sys) must be nonempty.

Input1,...,InputN

Multiple input arguments to the translation function fcn. At least one of the N inputs must be a linear
identified model with parameter covariance information. The other inputs can be any MATLAB data
type. For an example, see “Translate Parameter Covariance to Closed-Loop Model” on page 1-1964.

Output Arguments
sys_new

Model resulting from transformation operation. The model includes parameter covariance
information.

Examples

Translate Parameter Covariance During Model Conversion

Convert an estimated transfer function model into state-space model while also translating the
estimated parameter covariance.

Estimate a transfer function model.

load iddata1
sys1 = tfest(z1,2);

Convert the estimated model to state-space form while also translating the estimated parameter
covariance.

sys2 = translatecov(@(x)idss(x),sys1);

If you convert the transfer function model to state-space form directly, the estimated parameter
covariance is lost (the output of getcov is empty).

sys3 = idss(sys1);
getcov(sys3)

ans =

 []

View the parameter covariance in the estimated and converted models.

covsys1 = getcov(sys1);
covsys2 = getcov(sys2);

 translatecov

1-1961

Compare the confidence regions.

h = bodeplot(sys1,sys2);
showConfidence(h,2);

The confidence bounds for sys1 overlaps with sys2.

Translate Parameter Covariance During Model Concatenation

Concatenate 3 single-output models such that the covariance data from the 3 models combine to
produce the covariance data for the resulting model.

Construct a state-space model.

a = [-1.1008 0.3733;0.3733 -0.9561];
b = [0.7254 0.7147;-0.0631 -0.2050];
c = [-0.1241 0; 1.4897 0.6715; 1.4090 -1.2075];
d = [0 1.0347; 1.6302 0; 0.4889 0];
sys = idss(a,b,c,d,'Ts',0);

Generate multi-output estimation data.

t = (0:0.01:0.99)';
u = randn(100,2);
y = lsim(sys,u,t,'zoh');

1 Functions

1-1962

y = y + rand(size(y))/10;
data = iddata(y,u,0.01);

Estimate a separate model for each output signal.

m1 = ssest(data(:,1,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'none');
m2 = ssest(data(:,2,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'none');
m3 = ssest(data(:,3,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'none');

Combine the estimated models while also translating the covariance information.

f = @(x,y,z)[x;y;z];
M2 = translatecov(f, m1, m2, m3);

The parameter covariance is not empty.

getcov(M2, 'factors')

ans = struct with fields:
 R: [36x36 double]
 T: [24x36 double]
 Free: [90x1 logical]

If you combine the estimated models into one 3-output model directly, the covariance information is
lost (the output of getcov is empty).

M1 = [m1;m2;m3];
getcov(M1)

ans =

 []

Compare the confidence bounds.

h = bodeplot(M2, m1, m2, m3);
showConfidence(h);

 translatecov

1-1963

The confidence bounds for M2 overlap with those of m1, m2 and m3 models on their respective plot
axes.

Translate Parameter Covariance to Closed-Loop Model

Consider a closed-loop feedback model consisting of a plant and controller. Translate the parameter
covariance of the plant to the closed-loop feedback model.

Estimate a plant as a fourth-order state-space model using estimation data z1.

load iddata1 z1
Plant = ssest(z1,4);

Plant contains parameter covariance information.

Create a controller as a continuous-time zero-pole-gain model with zeros, poles, and gain equal to -2,
-10, 5, respectively.

Controller = zpk(-2,-10,5);

Define a transformation function to generate the closed-loop feedback state-space model.

fcn = @(x,y)idss(feedback(x,y));

Translate the parameter covariance of the plant to the closed-loop feedback model.

1 Functions

1-1964

sys_new = translatecov(fcn,Plant,Controller);

sys_new contains the translated parameter covariance information.

Plot the frequency-response of the transformed model sys_new, and view the confidence region of
the response.

h = bodeplot(sys_new);
showConfidence(h);

The plot shows the effect of the uncertainty in Plant on the closed-loop response.

Tips
• If you obtained sys through estimation and have access to the estimation data, you can use zero-

iteration update to recompute the parameter covariance. For example:

load iddata1
m = ssest(z1,4);
opt = ssestOptions
opt.SearchOptions.MaxIterations = 0;
m_new = ssest(z1,m2,opt)

You cannot run a zero-iteration update in the following cases:

 translatecov

1-1965

• If MaxIterations option, which depends on the SearchMethod option, is not available.
• For some model and data types. For example, a continuous-time idpoly model using time-

domain data.

Algorithms
translatecov uses numerical perturbations of individual parameters of sys to compute the
Jacobian of fcn(sys) parameters with respect to parameters of sys. translatecov then applies
Gauss Approximation formula cov_new = J × cov× JT to translate the covariance, where J is the
Jacobian matrix. This operation can be slow for models containing a large number of free parameters.

Version History
Introduced in R2012b

See Also
getcov | setcov | getpvec | rsample

Topics
“What Is Model Covariance?”
“Types of Model Uncertainty Information”

1 Functions

1-1966

TrendInfo
Offset and linear trend slope values for detrending data

Description
TrendInfo class represents offset and linear trend information of input and output data.
Constructing the corresponding object lets you:

• Compute and store mean values or best-fit linear trends of input and output data signals.
• Define specific offsets and trends to be removed from input-output data.

By storing offset and trend information, you can apply it to multiple data sets.

After estimating a linear model from detrended data, you can simulate the model at original operation
conditions by adding the saved trend to the simulated output using retrend.

Construction
For transient data, if you want to define a specific offset or trend to be removed from this data, create
the TrendInfo object using getTrend. For example:

T = getTrend(data)

where data is the iddata object from which you will be removing the offset or linear trend, and T is
the TrendInfo object. You must then assign specific offset and slope values as properties of this
object before passing the object as an argument to detrend.

For steady-state data, if you want to detrend the data and store the trend information, use the
detrend command with the output argument for storing trend information.

Properties
After creating the object, you can use get or dot notation to access the object property values.

Property Name Default Description
DataName '' Name of the iddata object from which trend information is

derived (if any)
InputOffset zeros(1,nu), where nu

is the number of inputs
• For transient data, the physical equilibrium offset you

specify for each input signal.
• For steady-state data, the mean of input values. Computed

automatically when detrending the data.
• If removing a linear trend from the input-output data, the

value of the line at t0, where t0 is the start time.

For multiple experiment data, this is a cell array of size equal to
the number of experiments in the data set.

 TrendInfo

1-1967

Property Name Default Description
InputSlope zeros(1,nu), where nu

is the number of inputs
Slope of linear trend in input data, computed automatically
when using the detrend command to remove the linear trend
in the data.

For multiple experiment data, this is a cell array of size equal to
the number of experiments in the data set.

OutputOffset zeros(1,ny), where ny
is the number of outputs

• For transient data, the physical equilibrium offset you
specify for each output signal

• For steady-state data, the mean of output values. Computed
automatically when detrending the data.

• If removing a linear trend from the input-output data, the
value of the line at t0, where t0 is the start time.

For multiple experiment data, this is a cell array of size equal to
the number of experiments in the data set.

OutputSlope zeros(1,ny), where ny
is the number of outputs

Slope of linear trend in output data, computed automatically
when using the detrend command to remove the linear trend
in the data.

For multiple experiment data, this is a cell array of size equal to
the number of experiments in the data set.

Examples

Remove Offsets from Data

Remove a specified offset from input and output signals.

Load SISO data containing vectors u2 and y2.

load dryer2

Create a data object with a sample time of 0.08 seconds and plot it.

data = iddata(y2,u2,0.08);
plot(data)

1 Functions

1-1968

The data has a nonzero mean value.

Store the data offset and trend information in a TrendInfo object.

T = getTrend(data);

Assign offset values to the TrendInfo object.

T.InputOffset = 5;
T.OutputOffset = 5;

Subtract the offsets from the data.

data_d = detrend(data,T);

Plot the detrended data on the same plot.

hold on
plot(data_d)

 TrendInfo

1-1969

View the mean value removed from the data.

get(T)

ans = struct with fields:
 DataName: 'data'
 InputOffset: 5
 OutputOffset: 5
 InputSlope: 0
 OutputSlope: 0

Store Trend Information

Construct the TrendInfo object that stores trend information as part of data detrending.

Load SISO data containing vectors u2 and y2.

load dryer2

Create data object with sample time of 0.08 seconds.

data = iddata(y2,u2,0.08);

Detrend the mean from the data and store the mean as a TrendInfo object T.

1 Functions

1-1970

[data_d,T] = detrend(data,0);

View the mean value removed from the data.

get(T)

ans = struct with fields:
 DataName: 'data'
 InputOffset: 5.0000
 OutputOffset: 4.8901
 InputSlope: 0
 OutputSlope: 0

Version History
Introduced in R2009a

See Also
detrend | getTrend | retrend

Topics
“Handling Offsets and Trends in Data”

 TrendInfo

1-1971

unscentedKalmanFilter
Create unscented Kalman filter object for online state estimation

Syntax
obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState)
obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState,
Name,Value)

obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn)
obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,Name,Value)
obj = unscentedKalmanFilter(Name,Value)

Description
obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState)
creates an unscented Kalman filter object for online state estimation of a discrete-time nonlinear
system. StateTransitionFcn is a function that calculates the state of the system at time k, given
the state vector at time k-1. MeasurementFcn is a function that calculates the output measurement
of the system at time k, given the state at time k. InitialState specifies the initial value of the
state estimates.

After creating the object, use the correct and predict commands to update state estimates and
state estimation error covariance values using a discrete-time unscented Kalman filter algorithm and
real-time data.

obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState,
Name,Value) specifies additional attributes of the unscented Kalman filter object using one or more
Name,Value pair arguments.

obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn) creates an
unscented Kalman filter object using the specified state transition and measurement functions. Before
using the predict and correct commands, specify the initial state values using dot notation. For
example, for a two-state system with initial state values [1;0], specify obj.State = [1;0].

obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,Name,Value)
specifies additional attributes of the unscented Kalman filter object using one or more Name,Value
pair arguments. Before using the predict and correct commands, specify the initial state values
using Name,Value pair arguments or dot notation.

obj = unscentedKalmanFilter(Name,Value) creates an unscented Kalman filter object with
properties specified using one or more Name,Value pair arguments. Before using the predict and
correct commands, specify the state transition function, measurement function, and initial state
values using Name,Value pair arguments or dot notation.

Object Description
unscentedKalmanFilter creates an object for online state estimation of a discrete-time nonlinear
system using the discrete-time unscented Kalman filter algorithm.

1 Functions

1-1972

Consider a plant with states x, input u, output y, process noise w, and measurement noise v. Assume
that you can represent the plant as a nonlinear system.

The algorithm computes the state estimates x of the nonlinear system using state transition and
measurement functions specified by you. The software lets you specify the noise in these functions as
additive or nonadditive:

• Additive Noise Terms — The state transition and measurements equations have the following
form:

x[k] = f (x[k− 1], us[k− 1]) + w[k− 1]
y[k] = h(x[k], um[k]) + v[k]

Here f is a nonlinear state transition function that describes the evolution of states x from one
time step to the next. The nonlinear measurement function h relates x to the measurements y at
time step k. w and v are the zero-mean, uncorrelated process and measurement noises,
respectively. These functions can also have additional input arguments that are denoted by us and
um in the equations. For example, the additional arguments could be time step k or the inputs u to
the nonlinear system. There can be multiple such arguments.

Note that the noise terms in both equations are additive. That is, x(k) is linearly related to the
process noise w(k-1), and y(k) is linearly related to the measurement noise v(k).

• Nonadditive Noise Terms — The software also supports more complex state transition and
measurement functions where the state x[k] and measurement y[k] are nonlinear functions of the
process noise and measurement noise, respectively. When the noise terms are nonadditive, the
state transition and measurements equation have the following form:

x[k] = f (x[k− 1], w[k− 1], us[k− 1])
y[k] = h(x[k], v[k], um[k])

When you perform online state estimation, you first create the nonlinear state transition function f
and measurement function h. You then construct the unscentedKalmanFilter object using these
nonlinear functions, and specify whether the noise terms are additive or nonadditive. After you create
the object, you use the predict command to predict state estimates at the next time step, and
correct to correct state estimates using the unscented Kalman filter algorithm and real-time data.
For information about the algorithm, see “Extended and Unscented Kalman Filter Algorithms for
Online State Estimation”.

You can use the following commands with unscentedKalmanFilter objects:

 unscentedKalmanFilter

1-1973

Command Description
correct Correct the state and state estimation error

covariance at time step k using measured data at
time step k.

predict Predict the state and state estimation error
covariance at time the next time step.

residual Return the difference between the actual and
predicted measurements.

clone Create another object with the same object
property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created in this way
(obj2) also change the properties of the original
object (obj).

For unscentedKalmanFilter object properties, see “Properties” on page 1-1978.

Examples

Create Unscented Kalman Filter Object for Online State Estimation

To define an unscented Kalman filter object for estimating the states of your system, you write and
save the state transition function and measurement function for the system.

In this example, use the previously written and saved state transition and measurement functions,
vdpStateFcn.m and vdpMeasurementFcn.m. These functions describe a discrete-approximation to
van der Pol oscillator with nonlinearity parameter, mu, equal to 1. The oscillator has two states.

Specify an initial guess for the two states. You specify the initial state guess as an M-element row or
column vector, where M is the number of states.

initialStateGuess = [1;0];

Create the unscented Kalman filter object. Use function handles to provide the state transition and
measurement functions to the object.

obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,initialStateGuess);

The object has a default structure where the process and measurement noise are additive.

To estimate the states and state estimation error covariance from the constructed object, use the
correct and predict commands and real-time data.

Specify Process and Measurement Noise Covariances in Unscented Kalman Filter Object

Create an unscented Kalman filter object for a van der Pol oscillator with two states and one output.
Use the previously written and saved state transition and measurement functions, vdpStateFcn.m

1 Functions

1-1974

and vdpMeasurementFcn.m. These functions are written for additive process and measurement
noise terms. Specify the initial state values for the two states as [2;0].

Since the system has two states and the process noise is additive, the process noise is a 2-element
vector and the process noise covariance is a 2-by-2 matrix. Assume there is no cross-correlation
between process noise terms, and both the terms have the same variance 0.01. You can specify the
process noise covariance as a scalar. The software uses the scalar value to create a 2-by-2 diagonal
matrix with 0.01 on the diagonals.

Specify the process noise covariance during object construction.

obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0],...
 'ProcessNoise',0.01);

Alternatively, you can specify noise covariances after object construction using dot notation. For
example, specify the measurement noise covariance as 0.2.

obj.MeasurementNoise = 0.2;

Since the system has only one output, the measurement noise is a 1-element vector and the
MeasurementNoise property denotes the variance of the measurement noise.

Specify Nonadditive Measurement Noise in Unscented Kalman Filter Object

Create an unscented Kalman filter object for a van der Pol oscillator with two states and one output.
Assume that the process noise terms in the state transition function are additive. That is, there is a
linear relation between the state and process noise. Also assume that the measurement noise terms
are nonadditive. That is, there is a nonlinear relation between the measurement and measurement
noise.

obj = unscentedKalmanFilter('HasAdditiveMeasurementNoise',false);

Specify the state transition function and measurement functions. Use the previously written and
saved functions, vdpStateFcn.m and vdpMeasurementNonAdditiveNoiseFcn.m.

The state transition function is written assuming the process noise is additive. The measurement
function is written assuming the measurement noise is nonadditive.

obj.StateTransitionFcn = @vdpStateFcn;
obj.MeasurementFcn = @vdpMeasurementNonAdditiveNoiseFcn;

Specify the initial state values for the two states as [2;0].

obj.State = [2;0];

You can now use the correct and predict commands to estimate the state and state estimation
error covariance values from the constructed object.

Specify Additional Inputs in State Transition and Measurement Functions

Consider a nonlinear system with input u whose state x and measurement y evolve according to the
following state transition and measurement equations:

 unscentedKalmanFilter

1-1975

x[k] = x[k− 1] + u[k− 1] + w[k− 1]

y[k] = x[k] + 2 * u[k] + v[k]2

The process noise w of the system is additive while the measurement noise v is nonadditive.

Create the state transition function and measurement function for the system. Specify the functions
with an additional input u.

f = @(x,u)(sqrt(x+u));
h = @(x,v,u)(x+2*u+v^2);

f and h are function handles to the anonymous functions that store the state transition and
measurement functions, respectively. In the measurement function, because the measurement noise
is nonadditive, v is also specified as an input. Note that v is specified as an input before the
additional input u.

Create an unscented Kalman filter object for estimating the state of the nonlinear system using the
specified functions. Specify the initial value of the state as 1, and the measurement noise as
nonadditive.

obj = unscentedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);

Specify the measurement noise covariance.

obj.MeasurementNoise = 0.01;

You can now estimate the state of the system using the predict and correct commands. You pass
the values of u to predict and correct, which in turn pass them to the state transition and
measurement functions, respectively.

Correct the state estimate with measurement y[k]=0.8 and input u[k]=0.2 at time step k.

correct(obj,0.8,0.2)

Predict the state at next time step, given u[k]=0.2.

predict(obj,0.2)

Input Arguments
StateTransitionFcn — State transition function
function handle

State transition function f, specified as a function handle. The function calculates the Ns-element
state vector of the system at time step k, given the state vector at time step k-1. Ns is the number of
states of the nonlinear system.

You write and save the state transition function for your nonlinear system, and use it to construct the
object. For example, if vdpStateFcn.m is the state transition function, specify
StateTransitionFcn as @vdpStateFcn. You can also specify StateTransitionFcn as a function
handle to an anonymous function.

The inputs to the function you write depend on whether you specify the process noise as additive or
nonadditive in the HasAdditiveProcessNoise property of the object:

1 Functions

1-1976

• HasAdditiveProcessNoise is true — The process noise w is additive, and the state transition
function specifies how the states evolve as a function of state values at the previous time step:

x(k) = f(x(k-1),Us1,...,Usn)

Where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function, such as system inputs or the sample time.
During estimation, you pass these additional arguments to the predict command, which in turn
passes them to the state transition function.

• HasAdditiveProcessNoise is false — The process noise is nonadditive, and the state transition
function also specifies how the states evolve as a function of the process noise:

x(k) = f(x(k-1),w(k-1),Us1,...,Usn)

To see an example of a state transition function with additive process noise, type edit
vdpStateFcn at the command line.

MeasurementFcn — Measurement function
function handle

Measurement function h, specified as a function handle. The function calculates the N-element output
measurement vector of the nonlinear system at time step k, given the state vector at time step k. N is
the number of measurements of the system. You write and save the measurement function, and use it
to construct the object. For example, if vdpMeasurementFcn.m is the measurement function, specify
MeasurementFcn as @vdpMeasurementFcn. You can also specify MeasurementFcn as a function
handle to an anonymous function.

The inputs to the function depend on whether you specify the measurement noise as additive or
nonadditive in the HasAdditiveMeasurementNoise property of the object:

• HasAdditiveMeasurementNoise is true — The measurement noise v is additive, and the
measurement function specifies how the measurements evolve as a function of state values:

y(k) = h(x(k),Um1,...,Umn)

Where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function. For example, if you are
using multiple sensors for tracking an object, an additional input could be the sensor position.
During estimation, you pass these additional arguments to the correct command, which in turn
passes them to the measurement function.

• HasAdditiveMeasurementNoise is false — The measurement noise is nonadditive, and the
measurement function also specifies how the output measurement evolves as a function of the
measurement noise:

y(k) = h(x(k),v(k),Um1,...,Umn)

When you have the HasMeasurementWrapping property enabled, then the output for the
measurement function must also include the wrapping bounds, specified as an N-by-2 matrix where,
the first column provides the minimum measurement bound and the second column provides the
maximum measurement bound. N is the number of measurements of the system.

To see an example of a measurement function with additive process noise, type edit
vdpMeasurementFcn at the command line. To see an example of a measurement function with
nonadditive process noise, type edit vdpMeasurementNonAdditiveNoiseFcn.

 unscentedKalmanFilter

1-1977

InitialState — Initial state estimates
vector

Initial state estimates, specified as an Ns-element vector, where Ns is the number of states in the
system. Specify the initial state values based on your knowledge of the system.

The specified value is stored in the State property of the object. If you specify InitialState as a
column vector then State is also a column vector, and predict and correct commands return
state estimates as a column vector. Otherwise, a row vector is returned.

If you want a filter with single-precision floating-point variables, specify InitialState as a single-
precision vector variable. For example, for a two-state system with state transition and measurement
functions vdpStateFcn.m and vdpMeasurementFcn.m, create the unscented Kalman filter object
with initial states [1;2] as follows:
obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,single([1;2]))

Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 1-1978 of unscentedKalmanFilter
object during object creation. For example, to create an unscented Kalman filter object and specify
the process noise covariance as 0.01:
obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState,'ProcessNoise',0.01);

Properties
unscentedKalmanFilter object properties are of three types:

• Tunable properties that you can specify multiple times, either during object construction using
Name,Value arguments, or any time afterwards during state estimation. After object creation,
use dot notation to modify the tunable properties.
obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState);
obj.ProcessNoise = 0.01;

The tunable properties are State, StateCovariance, ProcessNoise, MeasurementNoise,
Alpha, Beta, and Kappa.

• Nontunable properties that you can specify once, either during object construction or afterward
using dot notion. Specify these properties before state estimation using correct and predict.
The StateTransitionFcn and MeasurementFcn properties belong to this category.

• Nontunable properties that you must specify during object construction. The
HasAdditiveProcessNoise and HasAdditiveMeasurementNoise properties belong to this
category.

Alpha — Spread of sigma points
1e-3 (default) | scalar value between 0 and 1

1 Functions

1-1978

Spread of sigma points around mean state value, specified as a scalar value between 0 and 1 (0 <
Alpha <= 1).

The unscented Kalman filter algorithm treats the state of the system as a random variable with mean
value State and variance StateCovariance. To compute the state and its statistical properties at
the next time step, the algorithm first generates a set of state values distributed around the mean
State value by using the unscented transformation. These generated state values are called sigma
points. The algorithm uses each of the sigma points as an input to the state transition and
measurement functions to get a new set of transformed state points and measurements. The
transformed points are used to compute the state and state estimation error covariance value at the
next time step.

The spread of the sigma points around the mean state value is controlled by two parameters Alpha
and Kappa. A third parameter, Beta, impacts the weights of the transformed points during state and
measurement covariance calculations:

• Alpha — Determines the spread of the sigma points around the mean state value. It is usually a
small positive value. The spread of sigma points is proportional to Alpha. Smaller values
correspond to sigma points closer to the mean state.

• Kappa — A second scaling parameter that is usually set to 0. Smaller values correspond to sigma
points closer to the mean state. The spread is proportional to the square-root of Kappa.

• Beta — Incorporates prior knowledge of the distribution of the state. For Gaussian distributions,
Beta = 2 is optimal.

If you know the distribution of state and state covariance, you can adjust these parameters to capture
the transformation of higher-order moments of the distribution. The algorithm can track only a single
peak in the probability distribution of the state. If there are multiple peaks in the state distribution of
your system, you can adjust these parameters so that the sigma points stay around a single peak. For
example, choose a small Alpha to generate sigma points close to the mean state value.

For more information, see “Unscented Kalman Filter Algorithm”.

Alpha is a tunable property. You can change it using dot notation.

Beta — Characterization of state distribution
2 (default) | scalar value greater than or equal to 0

Characterization of the state distribution that is used to adjust weights of transformed sigma points,
specified as a scalar value greater than or equal to 0. For Gaussian distributions, Beta = 2 is an
optimal choice.

For more information, see the Alpha property description.

Beta is a tunable property. You can change it using dot notation.

HasAdditiveMeasurementNoise — Measurement noise characteristics
true (default) | false

Measurement noise characteristics, specified as one of the following values:

• true — Measurement noise v is additive. The measurement function h that is specified in
MeasurementFcn has the following form:

y(k) = h(x(k),Um1,...,Umn)

 unscentedKalmanFilter

1-1979

Where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function.

• false — Measurement noise is nonadditive. The measurement function specifies how the output
measurement evolves as a function of the state and measurement noise:

y(k) = h(x(k),v(k),Um1,...,Umn)

HasAdditiveMeasurementNoise is a nontunable property, and you can specify it only during object
construction. You cannot change it using dot notation.

HasAdditiveProcessNoise — Process noise characteristics
true (default) | false

Process noise characteristics, specified as one of the following values:

• true — Process noise w is additive. The state transition function f specified in
StateTransitionFcn has the following form:

x(k) = f(x(k-1),Us1,...,Usn)

Where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function.

• false — Process noise is nonadditive. The state transition function specifies how the states
evolve as a function of the state and process noise at the previous time step:

x(k) = f(x(k-1),w(k-1),Us1,...,Usn)

HasAdditiveProcessNoise is a nontunable property, and you can specify it only during object
construction. You cannot change it using dot notation.

Kappa — Spread of sigma points
0 (default) | scalar value between 0 and 3

Spread of sigma points around mean state value, specified as a scalar value between 0 and 3 (0 <=
Kappa <= 3). Kappa is typically specified as 0. Smaller values correspond to sigma points closer to
the mean state. The spread is proportional to the square-root of Kappa. For more information, see the
Alpha property description.

Kappa is a tunable property. You can change it using dot notation.

MeasurementFcn — Measurement function
function handle

Measurement function h, specified as a function handle. The function calculates the N-element output
measurement vector of the nonlinear system at time step k, given the state vector at time step k. N is
the number of measurements of the system. You write and save the measurement function and use it
to construct the object. For example, if vdpMeasurementFcn.m is the measurement function, specify
MeasurementFcn as @vdpMeasurementFcn. You can also specify MeasurementFcn as a function
handle to an anonymous function.

The inputs to the function depend on whether you specify the measurement noise as additive or
nonadditive in the HasAdditiveMeasurementNoise property of the object:

• HasAdditiveMeasurementNoise is true — The measurement noise v is additive, and the
measurement function specifies how the measurements evolve as a function of state values:

1 Functions

1-1980

y(k) = h(x(k),Um1,...,Umn)

Where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function. For example, if you are
using multiple sensors for tracking an object, an additional input could be the sensor position.
During estimation, you pass these additional arguments to the correct command which in turn
passes them to the measurement function.

• HasAdditiveMeasurementNoise is false — The measurement noise is nonadditive, and the
measurement function also specifies how the output measurement evolves as a function of the
measurement noise:

y(k) = h(x(k),v(k),Um1,...,Umn)

When you have the HasMeasurementWrapping property enabled, then the output for the
measurement function must also include the wrapping bounds, specified as an N-by-2 matrix where,
the first column provides the minimum measurement bound and the second column provides the
maximum measurement bound. N is the number of measurements of the system.

To see an example of a measurement function with additive process noise, type edit
vdpMeasurementFcn at the command line. To see an example of a measurement function with
nonadditive process noise, type edit vdpMeasurementNonAdditiveNoiseFcn.

MeasurementFcn is a nontunable property. You can specify it once before using the correct
command either during object construction or using dot notation after object construction. You
cannot change it after using the correct command.

MeasurementNoise — Measurement noise covariance
1 (default) | scalar | matrix

Measurement noise covariance, specified as a scalar or matrix depending on the value of the
HasAdditiveMeasurementNoise property:

• HasAdditiveMeasurementNoise is true — Specify the covariance as a scalar or an N-by-N
matrix, where N is the number of measurements of the system. Specify a scalar if there is no
cross-correlation between measurement noise terms and all the terms have the same variance.
The software uses the scalar value to create an N-by-N diagonal matrix.

• HasAdditiveMeasurementNoise is false — Specify the covariance as a V-by-V matrix, where V
is the number of measurement noise terms. MeasurementNoise must be specified before using
correct. After you specify MeasurementNoise as a matrix for the first time, to then change
MeasurementNoise you can also specify it as a scalar. Specify as a scalar if there is no cross-
correlation between the measurement noise terms and all the terms have the same variance. The
software extends the scalar to a V-by-V diagonal matrix with the scalar on the diagonals.

MeasurementNoise is a tunable property. You can change it using dot notation.

ProcessNoise — Process noise covariance
1 (default) | scalar | matrix

Process noise covariance, specified as a scalar or matrix depending on the value of the
HasAdditiveProcessNoise property:

• HasAdditiveProcessNoise is true — Specify the covariance as a scalar or an Ns-by-Ns matrix,
where Ns is the number of states of the system. Specify a scalar if there is no cross-correlation

 unscentedKalmanFilter

1-1981

between process noise terms, and all the terms have the same variance. The software uses the
scalar value to create an Ns-by-Ns diagonal matrix.

• HasAdditiveProcessNoise is false — Specify the covariance as a W-by-W matrix, where W is
the number of process noise terms. ProcessNoise must be specified before using predict.
After you specify ProcessNoise as a matrix for the first time, to then change ProcessNoise you
can also specify it as a scalar. Specify as a scalar if there is no cross-correlation between the
process noise terms and all the terms have the same variance. The software extends the scalar to
a W-by-W diagonal matrix.

ProcessNoise is a tunable property. You can change it using dot notation.

State — State of nonlinear system
[] (default) | vector

State of the nonlinear system, specified as a vector of size Ns, where Ns is the number of states of the
system.

When you use the predict command, State is updated with the predicted value at time step k using
the state value at time step k–1. When you use the correct command, State is updated with the
estimated value at time step k using measured data at time step k.

The initial value of State is the value you specify in the InitialState input argument during
object creation. If you specify InitialState as a column vector, then State is also a column vector,
and the predict and correct commands return state estimates as a column vector. Otherwise, a
row vector is returned. If you want a filter with single-precision floating-point variables, you must
specify State as a single-precision variable during object construction using the InitialState
input argument.

State is a tunable property. You can change it using dot notation.

StateCovariance — State estimation error covariance
1 (default) | scalar | matrix

State estimation error covariance, specified as a scalar or an Ns-by-Ns matrix, where Ns is the
number of states of the system. If you specify a scalar, the software uses the scalar value to create an
Ns-by-Ns diagonal matrix.

Specify a high value for the covariance when you do not have confidence in the initial state values
that you specify in the InitialState input argument.

When you use the predict command, StateCovariance is updated with the predicted value at
time step k using the state value at time step k–1. When you use the correct command,
StateCovariance is updated with the estimated value at time step k using measured data at time
step k.

StateCovariance is a tunable property. You can change it using dot notation after using the
correct or predict commands.

StateTransitionFcn — State transition function
function handle

State transition function f, specified as a function handle. The function calculates the Ns-element
state vector of the system at time step k, given the state vector at time step k-1. Ns is the number of
states of the nonlinear system.

1 Functions

1-1982

You write and save the state transition function for your nonlinear system and use it to construct the
object. For example, if vdpStateFcn.m is the state transition function, specify
StateTransitionFcn as @vdpStateFcn. You can also specify StateTransitionFcn as a function
handle to an anonymous function.

The inputs to the function you write depend on whether you specify the process noise as additive or
nonadditive in the HasAdditiveProcessNoise property of the object:

• HasAdditiveProcessNoise is true — The process noise w is additive, and the state transition
function specifies how the states evolve as a function of state values at previous time step:

x(k) = f(x(k-1),Us1,...,Usn)

Where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function, such as system inputs or the sample time.
During estimation, you pass these additional arguments to the predict command, which in turn
passes them to the state transition function.

• HasAdditiveProcessNoise is false — The process noise is nonadditive, and the state transition
function also specifies how the states evolve as a function of the process noise:

x(k) = f(x(k-1),w(k-1),Us1,...,Usn)

To see an example of a state transition function with additive process noise, type edit
vdpStateFcn at the command line.

StateTransitionFcn is a nontunable property. You can specify it once before using the predict
command either during object construction or using dot notation after object construction. You
cannot change it after using the predict command.

HasMeasurementWrapping — Enable measurement wrapping
0 (default) | 1

Enable measurement wrapping, specified as either 0 or 1. You can enable measurement wrapping to
estimate states when you have circular measurements that are independent of your model states. If
you select this parameter, then the measurement function you specify must include the following two
outputs:

1 The measurement, specified as a N-element output measurement vector of the nonlinear system
at time step k, given the state vector at time step k. N is the number of measurements of the
system.

2 The measurement wrapping bounds, specified as an N-by-2 matrix where, the first column
provides the minimum measurement bound and the second column provides the maximum
measurement bound.

Enabling the HasMeasurementWrapping property wraps the measurement residuals in a defined
bound, which helps to prevent the filter from divergence due to incorrect measurement residual
values. For an example, see “State Estimation with Wrapped Measurements Using Extended Kalman
Filter”.

HasMeasurementWrapping is a nontunable property. You can specify it once during the object
construction. You cannot change it after creating the state estimation object.

 unscentedKalmanFilter

1-1983

Output Arguments
obj — unscented Kalman filter object for online state estimation
unscentedKalmanFilter object

Unscented Kalman filter object for online state estimation, returned as an unscentedKalmanFilter
object. This object is created using the specified properties on page 1-1978. Use the correct and
predict commands to estimate the state and state estimation error covariance using the unscented
Kalman filter algorithm.

When you use predict, obj.State and obj.StateCovariance are updated with the predicted
value at time step k using the state value at time step k–1. When you use correct, obj.State and
obj.StateCovariance are updated with the estimated values at time step k using measured data
at time step k.

Version History
Introduced in R2016b

Numerical Changes
Behavior changed in R2020b

Starting in R2020b, numerical improvements in the unscentedKalmanFilter algorithm might
produce results that are different from the results you obtained in previous versions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For more information, see “Generate Code for Online State Estimation in MATLAB”.

Generated code uses an algorithm that is different from the algorithm that the
unscentedKalmanFilter function uses. You might see some numerical differences in the results
obtained using the two methods.

Supports MATLAB Function block: No

See Also
Functions
predict | correct | clone | extendedKalmanFilter | residual

Blocks
Kalman Filter | Extended Kalman Filter | Unscented Kalman Filter

Topics
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
“Generate Code for Online State Estimation in MATLAB”
“What Is Online Estimation?”

1 Functions

1-1984

“Extended and Unscented Kalman Filter Algorithms for Online State Estimation”
“Validate Online State Estimation at the Command Line”
“Troubleshoot Online State Estimation”

External Websites
Understanding Kalman Filters: Nonlinear State Estimators — MATLAB Video Series

 unscentedKalmanFilter

1-1985

https://www.mathworks.com/videos/understanding-kalman-filters-part-5-nonlinear-state-estimators-1495052905460.html

xperm
Reorder states in state-space models

Syntax
sys = xperm(sys,P)

Description
sys = xperm(sys,P) reorders the states of the state-space model sys according to the
permutation P. The vector P is a permutation of 1:NX, where NX is the number of states in sys. For
information about creating state-space models, see ss and dss.

Examples

Alphabetically Order States of State-Space Model

Load a previously saved state space model ssF8 with four states.

load ltiexamples
ssF8

ssF8 =

 A =
 PitchRate Velocity AOA PitchAngle
 PitchRate -0.7 -0.0458 -12.2 0
 Velocity 0 -0.014 -0.2904 -0.562
 AOA 1 -0.0057 -1.4 0
 PitchAngle 1 0 0 0

 B =
 Elevator Flaperon
 PitchRate -19.1 -3.1
 Velocity -0.0119 -0.0096
 AOA -0.14 -0.72
 PitchAngle 0 0

 C =
 PitchRate Velocity AOA PitchAngle
 FlightPath 0 0 -1 1
 Acceleration 0 0 0.733 0

 D =
 Elevator Flaperon
 FlightPath 0 0
 Acceleration 0.0768 0.1134

Continuous-time state-space model.

Order the states in alphabetical order.

1 Functions

1-1986

[y,P] = sort(ssF8.StateName);
sys = xperm(ssF8,P)

sys =

 A =
 AOA PitchAngle PitchRate Velocity
 AOA -1.4 0 1 -0.0057
 PitchAngle 0 0 1 0
 PitchRate -12.2 0 -0.7 -0.0458
 Velocity -0.2904 -0.562 0 -0.014

 B =
 Elevator Flaperon
 AOA -0.14 -0.72
 PitchAngle 0 0
 PitchRate -19.1 -3.1
 Velocity -0.0119 -0.0096

 C =
 AOA PitchAngle PitchRate Velocity
 FlightPath -1 1 0 0
 Acceleration 0.733 0 0 0

 D =
 Elevator Flaperon
 FlightPath 0 0
 Acceleration 0.0768 0.1134

Continuous-time state-space model.

The states in ssF8 now appear in alphabetical order.

Version History
Introduced in R2008b

See Also
ss | dss

 xperm

1-1987

zero
Zeros and gain of SISO dynamic system

Syntax
Z = zero(sys)
[Z,gain] = zero(sys)
[Z,gain] = zero(sys,J1,...,JN)

Description
Z = zero(sys) returns the zeros of the single-input, single-output (SISO) dynamic system model,
sys. The output is expressed as the reciprocal of the time units specified in sys.TimeUnit.

[Z,gain] = zero(sys) also returns the zero-pole-gain of sys.

[Z,gain] = zero(sys,J1,...,JN) returns the zeros and gain of the entries in the model array
sys with subscripts J1,...,JN.

Examples

Zeros of Transfer Function

Compute the zeros of the following transfer function:

sys s = 4 . 2s2 + 0 . 25s− 0 . 004
s2 + 9 . 6s + 17

sys = tf([4.2,0.25,-0.004],[1,9.6,17]);
Z = zero(sys)

Z = 2×1

 -0.0726
 0.0131

Zeros and Gain of Transfer Function

Calculate the zero locations and zero-pole gain of the following transfer function:

sys s = 4 . 2s2 + 0 . 25s− 0 . 004
s2 + 9 . 6s + 17

sys = tf([4.2,0.25,-0.004],[1,9.6,17]);
[z,gain] = zero(sys)

1 Functions

1-1988

z = 2×1

 -0.0726
 0.0131

gain = 4.2000

The zero locations are expressed in second−1, because the time unit of the transfer function
(H.TimeUnit) is seconds.

Zeros and Gain of Models in an Array

For this example, load a 3-by-1 array of transfer function models.

load('tfArray.mat','sys');
size(sys)

3x1 array of transfer functions.
Each model has 1 outputs and 1 inputs.

Find the zeros and gain values of the models in the array.

[Z, gain] = zero(sys);
Z(:,:,1,1)

ans =

 0x1 empty double column vector

gain(:,:,1,1)

ans = 1

zero returns an array each for the zeros and the gain values respectively. Here, Z(:,:,1,1) and
gain(:,:,1,1) corresponds to the zero and the gain value of the first model in the array, that is,
sys(:,:,1,1).

Input Arguments
sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO dynamic system model, or an array of SISO dynamic system
models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI
models such as tf, zpk, or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, zero returns
the zeros of the current or nominal value of sys. If sys is an array of models, zero returns the zeros
of the model corresponding to its subscript J1,...,JN in sys. For more information on model
arrays, see “Model Arrays” (Control System Toolbox).

 zero

1-1989

J — Indices of models in array whose zeros you want to extract
positive integer

Indices of models in array whose zeros you want to extract, specified as a positive integer. You can
provide as many indices as there are array dimensions in sys. For example, if sys is a 4-by-5 array of
dynamic system models, the following command extracts the zeros for entry (2,3) in the array.

Z = zero(sys,2,3);

Output Arguments
Z — Zeros of the dynamic system
column vector | array

Zeros of the dynamic system, returned as a column vector or an array. If sys is:

• A single model, then Z is a column vector of zeros of the dynamic system model sys
• A model array, then Z is an array containing the zeros of each model in sys

Z is expressed as the reciprocal of the time units specified in sys.TimeUnit. For example, zero is
expressed in 1/minute if sys.TimeUnit = 'minutes'.

gain — Zero-pole-gain of the dynamic system
scalar

Zero-pole-gain of the dynamic system, returned as a scalar. In other words, gain is the value of K
when the model is written in zpk form.

Tips
• If sys has internal delays, zero sets all internal delays to zero, creating a zero-order Padé

approximation. This approximation ensures that the system has a finite number of zeros. zero
returns an error if setting internal delays to zero creates singular algebraic loops. To assess the
stability of models with internal delays, use step or impulse.

• To calculate the transmission zeros of a multi-input, multi-output (MIMO) system, use tzero.

Version History
Introduced in R2012a

See Also
pole | pzmap | tzero | step | impulse | pzplot

Topics
“Pole and Zero Locations” (Control System Toolbox)

1 Functions

1-1990

zgrid
Generate z-plane grid of constant damping factors and natural frequencies

Syntax
zgrid
zgrid(T)
zgrid(zeta,wn)
zgrid(zeta,wn,T)

zgrid(___ ,'new')
zgrid(AX, ___)

Description
zgrid generates a grid of constant damping factors from 0 to 1 in steps of 0.1 and natural
frequencies from 0 to π/T in steps of 0.1*π/T for root locus and pole-zero maps. The default steps of
0.1*π/T represent fractions of the Nyquist frequencies. zgrid then plots the grid over the current
axis. zgrid creates the grid over the plot without altering the current axis limits if the current axis
contains a discrete z-plane root locus diagram or pole-zero map. Use this syntax to plot multiple
systems with different sample times.

Alternatively, you can select Grid from the context menu in the plot window to generate the same z-
plane grid.

zgrid(T) generates the z-plane grid by using default values for damping factor and natural
frequency relative to the sample time T.

zgrid(zeta,wn) plots a grid of constant damping factor and natural frequency lines for the
damping factors and normalized natural frequencies in the vectors zeta and wn, respectively. When
the sample time is not specified, the frequency values in wn are interpreted as normalized values, that
is, wn/T.

zgrid(zeta,wn,T) plots a grid of constant damping factor and natural frequency lines for the
damping factors and natural frequencies in the vectors zeta and wn, relative to sample time T. zeta
lines are independent for T but the wn lines depend on the sample time value. Use this syntax to
create the z-plane grid with specific values of wn.

zgrid(___ ,'new') clears the current axes first and sets hold on.

zgrid(AX, ___) plots the z-plane grid on the Axes or UIAxes object in the current figure with the
handle AX. Use this syntax when creating apps with zgrid in the App Designer.

Examples

Plot z-plane Grid Lines on the Root Locus

To see the z-plane grid on the root locus plot, type

 zgrid

1-1991

H = tf([2 -3.4 1.5],[1 -1.6 0.8],-1)

H =

 2 z^2 - 3.4 z + 1.5

 z^2 - 1.6 z + 0.8

Sample time: unspecified
Discrete-time transfer function.

rlocus(H)
zgrid
axis equal

Normalized and True z-plane Grid Lines on the Pole-Zero Map

For this example, consider a discrete-time transfer function sys with a sample time of 0.1s. Now plot
the pole-zero map of sys and visualize the default z-plane grid without specifying the sample time.

sys = tf([2 -3.4 1.5],[1 -1.6 0.8],0.1);
Ts = 0.1;
figure()
pzmap(sys)
zgrid()
axis equal

1 Functions

1-1992

Observe that the frequencies on the z-plane grid are normalized in terms of f π
T . To obtain the true

frequency values on the grid, specify the sample time with the zgrid command.

figure()
pzmap(sys)
zgrid(Ts)
axis equal

 zgrid

1-1993

Now, observe that the frequency values on the plot are true values, that is, they are non-normalized.

Input Arguments
zeta — Damping ratio
vector

Damping ratio, specified as a vector in the same order as wn.

wn — Natural frequency values
vector

Natural frequency values, specified as a vector. Natural frequencies are plotted as true values when T
is specified. When the sample time is not specified, zgrid normalizes the values as wn/T.

T — Sample time
positive scalar | -1

Sample time, specified as:

• A positive scalar representing the sampling period of a discrete-time system. The actual frequency
values are displayed on the frequency grid.

• -1 for a discrete-time system with an unspecified sample time. The frequency values are displayed
as normalized values f*π/T for the default grid.

1 Functions

1-1994

zeta lines are independent of T while wn lines are dependent on the sample time. You must specify T
to plot specific values of wn. When the sample time T is not specified, the required wn values are
interpreted as normalized values, that is, wn/T.

AX — Object handle
Axes object | UIAxes object

Object handle, specified as an Axes or UIAxes object. Use AX to create apps with zgrid in the App
Designer.

Version History
Introduced before R2006a

See Also
pzmap | rlocus | sgrid

 zgrid

1-1995

zpkdata
Access zero-pole-gain data

Syntax
[z,p,k] = zpkdata(sys)
[z,p,k,Ts] = zpkdata(sys)
[z,p,k,Ts,covz,covp,covk] = zpkdata(sys)

Description
[z,p,k] = zpkdata(sys) returns the zeros z, poles p, and gain(s) k of the zero-pole-gain model
sys. The outputs z and p are cell arrays with the following characteristics:

• z and p have as many rows as outputs and as many columns as inputs.
• The (i,j) entries z{i,j} and p{i,j} are the (column) vectors of zeros and poles of the transfer

function from input j to output i.

The output k is a matrix with as many rows as outputs and as many columns as inputs such that
k(i,j) is the gain of the transfer function from input j to output i. If sys is a transfer function or
state-space model, it is first converted to zero-pole-gain form using zpk.

For SISO zero-pole-gain models, the syntax

[z,p,k] = zpkdata(sys,'v')

forces zpkdata to return the zeros and poles directly as column vectors rather than as cell arrays
(see example below).

[z,p,k,Ts] = zpkdata(sys) also returns the sample time Ts.

[z,p,k,Ts,covz,covp,covk] = zpkdata(sys) also returns the covariances of the zeros, poles
and gain of the identified model sys. covz is a cell array such that covz{ky,ku} contains the
covariance information about the zeros in the vector z{ky,ku}. covz{ky,ku} is a 3-D array of
dimension 2-by-2-by-Nz, where Nz is the length of z{ky,ku}, so that the (1,1) element is the
variance of the real part, the (2,2) element is the variance of the imaginary part, and the (1,2) and
(2,1) elements contain the covariance between the real and imaginary parts. covp has a similar
relationship to p.covk is a matrix containing the variances of the elements of k.

You can access the remaining LTI properties of sys with get or by direct referencing, for example,

sys.Ts
sys.inputname

Examples
Example 1

Given a zero-pole-gain model with two outputs and one input

1 Functions

1-1996

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)
Zero/pole/gain from input to output...
 z
 #1: -------
 (z-0.3)

 2 (z+0.5)
 #2: -------------------
 (z^2 - 0.2z + 1.01)

Sample time: unspecified

you can extract the zero/pole/gain data embedded in H with

[z,p,k] = zpkdata(H)
z =
 [0]
 [-0.5000]
p =
 [0.3000]
 [2x1 double]
k =
 1
 2

To access the zeros and poles of the second output channel of H, get the content of the second cell in
z and p by typing

z{2,1}
ans =
 -0.5000
p{2,1}
ans =
 0.1000+ 1.0000i
 0.1000- 1.0000i

Example 2

Extract the ZPK matrices and their standard deviations for a 2-input, 1 output identified transfer
function.

load iddata7

transfer function model

sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);

an equivalent process model

sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);

1, p1, k1, ~, dz1, dp1, dk1] = zpkdata(sys1);
[z2, p2, k2, ~, dz2, dp2, dk2] = zpkdata(sys2);

Use iopzplot to visualize the pole-zero locations and their covariances

h = iopzplot(sys1, sys2);
showConfidence(h)

 zpkdata

1-1997

Version History
Introduced before R2006a

See Also
get | ssdata | tfdata | zpk

1 Functions

1-1998

Blocks

2

Extended Kalman Filter
Estimate states of discrete-time nonlinear system using extended Kalman filter
Library: Control System Toolbox / State Estimation

System Identification Toolbox / Estimators

Description
The Extended Kalman Filter block estimates the states of a discrete-time nonlinear system using the
first-order discrete-time extended Kalman filter algorithm.

Consider a plant with states x, input u, output y, process noise w, and measurement noise v. Assume
that you can represent the plant as a nonlinear system.

Using the state transition and measurement functions of the system and the extended Kalman filter
algorithm, the block produces state estimates x for the current time step. For information about the
algorithm, see “Extended and Unscented Kalman Filter Algorithms for Online State Estimation”.

You create the nonlinear state transition function and measurement functions for the system and
specify these functions in the block. The block supports state estimation of a system with multiple
sensors that are operating at different sampling rates. You can specify up to five measurement
functions, each corresponding to a sensor in the system. You can also specify the Jacobians of the
state transition and measurement functions. If you do not specify them, the software numerically
computes the Jacobians. For more information, see “State Transition and Measurement Functions” on
page 2-15.

Ports
Input

y1,y2,y3,y4,y5 — Measured system outputs
vector

Measured system outputs corresponding to each measurement function that you specify in the block.
The number of ports equals the number of measurement functions in your system. You can specify up
to five measurement functions. For example, if your system has two sensors, you specify two

2 Blocks

2-2

measurement functions in the block. The first port y1 is available by default. When you click Apply,
the software generates port y2 corresponding to the second measurement function.

Specify the ports as N-dimensional vectors, where N is the number of quantities measured by the
corresponding sensor. For example, if your system has one sensor that measures the position and
velocity of an object, then there is only one port y1. The port is specified as a 2-dimensional vector
with values corresponding to position and velocity.

Dependencies

The first port y1 is available by default. Ports y2 to y5 are generated when you click Add
Measurement, and click Apply.
Data Types: single | double

StateTransitionFcnInputs — Additional optional input argument to state transition
function
scalar | vector | matrix

Additional optional input argument to the state transition function f other than the state x and
process noise w. For information about state transition functions see, “State Transition and
Measurement Functions” on page 2-15.

Suppose that your system has nonadditive process noise, and the state transition function f has the
following form:

x(k+1) = f(x(k),w(k),StateTransitionFcnInputs)

Here k is the time step, and StateTransitionFcnInputs is an additional input argument other
than x and w.

If you create f using a MATLAB function (.m file), the software generates the port
StateTransitionFcnInputs when you click Apply. You can specify the inputs to this port as a scalar,
vector, or matrix.

If your state transition function has more than one additional input, use a Simulink Function block to
specify the function. When you use a Simulink Function block, you provide the additional inputs
directly to the Simulink Function block using Inport blocks. No input ports are generated for the
additional inputs in the Extended Kalman Filter block.

Dependencies

This port is generated only if both of the following conditions are satisfied:

• You specify f in Function using a MATLAB function, and f is on the MATLAB path.
• f requires only one additional input argument apart from x and w.

Data Types: single | double

MeasurementFcn1Inputs,MeasurementFcn2Inputs,MeasurementFcn3Inputs,Measurement
Fcn4Inputs,MeasurementFcn5Inputs — Additional optional input argument to each
measurement function
scalar | vector | matrix

 Extended Kalman Filter

2-3

Additional optional inputs to the measurement functions other than the state x and measurement
noise v. For information about measurement functions see, “State Transition and Measurement
Functions” on page 2-15.

MeasurementFcn1Inputs corresponds to the first measurement function that you specify, and so
on. For example, suppose that your system has three sensors and nonadditive measurement noise,
and the three measurement functions h1, h2, and h3 have the following form:

y1[k] = h1(x[k],v1[k],MeasurementFcn1Inputs)

y2[k] = h2(x[k],v2[k],MeasurementFcn2Inputs)

y3[k] = h3(x[k],v3[k])

Here k is the time step, and MeasurementFcn1Inputs and MeasurementFcn2Inputs are the
additional input arguments to h1 and h2.

If you specify h1, h2, and h3 using MATLAB functions (.m files) in Function, the software generates
ports MeasurementFcn1Inputs and MeasurementFcn2Inputs when you click Apply. You can
specify the inputs to these ports as scalars, vectors, or matrices.

If your measurement functions have more than one additional input, use Simulink Function blocks to
specify the functions. When you use a Simulink Function block, you provide the additional inputs
directly to the Simulink Function block using Inport blocks. No input ports are generated for the
additional inputs in the Extended Kalman Filter block.
Dependencies

A port corresponding to a measurement function h is generated only if both of the following
conditions are satisfied:

• You specify h in Function using a MATLAB function, and h is on the MATLAB path.
• h requires only one additional input argument apart from x and v.

Data Types: single | double

Q — Time-varying process noise covariance
scalar | vector | matrix

Time-varying process noise covariance, specified as a scalar, vector, or matrix depending on the value
of the Process noise parameter:

• Process noise is Additive — Specify the covariance as a scalar, an Ns-element vector, or an Ns-
by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no cross-
correlation between process noise terms, and all the terms have the same variance. Specify a
vector of length Ns, if there is no cross-correlation between process noise terms, but all the terms
have different variances.

• Process noise is Nonadditive — Specify the covariance as a W-by-W matrix, where W is the
number of process noise terms in the state transition function.

Dependencies

This port is generated if you specify the process noise covariance as Time-Varying. The port appears
when you click Apply.
Data Types: single | double

2 Blocks

2-4

R1,R2,R3,R4,R5 — Time-varying measurement noise covariance
matrix

Time-varying measurement noise covariances for up to five measurement functions of the system,
specified as matrices. The sizes of the matrices depend on the value of the Measurement noise
parameter for the corresponding measurement function:

• Measurement noise is Additive — Specify the covariance as an N-by-N matrix, where N is the
number of measurements of the system.

• Measurement noise is Nonadditive — Specify the covariance as a V-by-V matrix, where V is
the number of measurement noise terms in the corresponding measurement function.

Dependencies

A port is generated if you specify the measurement noise covariance as Time-Varying for the
corresponding measurement function. The port appears when you click Apply.
Data Types: single | double

Enable1,Enable2,Enable3,Enable4,Enable5 — Enable correction of estimated states
when measured data is available
scalar

Suppose that measured output data is not available at all time points at the port y1 that corresponds
to the first measurement function. Use a signal value other than 0 at the Enable1 port to enable the
correction of estimated states when measured data is available. Specify the port value as 0 when
measured data is not available. Similarly, if measured output data is not available at all time points at
the port yi for the ith measurement function, specify the corresponding port Enablei as a value other
than 0.

Dependencies

A port corresponding to a measurement function is generated if you select Add Enable port for that
measurement function. The port appears when you click Apply.
Data Types: single | double | Boolean

Output

xhat — Estimated states
vector

Estimated states, returned as a vector of size Ns, where Ns is the number of states of the system. To
access the individual states, use the Selector block.

When the Use the current measurements to improve state estimates parameter is selected, the
block outputs the corrected state estimate x [k k] at time step k, estimated using measured outputs
until time k. If you clear this parameter, the block returns the predicted state estimate x [k k− 1] for
time k, estimated using measured output until a previous time k-1. Clear this parameter if your filter
is in a feedback loop and there is an algebraic loop in your Simulink model.
Data Types: single | double

P — State estimation error covariance
matrix

 Extended Kalman Filter

2-5

State estimation error covariance, returned as an Ns-by-Ns matrix, where Ns is the number of states
of the system. To access the individual covariances, use the Selector block.

Dependencies

This port is generated if you select Output state estimation error covariance in the System
Model tab, and click Apply.
Data Types: single | double

Parameters
System Model Tab

State Transition

Function — State transition function name
myStateTransitionFcn (default) | function name

The state transition function calculates the Ns-element state vector of the system at time step k+1,
given the state vector at time step k. Ns is the number of states of the nonlinear system. You create
the state transition function and specify the function name in Function. For example, if
vdpStateFcn.m is the state transition function that you created and saved, specify Function as
vdpStateFcn.

The inputs to the function you create depend on whether you specify the process noise as additive or
nonadditive in Process noise.

• Process noise is Additive — The state transition function f specifies how the states evolve as a
function of state values at previous time step:

x(k+1) = f(x(k),Us1(k),...,Usn(k)),

where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function, such as system inputs or the sample time. To
see an example of a state transition function with additive process noise, type edit
vdpStateFcn at the command line.

• Process noise is Nonadditive — The state transition function also specifies how the states
evolve as a function of the process noise w:

x(k+1) = f(x(k),w(k),Us1(k),...,Usn(k)).

For more information, see “State Transition and Measurement Functions” on page 2-15.

You can create f using a Simulink Function block or as a MATLAB function (.m file).

• You can use a MATLAB function only if f has one additional input argument Us1 other than x and
w.

x(k+1) = f(x(k),w(k),Us1(k))

The software generates an additional input port StateTransitionFcnInputs to specify this
argument.

2 Blocks

2-6

• If you are using a Simulink Function block, specify x and w using Argument Inport blocks and the
additional inputs Us1,...,Usn using Inport blocks in the Simulink Function block. You do not
provide Us1,...,Usn to the Extended Kalman Filter block.

Programmatic Use
Block Parameter: StateTransitionFcn
Type: character vector, string
Default: 'myStateTransitionFcn'

Jacobian — Jacobian of state transition function
off (default) | on

Jacobian of state transition function f, specified as one of the following:

• off — The software computes the Jacobian numerically. This computation may increase
processing time and numerical inaccuracy of the state estimation.

• on — You create a function to compute the Jacobian, and specify the name of the function in
Jacobian. For example, if vdpStateJacobianFcn.m is the Jacobian function, specify Jacobian
as vdpStateJacobianFcn. If you create the state transition function f using a Simulink Function
block, then create the Jacobian using a Simulink Function block. If you create f using a MATLAB
function (.m file), then create the Jacobian using a MATLAB function.

The function calculates the partial derivatives of the state transition function with respect to the
states and process noise. The number of inputs to the Jacobian function must equal the number of
inputs of the state transition function and must be specified in the same order in both functions.
The number of outputs of the Jacobian function depends on the Process noise parameter:

• Process noise is Additive — The function calculates the partial derivative of the state
transition function f with respect to the states (∂ f / ∂x). The output is an Ns-by-Ns Jacobian
matrix, where Ns is the number of states.

To see an example of a Jacobian function for additive process noise, type edit
vdpStateJacobianFcn at the command line.

• Process noise is Nonadditive — The function must also return a second output that is the
partial derivative of the state transition function f with respect to the process noise terms
(∂ f / ∂w). The second output is returned as an Ns-by-W matrix, where W is the number of
process noise terms in the state transition function.

Programmatic Use
Block Parameter: HasStateTransitionJacobianFcn
Type: character vector
Values: 'off','on'
Default: 'off'
Block Parameter: StateTransitionJacobianFcn
Type: character vector, string
Default: ''

Process noise — Process noise characteristics
Additive (default) | Nonadditive

Process noise characteristics, specified as one of the following values:

• Additive — Process noise w is additive, and the state transition function f that you specify in
Function has the following form:

 Extended Kalman Filter

2-7

x(k+1) = f(x(k),Us1(k),...,Usn(k)),

where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function.

• Nonadditive — Process noise is nonadditive, and the state transition function specifies how the
states evolve as a function of the state and process noise at the previous time step:

x(k+1) = f(x(k),w(k),Us1(k),...,Usn(k)).

Programmatic Use
Block Parameter: HasAdditiveProcessNoise
Type: character vector
Values: 'Additive', 'Nonadditive'
Default: 'Additive'

Covariance — Time-invariant process noise covariance
1 (default) | scalar | vector | matrix

Time-invariant process noise covariance, specified as a scalar, vector, or matrix depending on the
value of the Process noise parameter:

• Process noise is Additive — Specify the covariance as a scalar, an Ns-element vector, or an Ns-
by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no cross-
correlation between process noise terms and all the terms have the same variance. Specify a
vector of length Ns, if there is no cross-correlation between process noise terms but all the terms
have different variances.

• Process noise is Nonadditive — Specify the covariance as a W-by-W matrix, where W is the
number of process noise terms.

If the process noise covariance is time-varying, select Time-varying. The block generates input port
Q to specify the time-varying covariance.

Dependencies

This parameter is enabled if you do not specify the process noise as Time-Varying.

Programmatic Use
Block Parameter: ProcessNoise
Type: character vector, string
Default: '1'

Time-varying — Time-varying process noise covariance
'off' (default) | 'on'

If you select this parameter, the block includes an additional input port Q to specify the time-varying
process noise covariance.

Programmatic Use
Block Parameter: HasTimeVaryingProcessNoise
Type: character vector
Values: 'off', 'on'
Default: 'off'

2 Blocks

2-8

Initialization

Initial state — Initial state estimate
0 (default) | vector

Initial state estimate value, specified as an Ns-element vector, where Ns is the number of states in the
system. Specify the initial state values based on your knowledge of the system.
Programmatic Use
Block Parameter: InitialState
Type: character vector, string
Default: '0'

Initial covariance — State estimation error covariance
1 (default) | scalar | vector | matrix

State estimation error covariance, specified as a scalar, an Ns-element vector, or an Ns-by-Ns matrix,
where Ns is the number of states of the system. If you specify a scalar or vector, the software creates
an Ns-by-Ns diagonal matrix with the scalar or vector elements on the diagonal.

Specify a high value for the covariance when you do not have confidence in the initial state values
that you specify in Initial state.
Programmatic Use
Block Parameter: InitialStateCovariance
Type: character vector, string
Default: '1'

Measurement

Function — Measurement function name
myMeasurementFcn (default) | function name

The measurement function calculates the N-element output measurement vector of the nonlinear
system at time step k, given the state vector at time step k. You create the measurement function and
specify the function name in Function. For example, if vdpMeasurementFcn.m is the measurement
function that you created and saved, specify Function as vdpMeasurementFcn.

The inputs to the function you create depend on whether you specify the measurement noise as
additive or nonadditive in Measurement noise.

• Measurement noise is Additive — The measurement function h specifies how the
measurements evolve as a function of state Values:

y(k) = h(x(k),Um1(k),...,Umn(k)),

where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function. For example, if you are
using a sensor for tracking an object, an additional input could be the sensor position.

To see an example of a measurement function with additive process noise, type edit
vdpMeasurementFcn at the command line.

• Measurement noise is Nonadditive— The measurement function also specifies how the output
measurement evolves as a function of the measurement noise v:

y(k) = h(x(k),v(k),Um1(k),...,Umn(k)).

 Extended Kalman Filter

2-9

To see an example of a measurement function with nonadditive process noise, type edit
vdpMeasurementNonAdditiveNoiseFcn.

For more information, see “State Transition and Measurement Functions” on page 2-15.

You can create h using a Simulink Function block or as a MATLAB function (.m file).

• You can use a MATLAB function only if h has one additional input argument Um1 other than x and
v.

y[k] = h(x[k],v[k],Um1(k))

The software generates an additional input port MeasurementFcniInputs to specify this
argument for the ith measurement function.

• If you are using a Simulink Function block, specify x and v using Argument Inport blocks and the
additional inputs Um1,...,Umn using Inport blocks in the Simulink Function block. You do not
provide Um1,...,Umn to the Extended Kalman Filter block.

If you have multiple sensors in your system, you can specify multiple measurement functions. You can
specify up to five measurement functions using the Add Measurement button. To remove
measurement functions, use Remove Measurement.
Programmatic Use
Block Parameter: MeasurementFcn1, MeasurementFcn2, MeasurementFcn3,
MeasurementFcn4, MeasurementFcn5
Type: character vector, string
Default: 'myMeasurementFcn'

Jacobian — Jacobian of measurement function
off (default) | on

Jacobian of measurement function h, specified as one of the following:

• off — The software computes the Jacobian numerically. This computation may increase
processing time and numerical inaccuracy of the state estimation.

• on — You create a function to compute the Jacobian of the measurement function h, and specify
the name of the function in Jacobian. For example, if vdpMeasurementJacobianFcn.m is the
Jacobian function, specify MeasurementJacobianFcn as vdpMeasurementJacobianFcn. If you
create h using a Simulink Function block, then create the Jacobian using a Simulink Function
block. If you create h using a MATLAB function (.m file), then create the Jacobian using a MATLAB
function.

The function calculates the partial derivatives of the measurement function h with respect to the
states and measurement noise. The number of inputs to the Jacobian function must equal the
number of inputs to the measurement function and must be specified in the same order in both
functions. The number of outputs of the Jacobian function depends on the Measurement noise
parameter:

• Measurement noise is Additive — The function calculates the partial derivatives of the
measurement function with respect to the states (∂h/ ∂x). The output is as an N-by-Ns Jacobian
matrix, where N is the number of measurements of the system and Ns is the number of states.

To see an example of a Jacobian function for additive measurement noise, type edit
vdpMeasurementJacobianFcn at the command line.

2 Blocks

2-10

• Measurement noise is Nonadditive — The function also returns a second output that is the
partial derivative of the measurement function with respect to the measurement noise terms
(∂h/ ∂v). The second output is returned as an N-by-V Jacobian matrix, where V is the number of
measurement noise terms.

Programmatic Use
Block Parameter: HasMeasurementJacobianFcn1, HasMeasurementJacobianFcn2,
HasMeasurementJacobianFcn3,
HasMeasurementJacobianFcn4,HasMeasurementJacobianFcn5
Type: character vector
Values: 'off','on'
Default: 'off'
Block Parameter: MeasurementJacobianFcn1, MeasurementJacobianFcn2,
MeasurementJacobianFcn3, MeasurementJacobianFcn4, MeasurementJacobianFcn5
Type: character vector
Default: ''

Measurement noise — Measurement noise characteristics
Additive (default) | Nonadditive

Measurement noise characteristics, specified as one of the following values:

• Additive — Measurement noise v is additive, and the measurement function h that you specify
in Function has the following form:

y(k) = h(x(k),Um1(k),...,Umn(k)),

where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function.

• Nonadditive — Measurement noise is nonadditive, and the measurement function specifies how
the output measurement evolves as a function of the state and measurement noise:

y(k) = h(x(k),v(k),Um1(k),...,Umn(k)).

Programmatic Use
Block Parameter: HasAdditiveMeasurementNoise1, HasAdditiveMeasurementNoise2,
HasAdditiveMeasurementNoise3, HasAdditiveMeasurementNoise4,
HasAdditiveMeasurementNoise5
Type: character vector
Values: 'Additive', 'Nonadditive'
Default: 'Additive'

Has measurement wrapping — Enable measurement wrapping
off (default) | on

Select this parameter to enable measurement wrapping to estimate states when you have circular
measurements that are independent of your model states. If you select this parameter, then the
measurement function you specify must include the following two outputs:

1 The measurement, specified as a N-element output measurement vector of the nonlinear system
at time step k, given the state vector at time step k. N is the number of measurements of the
system.

 Extended Kalman Filter

2-11

2 The measurement wrapping bounds, specified as an N-by-2 matrix where, the first column
provides the minimum measurement bound and the second column provides the maximum
measurement bound.

Enabling the Has measurement wrapping check box wraps the measurement residuals in a defined
bound, which helps to prevent the filter from divergence due to incorrect measurement residual
values. For an example, see “State Estimation with Wrapped Measurements Using Extended Kalman
Filter”.

Programmatic Use
Block Parameter: HasMeasurementWrapping1, HasMeasurementWrapping2,
HasMeasurementWrapping3, HasMeasurementWrapping4, HasMeasurementWrapping5
Type: character vector
Values: 'off', 'on'
Default: 'off'

Covariance — Time-invariant process noise covariance
1 (default) | scalar | vector | matrix

Time-invariant process noise covariance, specified as a scalar, vector, or matrix depending on the
value of the Process noise parameter:

• Process noise is Additive — Specify the covariance as a scalar, an Ns-element vector, or an Ns-
by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no cross-
correlation between process noise terms and all the terms have the same variance. Specify a
vector of length Ns, if there is no cross-correlation between process noise terms but all the terms
have different variances.

• Process noise is Nonadditive — Specify the covariance as a W-by-W matrix, where W is the
number of process noise terms.

If the process noise covariance is time-varying, select Time-varying. The block generates input port
Q to specify the time-varying covariance.

Dependencies

This parameter is enabled if you do not specify the process noise as Time-Varying.

Programmatic Use
Block Parameter: ProcessNoise
Type: character vector, string
Default: '1'

Time-varying — Time-varying measurement noise covariance
off (default) | on

If you select this parameter for the measurement noise covariance of the first measurement function,
the block includes an additional input port R1. You specify the time-varying measurement noise
covariance in R1. Similarly, if you select Time-varying for the ith measurement function, the block
includes an additional input port Ri to specify the time-varying measurement noise covariance for
that function.

Programmatic Use
Block Parameter: HasTimeVaryingMeasurementNoise1,
HasTimeVaryingMeasurementNoise2, HasTimeVaryingMeasurementNoise3,
HasTimeVaryingMeasurementNoise4, HasTimeVaryingMeasurementNoise5

2 Blocks

2-12

Type: character vector
Values: 'off', 'on'
Default: 'off'

Add Enable Port — Enable correction of estimated states only when measured data is
available
off (default) | on

Suppose that measured output data is not available at all time points at the port y1 that corresponds
to the first measurement function. Select Add Enable port to generate an input port Enable1. Use a
signal at this port to enable the correction of estimated states only when measured data is available.
Similarly, if measured output data is not available at all time points at the port yi for the ith
measurement function, select the corresponding Add Enable port.
Programmatic Use
Block Parameter: HasMeasurementEnablePort1, HasMeasurementEnablePort2,
HasMeasurementEnablePort3, HasMeasurementEnablePort4, HasMeasurementEnablePort5
Type: character vector
Values: 'off', 'on'
Default: 'off'

Settings

Use the current measurements to improve state estimates — Choose between
corrected or predicted state estimate
on (default) | off

When this parameter is selected, the block outputs the corrected state estimate x [k k] at time step k,
estimated using measured outputs until time k. If you clear this parameter, the block returns the
predicted state estimate x [k k− 1] for time k, estimated using measured output until a previous time
k-1. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your
Simulink model.

Programmatic Use
Block Parameter: UseCurrentEstimator
Type: character vector
Values: 'off', 'on'
Default: 'on'

Output state estimation error covariance — Output state estimation error covariance
off (default) | on

If you select this parameter, a state estimation error covariance output port P is generated in the
block.

Programmatic Use
Block Parameter: OutputStateCovariance
Type: character vector
Values: 'off','on'
Default: 'off'

Data type — Data type for block parameters
double (default) | single

Use this parameter to specify the data type for all block parameters.

 Extended Kalman Filter

2-13

Programmatic Use
Block Parameter: DataType
Type: character vector
Values: 'single', 'double'
Default: 'double'

Sample time — Block sample time
1 (default) | positive scalar

Block sample time, specified as a positive scalar. If the sample times of your state transition and
measurement functions are different, select Enable multirate operation in the Multirate tab, and
specify the sample times in the Multirate tab instead.

Dependencies

This parameter is available if in the Multirate tab, the Enable multirate operation parameter is
off.

Programmatic Use
Block Parameter: SampleTime
Type: character vector, string
Default: '1'

Multirate Tab

Enable multirate operation — Enable specification of different sample times for state
transition and measurement functions
off (default) | on

Select this parameter if the sample times of the state transition and measurement functions are
different. You specify the sample times in the Multirate tab, in Sample time.

Programmatic Use
Block Parameter: EnableMultirate
Type: character vector
Values: 'off', 'on'
Default: 'off'

Sample times — State transition and measurement function sample times
positive scalar

If the sample times for state transition and measurement functions are different, specify Sample
time. Specify the sample times for the measurement functions as positive integer multiples of the
state transition sample time. The sample times you specify correspond to the following input ports:

• Ports corresponding to state transition function — Additional input to state transition function
StateTransitionFcnInputs and time-varying process noise covariance Q. The sample times of
these ports must always equal the state transition function sample time, but can differ from the
sample time of the measurement functions.

• Ports corresponding to ith measurement function — Measured output yi, additional input to
measurement function MeasurementFcniInputs, enable signal at port Enablei, and time-
varying measurement noise covariance Ri. The sample times of these ports for the same
measurement function must always be the same, but can differ from the sample time for the state
transition function and other measurement functions.

2 Blocks

2-14

Dependencies

This parameter is available if in the Multirate tab, the Enable multirate operation parameter is
on.

Programmatic Use
Block Parameter: StateTransitionFcnSampleTime, MeasurementFcn1SampleTime1,
MeasurementFcn1SampleTime2, MeasurementFcn1SampleTime3,
MeasurementFcn1SampleTime4, MeasurementFcn1SampleTime5
Type: character vector, string
Default: '1'

More About
State Transition and Measurement Functions

The algorithm computes the state estimates x of the nonlinear system using state transition and
measurement functions specified by you. You can specify up to five measurement functions, each
corresponding to a sensor in the system. The software lets you specify the noise in these functions as
additive or nonadditive.

• Additive Noise Terms — The state transition and measurements equations have the following
form:

x[k + 1] = f (x[k], us[k]) + w[k]
y[k] = h(x[k], um[k]) + v[k]

Here f is a nonlinear state transition function that describes the evolution of states x from one
time step to the next. The nonlinear measurement function h relates x to the measurements y at
time step k. w and v are the zero-mean, uncorrelated process and measurement noises,
respectively. These functions can also have additional optional input arguments that are denoted
by us and um in the equations. For example, the additional arguments could be time step k or the
inputs u to the nonlinear system. There can be multiple such arguments.

Note that the noise terms in both equations are additive. That is, x(k+1) is linearly related to the
process noise w(k), and y(k) is linearly related to the measurement noise v(k). For additive
noise terms, you do not need to specify the noise terms in the state transition and measurement
functions. The software adds the terms to the output of the functions.

• Nonadditive Noise Terms — The software also supports more complex state transition and
measurement functions where the state x[k] and measurement y[k] are nonlinear functions of the
process noise and measurement noise, respectively. When the noise terms are nonadditive, the
state transition and measurements equation have the following form:

x[k + 1] = f (x[k], w[k], us[k])
y[k] = h(x[k], v[k], um[k])

Version History
Introduced in R2017a

Numerical Changes
Behavior changed in R2020b

 Extended Kalman Filter

2-15

Starting in R2020b, numerical improvements in the Extended Kalman Filter algorithm might produce
results that are different from the results you obtained in previous versions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The state transition, measurement, and Jacobian functions that you specify must use only the
MATLAB commands and Simulink blocks that support code generation. For a list of blocks that
support code generation, see “Simulink Built-In Blocks That Support Code Generation” (Simulink
Coder). For a list of commands that support code generation, see “Functions and Objects Supported
for C/C++ Code Generation” (MATLAB Coder).

Generated code uses an algorithm that is different from the algorithm that the Extended Kalman
Filter block itself uses. You might see some numerical differences in the results obtained using the
two methods.

See Also
Blocks
Kalman Filter | Unscented Kalman Filter | Particle Filter

Functions
extendedKalmanFilter | unscentedKalmanFilter | particleFilter

Topics
“What Is Online Estimation?”
“Extended and Unscented Kalman Filter Algorithms for Online State Estimation”
“Validate Online State Estimation in Simulink”
“Troubleshoot Online State Estimation”

External Websites
Understanding Kalman Filters: Nonlinear State Estimators — MATLAB Video Series

2 Blocks

2-16

https://www.mathworks.com/videos/understanding-kalman-filters-part-5-nonlinear-state-estimators-1495052905460.html

Iddata Sink
Export simulation data as iddata object to MATLAB workspace
Library: System Identification Toolbox

Description
The Iddata Sink block exports simulation data as an iddata object to the MATLAB workspace. The
object stores the input and simulated output signals, sampled at the sample time that you specify. If
you simulate your model from the model window, the block exports the object to the MATLAB base
workspace. If you simulate the model programmatically, the object is exported to the MATLAB caller
workspace. The caller workspace is the workspace of the function that called the currently running
function.

Ports
Input

Input — Input of iddata object
scalar | vector

Input of iddata object, specified as a scalar for single-input data. For multichannel data with Nu
inputs, specify Input as a vector of length Nu.
Data Types: double

Output — Output of iddata object
scalar | vector

Output of iddata object, specified as a scalar for single-output data. For multichannel data with Ny
outputs, specify Output as a vector of length Ny.
Data Types: double

Parameters
IDDATA Name — Name of iddata object
data (default) | variable name

Name of iddata object, specified as a MATLAB variable name. The object is exported with this name
to the MATLAB workspace.

Sample Time — Sample time in seconds
0.1 (default) | finite positive number

Sample time in seconds, specified as a finite positive number. The iddata object stores the input and
output signals, sampled at the sample time that you specify.

 Iddata Sink

2-17

Version History
Introduced in R2008a

See Also
Iddata Source

Topics
“Simulate Identified Model in Simulink”

2 Blocks

2-18

Iddata Source
Import time-domain data stored in iddata object in MATLAB workspace
Library: System Identification Toolbox

Description
The Iddata Source block imports the input-output time-domain data stored in an iddata object in the
MATLAB workspace. You can use this block to import data for simulating a model in Simulink.

Ports
Output

Input — Input data stored in iddata object
scalar | vector

Input data stored in iddata object, returned as a scalar for single-input data and a vector of length
Nu for multichannel data with Nu inputs. If z is the iddata object, the output at this port at
simulation time t is z.InputData at time t. If t is greater than z.SamplingInstants(end), the
maximum time in z, the input data is returned as 0 for each input channel.
Data Types: double

Output — Output data stored in iddata object
scalar | vector

Output data stored in iddata object, returned as a scalar for single-output data and as a vector of
length Ny for multichannel data with Ny outputs. If z is the iddata object, the output at this port at
simulation time t is z.OutputData at time t. If t is greater than z.SamplingInstants(end), the
maximum time in z, the output data is returned as 0 for each output channel.
Data Types: double

Parameters
IDDATA object — Time-domain data to be imported
iddata(1,1) (default) | iddata object

Time-domain data that is to be imported, specified as an iddata object that you have created in the
MATLAB workspace. The iddata object must contain only one experiment. For a multiple-experiment
iddata object z, to specify an iddata object for experiment number kexp, specify IDDATA object
as getexp(z,kexp).

 Iddata Source

2-19

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Iddata Sink

Topics
“Simulate Identified Model in Simulink”

2 Blocks

2-20

Idmodel
Simulate identified linear model in Simulink software
Library: System Identification Toolbox / Models

Description
The Idmodel block simulates the output of an identified linear model using time-domain input data.
The model is a state-space (idss), linear grey-box (idgrey), polynomial (idpoly), transfer function
(idtf), or process (idproc) model that you previously estimated or created. For the simulation of
state-space and linear grey-box models, you can specify the initial state values. For other linear
models, initial conditions are set to zero. You can also add noise to the simulated output.

Ports
Input

Port_1(In1) — Simulation input data
scalar | vector

Simulation input data, specified as a scalar for a single-input model. The data must be time-domain
data. For multi-input models, specify the input as an Nu-element vector, where Nu is the number of
inputs. For example, you can use a Vector Concatenate block to concatenate scalar signals into a
vector signal.

Note Do not use a Bus Creator or Mux block to produce the vector signal.

Data Types: double

Output

Port_1(Out1) — Simulated output
scalar | vector

Simulated output from linear model, returned as a scalar for a single-output model and an Ny-
element vector for a model with Ny outputs.
Data Types: double

Parameters
Identified model — Linear model to be simulated
idss(-1,1,1,0,'Ts',1) (default) | idss object | idgrey object | idpoly object | idtf object |
idproc object

 Idmodel

2-21

Linear model to be simulated, specified as an idss, idgrey, idpoly, idtf, or idproc object. The
model can be continuous-time or discrete-time, with or without input-output delays. You previously
estimate or construct the linear model in the MATLAB workspace.

Initial states (state space only: idss,idgrey) — Initial state values
0 (default) | vector

Initial state values of state-space (idss) and linear grey-box (idgrey) models, specified as an Nx-
element vector, where Nx is the number of states of the model. To estimate the initial states that
provide a best fit between measured data and the simulated response of the model for the same
input, use the findstates command.

For example, to compute initial states such that the response of the model M matches the simulated
output data in the data set z, specify X0, such that:

X0 = findstates(M,z)

For linear models other than idss or idgrey, the block assumes that initial conditions are zero.

If you want to reproduce the simulation results that you get in the Model Output plot window in the
System Identification app, or from the compare command:

1 If the identified model m is not a state-space or grey-box model, convert the model into state-
space form (idss model), and specify the state-space model mss in the block.

mss = idss(m);
2 Compute the initial state values that produce the best fit between the model output and the

measured output signal using findstates. Specify the prediction horizon as Inf, that is,
minimize the simulation error.

X0 = findstates(mss,z,Inf);
3 Use the model mss and initial states X0 in the Idmodel block to perform the simulation. Specify

the same input signal z for simulation that you used as validation data in the app or compare.

Add noise — Add noise to simulated output
on (default) | off

When you select this parameter, the block derives the noise amplitude from the linear model property
model.NoiseVariance. The software filters random Gaussian white noise with the noise transfer
function of the model and adds the resulting noise to the simulated model response. If you want to
add the same noise every time you run the Simulink model, specify the Noise seed(s) property.

For continuous-time models, the ideal variance of the noise term is infinite. In reality, you see a band-
limited noise that accounts for the time constants of the system. You can interpret the resulting
simulated output as filtered using a lowpass filter with a passband that does not distort the dynamics
from the input.

Noise seed(s) — Add same noise to output for multiple simulations
[] (default) | nonnegative integer | vector

The Noise seed(s) property seeds the random number generator such that the block adds the same
noise to the simulated output every time you run the Simulink model. For information about using
seeds, see rng.

2 Blocks

2-22

For multi-output models, you can use independent noise realizations that generate the outputs with
additive noise. Enter a vector of Ny nonnegative integer entries, where Ny is the number of output
channels.

For random restarts that vary from one simulation to another, specify Noise seed(s) as [].

Dependency

To enable this parameter, select Add noise.

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
sim | idgrey | idproc | idtf | idss | idpoly | findstates

Blocks
Iddata Sink | Iddata Source

Topics
“Simulate Identified Model in Simulink”

 Idmodel

2-23

Nonlinear ARX Model
Simulate nonlinear ARX model in Simulink software
Library: System Identification Toolbox / Models

Description
The Nonlinear ARX Model block simulates the output of a nonlinear ARX model using time-domain
input data. The model is an idnlarx model that you previously estimated or constructed in the
MATLAB workspace. You specify initial conditions for the simulation as either steady-state input and
output signal levels or as an initial state vector.

Limitations
• This block does not support model referencing or model protection.

Ports
Input

Port_1(In1) — Simulation input data
scalar | vector

Simulation input data, specified as a scalar for a single-input model. The data must be time-domain
data. For multi-input models, specify the input as an Nu-element vector, where Nu is the number of
inputs. For example, you can use a Vector Concatenate block to concatenate scalar signals into a
vector signal.

Note Do not use a Bus Creator or Mux block to produce the vector signal.

Data Types: double

Output

Port_1(Out1) — Simulated output
scalar | vector

Simulated output from nonlinear ARX model, returned as a scalar for a single-output model and an
Ny-element vector for a model with Ny outputs.
Data Types: double

2 Blocks

2-24

Parameters
Model — Nonlinear ARX model to be simulated
idnlarx object

Nonlinear ARX model to be simulated, specified as an idnlarx object. You previously estimate or
construct the idnlarx model in the MATLAB workspace.

Initial conditions — Initial condition specification for simulation
Input and output values (default) | State values

The states of a nonlinear ARX model correspond to the dynamic elements of the nonlinear ARX model
structure. The dynamic elements are the model regressors. Regressors can be the delayed input or
output variables (standard regressors) or user-defined transformations of delayed input-output
variables (custom regressors). For more information about the states of a nonlinear ARX model, see
the idnlarx reference page.

For simulating nonlinear ARX models, you can specify the initial conditions one of the following:

• Input and output values — Specify steady-state input and output signal levels in Input
level and Output level, respectively.

• State values — Specify a vector of length equal to the number of states in the model in
Specify initial states as a vector.

Input level — Steady-state input signal level
0 (default) | scalar

Steady-state input signal level before simulation, specified as a scalar.
Dependency

To enable this parameter, specify Initial conditions as Input and output values.

Output level — Steady-state output signal level
0 (default) | scalar

Steady-state output signal level before simulation, specified as a scalar.
Dependency

To enable this parameter, specify Initial conditions as Input and output values.

Specify initial states as a vector — Initial state values
0 (default) | vector

Initial state values of the model, specified as an Nx-element vector, where Nx is the number of states
of the model. This parameter is named Vector of state values until you specify Model.

If you do not know the initial states, you can estimate these states as follows:

• To simulate the model around a given input level when you do not know the corresponding output
level, estimate the equilibrium state values using the findop command. For example, to simulate
a model M about a steady-state point where the input is 1 and the output is unknown, specify the
initial state values as X0, where

X0 = findop(M,'steady',1,NaN)

 Nonlinear ARX Model

2-25

• To estimate the initial states that provide a best fit between measured data and the simulated
response of the model for the same input, use the findstates command. For example, to
compute initial states such that the response of the model M matches the output data in the data
set z, specify X0, such that:

X0 = findstates(M,z,Inf)
• To continue a simulation from a previous simulation run, use the simulated input-output values

from the previous simulation to compute the initial states X0 for the current simulation. Use the
data2state command to compute X0. For example, suppose that firstSimData is a variable
that stores the input and output values from a previous simulation. For a model M, you can specify
X0, such that:

X0 = data2state(M,firstSimData)

Dependency

To enable this parameter, specify Initial conditions as State values.

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
sim | idnlarx | idnlarx/findop | findstates

Blocks
Iddata Sink | Iddata Source

Topics
“Identifying Nonlinear ARX Models”
“Simulate Identified Model in Simulink”

2 Blocks

2-26

Nonlinear Grey-Box Model
Simulate nonlinear grey-box model in Simulink software

Library
System Identification Toolbox

Description
Simulates systems of nonlinear grey-box (idnlgrey) models.

Input

Input signal to the model.

Output

Output signal from the model.

Parameters
IDNLGREY model

Name of idnlgrey variable in the MATLAB workspace.
Initial state

Specify the initial states as one of the following:

• 'z': Specifies zero, which corresponds to a system starting from rest.
• 'm': Specifies the internal initial states of the model.
• Vector of size equal to the number of states in the idnlgrey object.
• An initial state structure array. For information about creating this structure, type help

idnlgrey/sim in the MATLAB Command Window.

Version History
Introduced in R2008a

See Also
Functions
idnlgrey

 Nonlinear Grey-Box Model

2-27

Blocks
Iddata Sink | Iddata Source

Topics
“Estimate Nonlinear Grey-Box Models”

2 Blocks

2-28

Hammerstein-Wiener Model
Simulate Hammerstein-Wiener model in Simulink software
Library: System Identification Toolbox / Models

Description
The Hammerstein-Wiener Model block simulates the output of a Hammerstein-Wiener model using
time-domain input data. The model is an idnlhw model that you previously estimated or constructed
in the MATLAB workspace. You specify initial conditions for the simulation as one of the following:

• Zero for all states
• Initial state vector representing the initial states of the linear block

For information about the structure of a Hammerstein-Wiener model, see “What are Hammerstein-
Wiener Models?”.

Ports
Input

Port_1(In1) — Simulation input data
scalar | vector

Simulation input data, specified as a scalar for a single-input model. The data must be time-domain
data. For multi-input models, specify the input as an Nu-element vector, where Nu is the number of
inputs. For example, you can use a Vector Concatenate block to concatenate scalar signals into a
vector signal.

Note Do not use a Bus Creator or Mux block to produce the vector signal.

Data Types: double

Output

Port_1(Out1) — Simulated output
scalar | vector

Simulated output from Hammerstein-Wiener model, returned as a scalar for a single-output model
and as an Ny-element vector for a model with Ny outputs.
Data Types: double

 Hammerstein-Wiener Model

2-29

Parameters
Model — Hammerstein-Wiener model to be simulated
idnlhw object

Hammerstein-Wiener model to be simulated, specified as an idnlhw object. You previously estimate
or construct the idnlhw model in the MATLAB workspace.

Initial conditions — Initial condition specification for simulation
Zero (default) | State values

The states of a Hammerstein-Wiener model correspond to the states of the embedded linear idpoly
or idss model. For more information about the states, see the idnlhw reference page. You specify
Initial conditions as one of the following:

• Zero — Specifies zero initial state values, which correspond to a simulation starting from a state
of rest.

• State values — You specify the state values in Specify a vector of state values. Specify the
states as a vector of length equal to the number of states in the model.

If you do not know the initial states, you can estimate these states as follows:

• To simulate the model around a given input level when you do not know the corresponding
output level, you can estimate the equilibrium state values using the findop command.

For example, to simulate a model M about a steady-state point where the input is 1 and the
output is unknown, you can specify the initial state values as X0, where:

X0 = findop(M,'steady',1,NaN)
• To estimate the initial states that provide a best fit between measured data and the simulated

response of the model for the same input, use the findstates command.

For example, to compute initial states such that the response of the model M matches the
simulated output data in the data set z, specify X0, such that:

X0 = findstates(M,z)

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
sim | idnlhw | idnlhw/findop | findstates

Blocks
Iddata Sink | Iddata Source

2 Blocks

2-30

Topics
“Identifying Hammerstein-Wiener Models”
“Simulate Identified Model in Simulink”

 Hammerstein-Wiener Model

2-31

Neural State-Space Model
Simulate neural state-space model in Simulink
Library: System Identification Toolbox / Models

Description
Simulates neural state-space (idNeuralStateSpace) models.

Ports
Input

u — Input of the neural state-space model
scalar | vector

Input of the neural state-space model, specified as a vector signal with as many elements as the
number of inputs you specify when creating the corresponding idNeuralStateSpace object. If the
idNeuralStateSpace object specified in the block dialog does not have inputs, this port does not
appear.

x0 — Initial state of the neural state-space model
scalar | vector

Initial state of the neural state-space model, specified as a vector signal with as many elements as the
number of states you specify when creating the corresponding idNeuralStateSpace object.
Dependencies

To enable this input port, select the initial state source parameter as External. Then, connect the
port to an upstream signal supplying the value of the initial state.

Output

y — Output of the neural state-space model
scalar | vector

Input of the neural state-space model, returned as a vector signal with as many elements as the
number of outputs you specify when creating the corresponding idNeuralStateSpace object.

x — State of the neural state-space model
scalar | vector

State of the neural state-space model, output as a vector signal with as many elements as the number
of states nx that you specify when creating the corresponding idNeuralStateSpace object. These
values are identical to the first nx values in the y output.
Dependencies

To enable this output port, select the Output state parameter.

2 Blocks

2-32

dx — State derivative/difference of the neural state-space model
scalar | vector

State derivative or difference of the neural state-space model, output as a vector signal with as many
elements as the number of states you specify when creating the corresponding
idNeuralStateSpace object.

For continuous-time neural state space models, this value is the derivative of the state with respect to
time. For discrete-time neural state space models, this value is the difference between the next state
and the current one.
Dependencies

To enable this output port, select the Output state derivative/difference parameter.

Parameters
Model — Neural state space object
idNeuralStateSpace(1,'NumInputs',1) (default) | idNeuralStateSpace object

Specify an idNeuralStateSpace object that defines a neural state-space system by entering the
name of an idNeuralStateSpace object from the MATLAB workspace.

Note If you change the input/output configuration of Model in the workspace, click the ... button
next to the Model edit field in the block dialog to refresh the Neural State-Space Model block.

Programmatic Use
Block Parameter: sys
Type: string, character vector
Default: ""

Initial state source — Initial state source
Internal (default) | External

Specify whether to enter the initial condition directly on the dialog box or to receive the initial
condition from an input port.

• If you set Initial state source to Internal, enter the initial condition in the edit field under
Initial state.

• If you set Initial state source to External, the input port x0 is added to the block. You must
then connect an upstream signal supplying the value of the initial state to the x0 input port.

Programmatic Use
Block Parameter: x0type
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Initial state — Initial state
0 (default) | scalar | vector

Specify the initial state of the neural state-space object as a vector of nx entries, where nx is the
number of states in Model.

 Neural State-Space Model

2-33

Use this parameter make sure that the system states reflect the true plant environment at the start of
your simulation, to the best of your knowledge.

Programmatic Use
Block Parameter: ic
Type: string, character vector
Default: "0"

Output state — Add external output state port
off (default) | on

Select this parameter to add the x output port to the block. During simulation this port outputs the
internal state of the idNeuralStateSpace object specified in Model.

Programmatic Use
Block Parameter: returnx
Type: string, character vector
Values: "off", "on"
Default: "off"

Output state derivative/difference — Add external output state derivative port
off (default) | on

Select this parameter to add the dx output port to the block. During simulation this port outputs the
time derivative of the internal state of the idNeuralStateSpace object specified in Model.

Programmatic Use
Block Parameter: returndx
Type: string, character vector
Values: "off", "on"
Default: "off"

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
idNeuralStateSpace

Functions
nlssest | createMLPNetwork | nssTrainingOptions | sim | evaluate

2 Blocks

2-34

Kalman Filter
Estimate states of discrete-time or continuous-time linear system
Library: Control System Toolbox / State Estimation

System Identification Toolbox / Estimators

Description
Use the Kalman Filter block to estimate states of a state-space plant model given process and
measurement noise covariance data. The state-space model can be time-varying. A steady-state
Kalman filter implementation is used if the state-space model and noise covariance matrices are all
time-invariant, and a time-varying Kalman filter is used otherwise.

A Kalman filter provides the optimal solution to the continuous or discrete estimation problems in
“Continuous-Time Estimation” on page 2-49 and “Discrete-Time Estimation” on page 2-50.

The Kalman Filter block differs from the kalman command in the following ways:

• When you call kalman(sys,...), it assumes that sys includes the G and H matrices. Specifically,
sys.B is of the form [B G] and sys.D is of the form [D H]. When you provide a LTI variable to
the Kalman Filter block, it does not assume that the LTI variable provided contains G and H. They
are optional and separate.

• The filter created by the kalman command outputs [yhat;xhat] by default. The block outputs
only xhat by default.

• The Kalman command can output both P and Z covariance matrices for discrete-time systems. The
block can only output P or Z for such systems.

Limitations
• The plant and noise data must satisfy these constraints:

• (C,A) is detectable.
• R > 0 and Q− NR−1NT ≥ 0.
• (A− NR−1C, Q− NR−1NT) has no uncontrollable mode on the imaginary axis (or unit circle in

discrete time), where

Q = GQGT

R = R + HN + NTHT + HQHT

N = G(QHT + N)
• The continuous-time Kalman filter cannot be used in Function-Call Subsystems or Triggered

Subsystems.

 Kalman Filter

2-35

Ports
Input

u — Known inputs
scalar | vector

Known inputs u(t) or u[k].

Dependencies

To enable this port, select the Add input port u parameter. This parameter is selected by default.

y — Measured outputs
scalar | vector

Measured output y[n] to update the estimated states.

A — State matrix
real matrix

n-by-n state (or system) matrix.

Dependencies

To enable this port, set the Model source parameter to Input Port.

B — Input matrix
real matrix

n-by-p input matrix.

Dependencies

To enable this port, set the Model source parameter to Input Port and select the Add input port u
parameter.

C — Output matrix
real matrix

q-by-p output matrix.

Dependencies

To enable this port, set the Model source parameter to Input Port.

D — Feedthrough matrix
real matrix

q-by-p feedthrough (or feedforward) matrix. In cases where the system model does not have a direct
feedthrough, D is the zero matrix.

Dependencies

To enable this port, set the Model source parameter to Input Port and select the Add input port u
parameter.

2 Blocks

2-36

G — Measured outputs
real matrix

Noise transformation in the state-space equation.

Dependencies

To enable this port, select Use G and H matrices (default G=I and H=0) parameter.

H — Measured outputs
real matrix

Noise transformation in the state-space equation.

Dependencies

To enable this port, select Use G and H matrices (default G=I and H=0) parameter.

Q — Process noise covariance matrix
scalar | vector | matrix

Process noise covariance matrix, specified as one of the following:

• Real nonnegative scalar. Q is an Nw-by-Nw diagonal matrix with the scalar on the diagonals. Nw is
the number of process noise inputs in the model.

• Vector of real nonnegative scalars. Q is an Nw-by-Nw diagonal matrix with the elements of the
vector on the diagonals of Q.

• Nw-by-Nw positive semi-definite matrix.

Dependencies

To enable this port, deselect the Time-invariant Q parameter.

R — Measurement noise covariance matrix
scalar | vector | matrix

Measurement noise covariance matrix, specified as one of the following:

• Real positive scalar. R is an Ny-by-Ny diagonal matrix with the scalar on the diagonals. Ny is the
number of measured outputs in the model.

• Vector of real positive scalars. R is an Ny-by-Ny diagonal matrix with the elements of the vector on
the diagonals of R.

• Ny-by-Ny positive-definite matrix.

Dependencies

To enable this port, deselect the Time-invariant R parameter.

N — Process and measurement noise cross-covariance matrix
scalar | vector | matrix

Process and measurement noise cross-covariance matrix, specified as a Nw-by-Ny matrix. The matrix
[Q N; NT R] must be positive definite.

 Kalman Filter

2-37

Dependencies

To enable this port, deselect the Time-invariant N parameter.

P0 — Initial state estimation error covariance
scalar | vector | matrix

P matrix at the initial time.

Dependencies

To enable this port, set the Model source parameter to Input Port and set the Source parameter to
Input Port.

X0 — Initial state estimates
scalar | vector

Estimated states at the initial time.

Dependencies

To enable this port, set the Source parameter to Input Port.

Enable — Control signal to enable measurement updates
scalar

This port controls the measurement updates and takes a scalar signal.

Dependencies

To enable this port, select Add input port Enable to control measurement updates parameter.

Reset — Control signal to reset state estimates
scalar

Control signal to reset estimated states and the parameter covariance matrix using specified initial
values. See “External Reset” on page 2-0 for more information on when a reset is triggered.

Dependencies

To enable this port, set the External reset paramter to any value other than None.

Output

xhat — Estimated states
scalar | vector

Estimated states of the linear system.

yhat — Estimated outputs
scalar | vector

Estimated outputs of the linear system.

Dependencies

To enable this port, select Output estimated model output y parameter.

2 Blocks

2-38

Z — State estimation error covariance
matrix

Add Z output port to the block.

To enable this port, select Output state estimation error covariance Z parameter.
Dependencies

To enable this port, set the Time domain parameter to Discrete-Time and select Use the current
measurement y[n] to improve xhat[n] parameter.

P — State estimation error covariance
matrix

Add P output port to the block.

To enable this port, select Output state estimation error covariance P parameter.
Dependencies

To enable this port, set the Time domain parameter to Continuous-Time or set the Time domain
parameter to Discrete-Time and deselect Use the current measurement y[n] to improve xhat[n]
parameter.

Note

• All input ports except Enable and Reset must have the same data type (single or double).
• Enable and Reset ports support single, double, int8, uint8, int16, uint16, int32,

uint32, and boolean data types.

Parameters
Filter Settings

Time domain — Specify whether to estimate continuous-time or discrete-time states
Discrete-Time (default) | Continuous-Time

• Discrete-Time (default) — Block estimates discrete-time states.
• Continuous-Time — Block estimates continuous-time states.

When the Kalman Filter block is in a model with synchronous state control (see the State Control
block), you cannot select Continuous-Time.

Programmatic Use
Block Parameter: TimeDomain
Type: string, character vector
Values: "Discrete-Time" | "Continuous-Time"
Default: "Discrete-Time"

Use the current measurement y[n] to improve xhat[n] — Update output state
estimates using the measure outputs
on (default) | off

 Kalman Filter

2-39

Use the current estimator variant of the discrete-time Kalman filter. When this parameter is not
selected, the delayed estimator (variant) is used.

This parameter is available only when Time domain is Discrete-Time.

Programmatic Use
Block Parameter: UseCurrentEstimator
Type: string, character vector
Values: "off" | "on"
Default: "on"

Sample Time — Block sample time
-1 (default) | non-negative scalar

Block sample time, specified as -1 or a positive scalar.

The default value is -1, which implies that the block inherits its sample time based on the context of
the block within the model. All block input ports must have the same sample time.

Dependencies

This parameter is available only when Time domain is Discrete-Time and Model source is
Individual A, B, C, D matrices or Input port. The sample time is obtained from the LTI state-space
variable Model source is LTI State-Space Variable.

Programmatic Use
Block Parameter: Ts
Type: string, character vector
Values: "-1" | scalar
Default: "-1"

Model Parameters

System Model

Model source — Specify how the A, B, C, D matrices are provided to the block
LTI State-Space Variable (default) | Individual A, B, C, D matrices | Input port

• LTI State-Space Variable — Use the model specified in Variable. The default value is
ss(0.95,1,1,0). The sample time of the model must match the Time domain parameter; that
is, the model must be discrete-time if Time domain is discrete-time.

• Individual A, B, C, D matrices — Specify the A, B, C, and D in the block paramaters.
• Input port — Specify the A, B, C, D matrices as input signals to the Kalman Filter block. If you

select this option, the block includes additional input ports A, B, C, D. You must also specify
Number of states, Number of inputs, and Number of outputs in the block parameters.

Programmatic Use
Block Parameter: ModelSource
Type: string, character vector
Values: "LTI State-Space Varaible" | "Individual A, B, C, D matrices" | "Input
port"
Default: "LTI State-Space Variable"

A — State Matrix
0.95 (default)

2 Blocks

2-40

Specify the A matrix. It must be real and square. The default value is 0.95.

Dependencies

To enable this port, set the Model source parameter to Individual A, B, C, D matrices.

Programmatic Use
Block Parameter: A
Type: string, character vector
Values: "real matrix"
Default: "0.95"

B — Input Matrix
1 (default)

Specify the B matrix. It must be real and have as many rows as the A matrix. The default value is 1.

Dependencies

To enable this port, set the Model source parameter to Individual A, B, C, D matrices.

Programmatic Use
Block Parameter: B
Type: string, character vector
Values: "real matrix"
Default: "1"

C — Output Matrix
1 (default)

Specify the C matrix. It must be real and have as many columns as the A matrix. The default value is
1.

Dependencies

To enable this port, set the Model source parameter to Individual A, B, C, D matrices.

Programmatic Use
Block Parameter: C
Type: string, character vector
Values: "real matrix"
Default: "1"

D — Feedthrough Matrix
0 (default)

Specify the D matrix. It must be real and must have as many rows as the C matrix and as many
columns as the B matrix. The default value is 0.

Dependencies

To enable this port, set the Model source parameter to Individual A, B, C, D matrices.

Programmatic Use
Block Parameter: D
Type: string, character vector
Values: "real matrix"

 Kalman Filter

2-41

Default: "0"

Number of states — Number of states to be estimated
1 (default) | non-negative scalar

Number of states to be estimated, specified as a positive integer. The default value is 1.
Dependencies

To enable this port, set the Model source parameter to Input port.
Programmatic Use
Block Parameter: NumberOfStates
Type: string, character vector
Values: "1" | scalar
Default: "1"

Number of inputs — Number of known inputs
1 (default) | non-negative scalar

Number of known inputs in the model, specified as a positive integer. The default value is 1.
Dependencies

To enable this port, set the Model source parameter to Input port.
Programmatic Use
Block Parameter: NumberOfInputs
Type: string, character vector
Values: "1" | scalar
Default: "1"

Number of outputs — Number of measured output
1 (default) | non-negative scalar

Number of measured outputs in the model, specified as a positive integer. The default value is 1.
Dependencies

To enable this port, set the Model source parameter to Input port.
Programmatic Use
Block Parameter: NumberOfOutputs
Type: string, character vector
Values:"1" | scalar
Default: "1"

Initial Estimates

Source — Specify how to enter the initial state estimates and initial state estimation error
covariance
Dialog (default) | Input port

• Dialog — Specify the values directly in the dialog boxes.
• Input port — Inherit the values from input ports. The default is 10. The block includes an

additional input port X0. A second additional input port P0 is added when time-varying Kalman
filter is used. X0 and P0 must satisfy the same conditions as the parameters Initial states x[0] and
State estimation error covariance P[0], respectively.

2 Blocks

2-42

Programmatic Use
Block Parameter: InitialEstimateSource
Type: string, character vector
Values: "Dialog" | "Input port"
Default: "Dialog"

Initial states x[0] — Specify the initial state estimate
0 (default) | scalar | vector

Specify the initial state estimate as a real scalar or vector. If you specify a scalar, all initial state
estimates are set to this scalar. If you specify a vector, the length of the vector must match with the
number of states in the model. The default is 0.

Dependencies

To enable this port, set the Source parameter to Dialog.

Programmatic Use
Block Parameter: X0
Type: string, character vector
Values: "0" | scalar | vector
Default: "0"

State estimation error covariance P[0] — Specify the initial state estimation error
covariance
10 (default) | scalar | vector | matrix

Specify the initial state estimation error covariance P[0] for a discrete-time Kalman filter or P(0) for
continuous-time. This parameter must be specified as one of the following:

• Real nonnegative scalar. P is an Ns-by-Ns diagonal matrix with the scalar on the diagonals. Ns is
the number of states in the model.

• Vector of real nonnegative scalars. P is an Ns-by-Ns diagonal matrix with the elements of the
vector on the diagonals of P.

• Ns-by-Ns positive semi-definite matrix.

Dependencies

To enable this port, set the Model source parameter to Input port and Source parameter to
Dialog.

Programmatic Use
Block Parameter: P0
Type: string, character vector
Values: "10" | scalar | vector | matrix
Default: "10"

Noise Characterstics

Use the Kalman Gain K from the model variable — Specify whether to use pre-
identified Kalman Gain contained in state-space plant model
off (default) | on

Specify whether to use the pre-identified Kalman Gain present in the state-space model specified by
Variable.

 Kalman Filter

2-43

Dependencies

To enable this parameter, you must meet the following conditions:

• The Model source is set toLTI State-Space Variable and Variable is an identified state-space
model (idss) with a nonzero K matrix.

• Select the Time Invariant Q, Time Invariant R , and Time Invariant N parameters.
• If the Use G and H matrices (default G=I and H=0) parameter is selected, the Time

Invariant G and Time Invariant H parameters must also be selected.

Programmatic Use
Block Parameter: UseK
Type: string, character vector
Values: "off" | "on"
Default: "off"

Use G and H matrices (default G=I and H=0) — Specify whether to use non-default
values for G and H matrices
off (default) | on

By default G=I and H=0. If you select this option, you must specify G and H parameter.
Programmatic Use
Block Parameter: UseGH
Type: string, character vector
Values: "off" | "on"
Default: "off"

G — Specify the G matrix
1 (default) | non-negative scalar | vector | matrix

It must be a real matrix with as many rows as the A matrix. The default value is 1.
Dependencies

To enable this paramter, select Use G and H matrices (default G=I and H=0) parameter.
Programmatic Use
Block Parameter: G
Type: string, character vector
Values: scalar | vector | matrix
Default: "1"

Time-invariant G — Specify the G matrix is time invariant
on (default) | off

If you unselect this option, the block includes an additional input port G.
Programmatic Use
Block Parameter: TimeInvariantG
Type: string, character vector
Values: "off" | "on"
Default: "on"

H — Specify the H matrix
0 (default) | non-negative scalar | vector | matrix

2 Blocks

2-44

It must be a real matrix with as many rows as the C matrix and as many columns as the G matrix. The
default value is 0.

Dependencies

To enable this paramter, select Use G and H matrices (default G=I and H=0) parameter.

Programmatic Use
Block Parameter: H
Type: string, character vector
Values: scalar | vector | matrix
Default: "0"

Time-invariant H — Specify the H matrix is time invariant
on (default) | off

If you unselect this option, the block includes an additional input port H.

Programmatic Use
Block Parameter: TimeInvariantH
Type: string, character vector
Values: "off" | "on"
Default: "on"

Number of process noise inputs — Process noise inputs
1 (default) | non-negative scalar

Specify the number of process noise inputs in the model. The default value is 1.

Dependencies

This parameter is available only when Time-invariant G and Time-invariant H are deselected.
Otherwise, this information is inferred from the G or H matrix.

Programmatic Use
Block Parameter: NumberOfProcessNoiseInputs
Type: string, character vector
Values: scalar
Default: "1"

Q — Process noise covariance matrix
0.05 (default) | non-negative scalar | vector | matrix

Specified as one of the following:

• Real nonnegative scalar. Q is an Nw-by-Nw diagonal matrix with the scalar on the diagonals. Nw is
the number of process noise inputs in the model.

• Vector of real nonnegative scalars. Q is an Nw-by-Nw diagonal matrix with the elements of the
vector on the diagonals of Q.

• Nw-by-Nw positive semi-definite matrix.

Dependencies

To enable this paramater, select the Time-invariant Q parameter.

 Kalman Filter

2-45

Programmatic Use
Block Parameter: Q
Type: string, character vector
Values: scalar | vector | matrix
Default: "0.05"

Time-invariant Q — Specify if Q matrix is time invariant
on (default) | off

If you deselect this parameter, the block includes an additional input port Q.

Programmatic Use
Block Parameter: TimeInvariantQ
Type: string, character vector
Values: "off" | "on"
Default: "on"

R — Measurement noise covariance matrix
1 (default) | non-negative scalar | vector | matrix

Specified as one of the following:

• Real positive scalar. R is an Ny-by-Ny diagonal matrix with the scalar on the diagonals. Ny is the
number of measured outputs in the model.

• Vector of real positive scalars. R is an Ny-by-Ny diagonal matrix with the elements of the vector on
the diagonals of R.

• Ny-by-Ny positive-definite matrix.

Dependencies

To enable this paramater, select the Time-invariant R parameter.

Programmatic Use
Block Parameter: R
Type: string, character vector
Values: scalar | vector | matrix
Default: "1"

Time-invariant R — Specify if R matrix is time invariant
on (default) | off

If you deselect this parameter, the block includes an additional input port R.

Programmatic Use
Block Parameter: TimeInvariantR
Type: string, character vector
Values: "off" | "on"
Default: "on"

N — Process and measurement noise cross-covariance matrix
0 (default) | non-negative scalar | vector | matrix

Specify this parameter as a Nw-by-Ny matrix. The matrix [Q N; NT R] must be positive definite.

2 Blocks

2-46

Dependencies

To enable this paramater, select the Time-invariant N parameter.

Programmatic Use
Block Parameter: N
Type: string, character vector
Values: scalar | vector | matrix
Default: "0"

Time-invariant N — Specify if N matrix is time invariant
on (default) | off

If you deselect this parameter, the block includes an additional input port N.

Programmatic Use
Block Parameter: TimeInvariantN
Type: string, character vector
Values: "off" | "on"
Default: "on"

Options

Additional Inports

Add input port u — Specify if model contains known inputs
on (default) | off

Select this option if your model contains known inputs u(t) or u[k]. The parameter is selected by
default. Deselecting this parameter removes the input port u from the block and removes the B, D
and Number of inputs parameters from the block dialog box.

Programmatic Use
Block Parameter: AddInputPort
Type: string, character vector
Values: "off" | "on"
Default: "on"

Add input port Enable to control measurement updates — Control the measurement
updates
off (default) | on

Select this option if you want to control the measurement updates. The block includes an additional
inport Enable. The Enable input port takes a scalar signal. This parameter is not selected by default.

By default the block does measurement updates at each time step to improve the state and output
estimates x and y based on measured outputs. The measurement update is skipped for the current
sample time when the signal in the Enable port is 0. Concretely, the equation for state estimates
become ẋ (t) = A(t)x (t) + B(t)u(t) for a continuous-time Kalman filter and
x [n + 1 n] = A[n]x [n n− 1] + B[n]u[n] for discrete-time.

Note Enabling the Enable port allows measurement updates to be controlled. By default, Kalman
Filter does the measurement updates.

 Kalman Filter

2-47

Programmatic Use
Block Parameter: AddEnablePort
Type: string, character vector
Values: "off" | "on"
Default: "off"

External Reset — Option to reset estimated states and parameter covariance matrix
using specified initial values
None (default) | Rising | Falling | Either | Level | Level hold

This parameter helps control when the block is reset. Suppose you reset the block at a time step, t. If
the block is enabled at t, the software uses the initial parameter values specified either in the block
dialog or the input ports P0 and X0 to estimate the states. In other words, at t, the block performs a
time update and, if it is enabled, a measurement update after the reset. The block outputs these
updated estimates.

Specify one of the following:

• None (Default) — Estimated states x and state estimation error covariance matrix P values are
not reset.

• Rising — Triggers a reset when the control signal rises from a negative or zero value to a
positive value. If the initial value is negative, rising to zero triggers a reset.

• Falling — Triggers a reset when the control signal falls from a positive or zero value to a
negative value. If the initial value is positive, falling to zero triggers a reset.

• Either — Triggers a reset when the control signal is either rising or falling.
• Level — Triggers a reset in either of these cases:

• The control signal is nonzero at the current time step.
• The control signal changes from nonzero at the previous time step to zero at the current time

step.
• Level hold — Triggers reset when the control signal is nonzero at the current time step.

When you choose an option other than None, a Reset input port is added to the block to provide the
reset control input signal.

Programmatic Use
Block Parameter: ExternalReset
Type: string, character vector
Values: "None" | "Rising" | "Falling" | "Either" | "Level" | "Level hold"
Default: "None"

Additional Outports

Output estimated model output y — Include estimated model outputs
off (default) | on

Add a y output port to the block to output the estimated model outputs. The parameter is not
selected by default.

Programmatic Use
Block Parameter: OutputEstimatedY
Type: string, character vector
Values: "off" | "on"

2 Blocks

2-48

Default: "off"

Output state estimation error covariance Z — Add Z output port to the block
off (default) | on

Add a Z output port to the block. The Z matrix is provided only when Time domain is Discrete-Time
and the Use the current measurement y[n] to improve xhat[n] parameter is selected. Otherwise,
the P matrix, as described in the “Algorithms” on page 2-49 section, is provided.

This parameter is not selected by default.

Programmatic Use
Block Parameter: OutputZ
Type: string, character vector
Values: "off" | "on"
Default: "off"

Output state estimation error covariance P — Add P output port to the block
off (default) | on

Add a P output port to the block. This parameter is not selected by default.

Dependencies

To enable this port, set the Time domain parameter to Continuous-Time or set the Time domain
parameter to Discrete-Time and deselect Use the current measurement y[n] to improve xhat[n]
parameter.

Programmatic Use
Block Parameter: OutputP
Type: string, character vector
Values: "off" | "on"
Default: "off"

Algorithms
Continuous-Time Estimation

Given the continuous plant

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)w(t) (state equation)
y(t) = C(t)x(t) + D(t)u(t) + H(t)w(t) + v(t) (measurement equation)

with known inputs u, white process noise w, and white measurement noise v satisfying

E w(t) = E v(t) = 0
E[w(t)wT(t)] = Q(t)
E[w(t)vT(t)] = N(t)

E[v(t)v(t] = R(t)

construct a state estimate x that minimizes the state estimation error covariance
P(t) = E[(x− x)(x− x)T].

 Kalman Filter

2-49

The optimal solution is the Kalman filter with equations

L(t) = (P(t)CT(t) + N(t))R(t,

Ṗ(t) = A(t)P(t) + P(t)AT(t) + Q(t)− L(t)R(t)LT(t),

ẋ (t) = A(t)x (t) + B(t)u(t) + L(t)(y(t)− C(t)x (t)− D(t)u(t)),

where

Q(t) = G(t)Q(t)GT(t),

R(t) = R(t) + H(t)N(t) + NT(t)HT(t) + H(t)Q(t)HT(t),

N(t) = G(t)(Q(t)HT(t) + N(t)) .

The Kalman filter uses known inputs u and measurements y to generate state estimates x . If you
want, the block can also output the estimates of the true plant output y .

The block implements the steady-state Kalman filter when the system matrices (A(t), B(t), C(t),
D(t), G(t), H(t)) and noise covariance matrices (Q(t), R(t), N(t)) are constant (specified in the
Block Parameters dialog box). The steady-state Kalman filter uses a constant matrix P that minimizes
the steady-state estimation error covariance and solves the associated continuous-time algebraic
Riccati equation:

 P = lim
t ∞

E[(x− x)(x− x)T] .

Discrete-Time Estimation

Consider the discrete plant

x n + 1 = A n x n + B n u n + G n w n ,
y n = C n x n + D n u n + H n w n + v n ,

with known inputs u, white process noise w, and white measurement noise v satisfying

E[w[n]] = E[v[n]] = 0,
E[w[n]wT[n]] = Q[n],
E[v[n]vT[n]] = R[n],
E[w[n]vT[n]] = N[n] .

The estimator has the following state equation

2 Blocks

2-50

x [n + 1 n] = A[n]x [n n− 1] + B[n]u[n] + L[n](y[n]− C[n]x [n n− 1]− D[n]u[n]),

where the gain L[n] is calculated through the discrete Riccati equation:

L[n] = (A[n]P[n]CT[n] + N[n])(C,

M[n] = P[n]CT[n](C,

Z[n] = (I −M[n]C[n])P[n](I + M[n]R[n]MT[n],

P[n + 1] = (A[n]− N[n]R−1[n]C[n])Z(A + Q[n]− N[n]R−1[n]NT[n],

where I is the identity matrix of appropriate size and

Q[n] = G[n]Q[n]GT[n],

R[n] = R[n] + H[n]N[n] + NT[n]HT[n] + H[n]Q[n]HT[n],

N[n] = G[n](Q[n]HT[n] + N[n]),
and

P[n] = E[(x− x [n n− 1])(x],

Z[n] = E[(x− x [n n])(x],

The steady-state Kalman filter uses a constant matrix P that minimizes the steady-state estimation
error covariance and solves the associated discrete-time algebraic Riccati equation.

There are two variants of discrete-time Kalman filters:

• The current estimator generates the state estimates x [n n] using all measurements available,
including y[n]. The filter updates x [n n− 1] with y[n] and outputs:

x [n n] = x [n n− 1] + M[n](y[n]− C[n]x [n n− 1]− D[n]u[n]),
y [n n] = C[n]x [n n] + D[n]u[n] .

• The delayed estimator generates the state estimates x [n n− 1] using measurements up to y[n –1].
The filter outputs x [n n− 1] as defined previously, along with the optional output

y [n n− 1] = C[n]x [n n− 1] + D[n]u[n]

The current estimator has better estimation accuracy than the delayed estimator, which is important
for slow sample times. However, it has a higher computational cost, so implementing it inside control
loops is harder. More specifically, it has direct feedthrough which leads to an algebraic loop if the
Kalman filter is used in a feedback loop that does not contain any delays (the feedback loop itself also
has direct feedthrough). This algebraic loop can impact the speed of simulation, and you cannot
generate code if your model contains algebraic loops.

Version History
Introduced in R2014b

R2021a: Kalman Filter block: Numerical changes

Starting in 2021a, numerical improvements in the algorithms used by the Kalman Filter block might
produce results that are different from the results you obtained using previous versions.

 Kalman Filter

2-51

References
[1] Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems.

2nd ed. Reading, Mass: Addison-Wesley, 1990.

[2] Lewis, Frank L. Optimal Estimation: With an Introduction to Stochastic Control Theory. New York:
Wiley, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
kalman | extendedKalmanFilter | unscentedKalmanFilter | particleFilter

Blocks
Extended Kalman Filter | Unscented Kalman Filter | Particle Filter

Topics
“What Is Online Estimation?”
“Validate Online State Estimation in Simulink”
“Troubleshoot Online State Estimation”

2 Blocks

2-52

Model Type Converter
Convert polynomial model coefficients to state-space model matrices

Library
Estimators

Description
Use the Model Type Converter block to convert the ARX, ARMAX, OE, or BJ model coefficients into
state-space model matrices.

The block inport, u, requires a bus. The number of elements depends on the input polynomial model
type:

• ARX — A, B
• ARMAX — A, B, C
• OE — B, F
• BJ — B,C, D, F

These bus elements must contain row vectors of the estimated coefficient values as outputted by the
Recursive Polynomial Model Estimator block. For MISO data, specify B polynomial coefficients as a
matrix where the i-th row parameters correspond to the i-th input. The coefficient values can vary
with time. The Model Type Converter block converts these coefficients into the A, B, C, and D
matrices of a discrete-time state-space model. The Model Type Converter block outport, y, returns a
bus with elements that correspond to the A, B, C, and D matrices of the state-space model. If the
signals in u are time-varying, then the state-space matrices are time-varying too.

You can also estimate a state-space model online by using the Recursive Polynomial Model Estimator
and Model Type Converter blocks together. Connect the outport of the Recursive Polynomial Model
Estimator block to the inport of the Model Type Converter block to obtain online values of the state-
space matrices. The conversion ignores the noise component of the models. In other words, the state-
space matrices only capture the y(t)/u(t) relationship.

Parameters
Input model type

Specify the model type coefficients to convert to state-space model matrices. Specify one of the
following model types:

• ARX

 Model Type Converter

2-53

• ARMAX
• OE
• BJ

Ports
Port Port

Type

(In/
Out)

Description

u In Estimated A, B, C, D and F polynomial coefficients, specified as a bus
with elements: A, B, C, D and F.

y Out State-space model, returned as a bus with elements that correspond to
the A, B, C, and D matrices.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

Version History
Introduced in R2014a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Recursive Polynomial Model Estimator

2 Blocks

2-54

Particle Filter
Estimate states of discrete-time nonlinear system using particle filter
Library: Control System Toolbox / State Estimation

System Identification Toolbox / Estimators

Description
The Particle Filter block estimates the states of a discrete-time nonlinear system using the discrete-
time particle filter algorithm.

Consider a plant with states x, input u, output m, process noise w, and measurement y. Assume that
you can represent the plant as a nonlinear system.

The algorithm computes the state estimates x of the nonlinear system using the state transition and
measurement likelihood functions you specify.

You create the nonlinear state transition function and measurement likelihood functions for the
system and specify these functions in the block. The block supports state estimation of a system with
multiple sensors that are operating at different sampling rates. You can specify up to five
measurement likelihood functions, each corresponding to a sensor in the system.

Ports
Input

y1,y2,y3,y4,y5 — Measured system outputs
vector

Measured system outputs corresponding to each measurement likelihood function that you specify in
the block. The number of ports equals the number of measurement likelihood functions in your
system. You can specify up to five measurement likelihood functions. For example, if your system has
two sensors, you specify two measurement likelihood functions in the block. The first port y1 is
available by default. Click Add Measurement, to generate port y2 corresponding to the second
measurement likelihood function.

Specify the ports as N-dimensional vectors, where N is the number of quantities measured by the
corresponding sensor. For example, if your system has one sensor that measures the position and

 Particle Filter

2-55

velocity of an object, then there is only one port y1. The port is specified as a two-dimensional vector
with values corresponding to position and velocity.

Dependencies

The first port y1 is available by default. Ports y2 to y5 are generated when you click Add
Measurement.

StateTransitionFcnInputs — Optional input argument to state transition function
scalar | vector | matrix

Optional input argument to the state transition function f other than the state x.

If you create f using a MATLAB function (.m file), the software generates the port
StateTransitionFcnInputs when you enter the name of your function, and click Apply.

If your state transition function has more than one additional input, use a Simulink Function block to
specify the function. When you use a Simulink Function block, you provide the additional inputs
directly to the Simulink Function block using Inport blocks. No input ports are generated for the
additional inputs in the Particle Filter block.

Dependencies

This port is generated only if both of the following conditions are satisfied:

• You specify f in Function using a MATLAB function, and f is on the MATLAB path.
• f requires only one additional input argument apart from particles.

MeasurementLikelihoodFcn1Inputs,...,MeasurementLikelihoodFcn5Inputs — Optional
input argument to each measurement likelihood function
scalar | vector | matrix

Optional inputs to the measurement likelihood functions other than the state x and measurement y.

MeasurementLikelihoodFcn1Inputs corresponds to the first measurement likelihood function that
you specify, and so on.

If you specify two measurement inputs using MATLAB functions (.m files) in Function, the software
generates ports MeasurementLikelihoodFcn1Inputs and MeasurementLikelihoodFcn2Inputs
when you click Apply. You can specify the inputs to these ports as scalars, vectors, or matrices.

If your measurement likelihood functions have more than one additional input, use Simulink Function
blocks to specify the functions. When you use a Simulink Function block, you provide the additional
inputs directly to the Simulink Function block using Inport blocks. No input ports are generated for
the additional inputs in the Particle Filter block.

Dependencies

A port corresponding to a measurement likelihood function h is generated only if both of the
following conditions are satisfied:

• You specify measurement input h in Function using a MATLAB function, and h is on the MATLAB
path.

• h requires only one additional input argument apart from particles and measurement.

2 Blocks

2-56

Enable1,Enable2,Enable3,Enable4,Enable5 — Enable correction of estimated states
when measured data is available
scalar

Enable correction of estimated states when measured data is available.

For example, consider that measured output data is not available at all time points at the port y1 that
corresponds to the first measurement likelihood function. Then, use a signal value other than 0 at the
Enable1 port to enable the correction of estimated states when measured data is available. Specify
the port value as 0 when measured data is not available. Similarly, if measured output data is not
available at all time points at the port yi for the ith measurement likelihood function, specify the
corresponding port Enablei as a value other than 0.
Dependencies

If you select Add Enable port for a measurement likelihood function, a port corresponding to that
measurement likelihood function is generated. The port appears when you click Apply.

Output

xhat — Estimated states
vector

Estimated states, returned as a vector of size Ns, where Ns is the number of states of the system. To
access the individual states, use the Selector block.

When the Use the current measurements to improve state estimates parameter is selected, the
block outputs the corrected state estimate x [k k] at time step k, estimated using measured outputs
until time k. If you clear this parameter, the block returns the predicted state estimate x [k k− 1] for
time k, estimated using measured output until a previous time k-1. Clear this parameter if your filter
is in a feedback loop and there is an algebraic loop in your Simulink model.

P — State estimation error covariance
matrix

State estimation error covariance, returned as an Ns-by-Ns matrix, where Ns is the number of states
of the system. To access the individual covariances, use the Selector block.

You can output the error covariance only if you select Output state estimation error covariance in
the Block outputs, Multirate tab, and click Apply.
Dependencies

This parameter is available if in the Block outputs, Multirate tab, the State estimation method
parameter is set to 'Mean'.

Particles — Particle values used for state estimation
array

Particle values used for state estimation, returned as an Ns-by-Np or Np-by-Ns array. Ns is the
number of states of the system, and Np is the number of particles.

• If the StateOrientation parameter is specified as 'column', then Particles is returned as an
Ns-by-Np array.

• If the StateOrientation parameter is specified as 'row', then Particles is returned as an Np-
by-Ns array.

 Particle Filter

2-57

Dependencies

This port is generated if you select Output all particles in the Block outputs, Multirate tab, and
click Apply.

Weights — Particle weights used for state estimation
vector

Particle weights used for state estimation, returned as a 1-by-Np or Np-by-1 vector, where Np is the
number of particles used for state estimation.

• If the StateOrientation parameter is specified as 'column', then Weights is returned as a 1-
by-Np vector, where each weight is associated with the particle in the same column in the
Particles array.

• If the StateOrientation parameter is specified as 'row', then Weights is returned as a Np-
by-1 vector, where each weight is associated with the particle in the same row in the Particles
array.

Dependencies

This port is generated if you select Output weights in the Block outputs, Multirate tab, and click
Apply.

Parameters
System Model Tab

State Transition

Function — State transition function name
'vdpParticleFilterStateFcn' (default) | function name

The particle filter state transition function calculates the particles at time step k+1, given particles at
time step k per the dynamics of your system and process noise. This function has the syntax:

particlesNext = f(particles, param1, param2, ...)

where, particles and particlesNext have dimensions Ns-by-Np if State Orientation is specified as
'column', or Np-by-Ns if State Orientation is specified as 'row'. Also, param_i represents
optional input arguments you may specify. For more information on optional input arguments, see
“StateTransitionFcnInputs” on page 2-0 .

You create the state transition function and specify the function name in Function. For example, if
vdpParticleFilterStateFcn.m is the state transition function that you created and saved, specify
Function as 'vdpParticleFilterStateFcn'.

You can create Function using a Simulink Function block or as a MATLAB function (.m file).

Programmatic Use
Block Parameter: StateTransitionFcn
Type: character vector, string
Default: 'vdpParticleFilterStateFcn'

2 Blocks

2-58

Initialization

Number of Particles — Number of particles used in the filter
1000 (default) | positive scalar integer

Number of particles used in the filter, specified as a positive scalar integer. Each particle represents a
state hypothesis in the system. A higher number of particles increases the state estimation accuracy,
but also increases the computational effort required to run the filter.

Programmatic Use
Block Parameter: NumberOfParticles
Type: positive scalar integer
Default: 1000

Distribution — Initial distribution of particles
'Gaussian' (default) | 'Uniform' | 'Custom'

Initial distribution of particles, specified as 'Gaussian', 'Uniform', or 'Custom'.

If you choose 'Gaussian', the initial set of particles or state hypotheses are distributed per the
multivariate Gaussian distribution, where you specify the Mean and Covariance. The initial weight
of all particles is assumed to be equal.

If you choose 'Uniform', the initial set of particles are distributed per the uniform distribution,
where you specify the upper and lower State bounds. The initial weight of all particles is assumed to
be equal.

'Custom' allows you to specify your own set of initial particles and their weights. You can use
arbitrary probability distributions for Particles and Weights to initialize the filter.

Programmatic Use
Block Parameter: InitialDistribution
Type: character vector
Values: 'Gaussian', 'Uniform', 'Custom'
Default: 'Gaussian'

Mean — Initial mean value of particles
[0;0] (default) | vector

Initial mean value of particles, specified as a vector. The number of states to be estimated defines the
length of the vector.

Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to
Gaussian.

Programmatic Use
Block Parameter: InitialMean
Type: array
Default: [0,0]

Covariance — Initial covariance of particles
1 (default) | scalar | vector | matrix

Initial covariance of particles, specified as a scalar, vector, or matrix.

 Particle Filter

2-59

If Covariance is specified as:

• A scalar, then it must be positive. The covariance is assumed to be a [Ns Ns] matrix with this
scalar on the diagonals. Here, Ns is the number of states.

• A vector, then each element must be positive. The covariance is assumed to be a [Ns Ns] matrix
with the elements of the vector on the diagonals.

• A matrix, then it must be positive semidefinite.

Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to
Gaussian.

Programmatic Use
Block Parameter: InitialCovariance
Type: scalar, vector, or matrix
Default: 1

Circular Variables — Circular variables used for state estimation
0 (default) | scalar | vector

Circular variables used for state estimation, specified as a scalar, or Ns-element vector, where Ns is
the number of states.

If Circular Variables is specified as a scalar, the software extends it to a vector where each element
is equal to this scalar. Circular (or angular) distributions use a probability density function with a
range of [-π π]. Use circular variables if some of the states in your system represent angular
quantities like the orientation of an object.

Programmatic Use
Block Parameter: CircularVariables
Type: scalar, vector
Default: 0

State Orientation — Orientation of input system states
'column' (default) | 'row'

Orientation of system states, specified as 'column' or 'row'.

If State Orientation is specified as:

• 'column', then the first input argument to the state transition and measurement likelihood
function is [Ns Np]. In this case, ith column of this matrix is the ith particle (state hypothesis). Also,
the states estimates xhat is output as a [Ns 1] vector. Here, Ns is the number of states, and Np is
the number of particles.

• 'row', then the first input argument to the state transition and measurement likelihood function
is [Np Ns], and each row of this matrix contains a particle. Also, the states estimates xhat is
output as a [1 Ns] vector.

Programmatic Use
Block Parameter: StateOrientation
Type: character vector
Values: 'column', 'row'
Default: 'column'

2 Blocks

2-60

State bounds — Initial bounds on system states
[-3 3;-3 3] (default) | array

Initial bounds on system states, specified as an Ns-by-2 array, where Ns is the number of states.

The ith row lists the lower and upper bound of the uniform distribution for the initial distribution of
particles of the ith state.

Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to
Uniform.

Programmatic Use
Block Parameter: InitialStateBounds
Type: array
Default: [-3 3;-3 3]

Particles — Custom particle distribution for state estimation
[] (default) | array

Custom particle distribution for state estimation, specified as an Ns-by-Np or Np-by-Ns array. Ns is
the number of states of the system, and Np is the number of particles.

• If the StateOrientation parameter is specified as 'column', then Particles is an Ns-by-Np
array.

• If the StateOrientation parameter is specified as 'row', then Particles is an Np-by-Ns array.

Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to
Custom.

Programmatic Use
Block Parameter: InitialParticles
Type: array
Default: []

Weights — Custom particle weight values for state estimation
[] (default) | positive vector

Custom particle weight values for state estimation, specified as a 1-by-Np or Np-by-1 positive vector,
where Np is the number of particles used for state estimation.

• If the StateOrientation parameter is specified as 'column', then Weights is a 1-by-Np vector.
Each weight in the vector is associated with the particle in the same column in the Particles
array.

• If the StateOrientation parameter is specified as 'row', then Weights is a Np-by-1 vector.
Each weight in the vector is associated with the particle in the same row in the Particles array.

Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to
Custom.

 Particle Filter

2-61

Programmatic Use
Block Parameter: InitialWeights
Type: positive vector
Default: []

Measurement

Function — Measurement likelihood function name
'vdpMeasurementLikelihoodFcn' (default) | function name

The measurement likelihood function calculates the likelihood of particles (state hypotheses) using
the sensor measurements. For each state hypothesis (particle), the function first calculates an Nm-
element measurement hypothesis vector. Then the likelihood of each measurement hypothesis is
calculated based on the sensor measurement and the measurement noise probability distribution. this
function has the syntax:

likelihood = h(particles, measurement, param1, param2, ...)

where, likelihood is an Np-element vector, where Np is the number of particles. particles have
dimensions Ns-by-Np if State Orientation is specified as 'column', or Np-by-Ns if State
Orientation is specified as 'row'. measurement is an Nm-element vector where, Nm is the number
of measurements your sensor provides. param_i represents optional input arguments you may specify.
For more information on optional input arguments, see
“MeasurementLikelihoodFcn1Inputs,...,MeasurementLikelihoodFcn5Inputs” on page 2-0 .

You create the measurement likelihood function and specify the function name in Function. For
example, if vdpMeasurementLikelihoodFcn.m is the measurement likelihood function that you
created and saved, specify Function as 'vdpMeasurementLikelihoodFcn'.

You can create Function using a Simulink Function block or as a MATLAB function (.m file).

• You can use a MATLAB function only if h has zero or one additional input argument param_i
other than Particles and Measurement.

The software generates an additional input port MeasurementLikelihoodFcniInputs to specify
this argument for the ith measurement likelihood function, and click Apply.

• If you are using a Simulink Function block, specify x and y using Argument Inport blocks and the
additional inputs param_i using Inport blocks in the Simulink Function block. You do not provide
param_i to the Particle Filter block.

If you have multiple sensors in your system, you can specify multiple measurement likelihood
functions. You can specify up to five measurement likelihood functions using the Add Measurement
button. To remove measurement likelihood functions, use Remove Measurement.
Programmatic Use
Block Parameter: MeasurementLikelihoodFcn1, MeasurementLikelihoodFcn2,
MeasurementLikelihoodFcn3, MeasurementLikelihoodFcn4, MeasurementLikelihoodFcn5
Type: character vector, string
Default: 'vdpMeasurementLikelihoodFcn'

Add Enable Port — Enable correction of estimated states only when measured data is
available
off (default) | on

Suppose that measured output data is not available at all time points at the port y1 that corresponds
to the first measurement likelihood function. To generate an input port Enable1, select Add Enable

2 Blocks

2-62

port. Use a signal at this port to enable the correction of estimated states only when measured data
is available. Similarly, if measured output data is not available at all time points at the port yi for the
ith measurement likelihood function, select the corresponding Add Enable port.
Programmatic Use
Block Parameter: HasMeasurementEnablePort1, HasMeasurementEnablePort2,
HasMeasurementEnablePort3, HasMeasurementEnablePort4, HasMeasurementEnablePort5
Type: character vector
Values: 'off', 'on'
Default: 'off'

Resampling

Resampling method — Method used for particle resampling
'Multinomial' (default) | 'Systemic' | 'Stratified'

Method used for particle resampling, specified as one of the following:

• 'Multinomial' — Multinomial resampling, also called simplified random sampling, generates N
random numbers independently from the uniform distribution in the open interval (0,1) and uses
them to select particles proportional to their weight.

• 'Stratified' — Stratified resampling divides the whole population of particles into subsets
called strata. It pre-partitions the (0,1) interval into N disjoint sub-intervals of size 1/N. The
random numbers are drawn independently in each of these sub-intervals and the sample indices
chosen in the strata.

• 'Systematic' — Systematic resampling is similar to stratified resampling as it also makes use of
strata. One distinction is that it only draws one random number from the open interval (0,1/N)
and the remaining sample points are calculated deterministically at a fixed 1/N step size.

Programmatic Use
Block Parameter: ResamplingMethod
Type: character vector
Values: 'Multinomial', 'Systemic', 'Stratified'
Default: 'Multinomial'

Trigger method — Method to determine when resampling occurs
'Ratio' (default) | 'Interval'

Method to determine when resampling occurs, specified as either 'Ratio' or 'Interval'. The
'Ratio' value triggers resampling based on the ratio of effective total particles. The 'Interval'
value triggers resampling at regular time steps of the particle filter operation.

Programmatic Use
Block Parameter: TriggerMethod
Type: character vector
Values: 'Ratio', 'Interval'
Default: 'Ratio'

Minimum effective particle ratio — Minimum desired ratio of the effective number of
particles to the total number of particles
0.5 (default) | positive scalar

Minimum desired ratio of the effective number of particles to the total number of particles, specified
as a positive scalar. The effective number of particles is a measure of how well the current set of

 Particle Filter

2-63

particles approximates the posterior distribution. A lower effective particle ratio implies that a lower
number of particles are contributing to the estimation and resampling is required.

If the ratio of the effective number of particles to the total number of particles falls below the
minimum effective particle ratio, a resampling step is triggered.

Specify minimum effective particle ratio as any value from 0 through 1.

Dependencies

This parameter is available if in the System model tab, the Trigger method parameter is set to
Ratio.

Programmatic Use
Block Parameter: MinEffectiveParticleRatio
Type: scalar
Values: Range [0,1]
Default: 0.5

Sampling Interval — Fixed interval between resampling
1 (default) | positive scalar integer

Fixed interval between resampling, specified as a positive scalar integer. The sampling interval
determines during which correction steps the resampling is executed. For example, a value of two
means the resampling is executed every second correction step. A value of inf means that
resampling is never executed.

Dependencies

This parameter is available if in the System model tab, the Trigger method parameter is set to
Interval.

Programmatic Use
Block Parameter: SamplingInterval
Type: positive scalar integer
Default: 1

Random Number Generator Options

Randomness — Whether the random numbers are repeatable
'Repeatable' (default) | 'Not repeatable'

Whether the random numbers are repeatable, specified as either 'Repeatable' or 'Not
repeatable'. If you want to be able to produce the same result more than once, set Randomness
to 'Repeatable', and specify the same random number generator seed value in Seed.

Programmatic Use
Block Parameter: Randomness
Type: character vector
Values: 'Repeatable', 'Not repeatable'
Default: 'Repeatable'

Seed — Seed value for repeatable random numbers
0 (default) | scalar

Seed value for repeatable random numbers, specified as a scalar.

2 Blocks

2-64

Dependencies

This parameter is available if in the System model tab, the Randomness parameter is set to
'Repeatable'.
Programmatic Use
Block Parameter: Seed
Type: scalar
Default: 0

Settings

Data type — Data type for block parameters
double (default) | single

Use this parameter to specify the data type for all block parameters.
Programmatic Use
Block Parameter: DataType
Type: character vector
Values: 'single', 'double'
Default: 'double'

Sample time — Block sample time
1 (default) | positive scalar

Block sample time, specified as a positive scalar.

Use the Sample time parameter if your state transition and all measurement likelihood functions
have the same sample time. Otherwise, select the Enable multirate operation option in the
Multirate tab, and specify sample times in the same tab.
Dependencies

This parameter is available if in the Block output, Multirate tab, the Enable multirate operation
parameter is off.
Programmatic Use
Block Parameter: SampleTime
Type: character vector, string
Default: '1'

Block Outputs, Multirate Tab
Outputs

State Estimation Method — Method used for extracting a state estimate from particles
'Mean' (default) | 'MaxWeight' | 'None'

Method used for extracting a state estimate from particles, specified as one of the following:

• 'Mean' — The Particle Filter block outputs the weighted mean of the particles, depending on the
parameters Weights and Particles, as the state estimate.

• 'Maxweight' — The Particle Filter block outputs the particle with the highest weight as the state
estimate.

• 'None' — Use this option to implement a custom state estimation method by accessing all
particles using the Output all particles parameter from the Block outputs, Multirate tab.

 Particle Filter

2-65

Programmatic Use
Block Parameter: StateEstimationMethod
Type: character vector, string
Values: 'Mean', 'MaxWeight', 'None'
Default: 'Mean'

Output all particles — Output all particles
'off' (default) | 'on'

If you select this parameter, an output port for particles used in the estimation, Particles is
generated in the block.

• If the StateOrientation parameter is specified as 'column', then the particles are output as
an Ns-by-Np array. Ns is the number of states of the system, and Np is the number of particles.

• If the StateOrientation parameter is specified as 'row', then the particles are output as an
Np-by-Ns array.

Programmatic Use
Block Parameter: OutputParticles
Type: character vector
Values: 'off', 'on'
Default: 'off'

Output weights — Output particle weights
'off' (default) | 'on'

If you select this parameter, an output port for particle weights used in the estimation, Weights is
generated in the block.

• If the StateOrientation parameter is specified as 'column', then the particle weights are
output as a 1-by-Np vector. Here, where each weight is associated with the particle in the same
column in the Particles array. Np is the number of particles used for state estimation.

• If the StateOrientation parameter is specified as 'row', then the particle weights are output
as a Np-by-1 vector.

Programmatic Use
Block Parameter: OutputWeights
Type: character vector
Values: 'off', 'on'
Default: 'off'

Output state estimation error covariance — Output state estimation error covariance
'off' (default) | 'on'

If you select this parameter, a state estimation error covariance output port, P is generated in the
block.

Dependencies

This parameter is available if in the Block outputs, Multirate tab, the State estimation method
parameter is set to 'Mean'.

Programmatic Use
Block Parameter: OutputStateCovariance
Type: character vector

2 Blocks

2-66

Values: 'off', 'on'
Default: 'off'

Use the current measurements to improve state estimates — Option to use current
measurements for state estimation
'on' (default) | 'off'

When this parameter is selected, the block outputs the corrected state estimate x [k k] at time step k,
estimated using measured outputs until time k. If you clear this parameter, the block returns the
predicted state estimate x [k k− 1] for time k, estimated using measured output until a previous time
k-1. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your
Simulink model.

Programmatic Use
Block Parameter: UseCurrentEstimator
Type: character vector
Values: 'on', 'off'
Default: 'on'

Multirate

Enable multirate operation — Enable specification of different sample times for state
transition and measurement likelihood functions
'off' (default) | 'on'

Select this parameter if the sample times of the state transition or any of the measurement likelihood
functions differ from the rest. You specify the sample times in the Multirate tab, in Sample time.

Programmatic Use
Block Parameter: EnableMultirate
Type: character vector
Values: 'off', 'on'
Default: 'off'

Sample times — State transition and measurement likelihood function sample times
positive scalar

If the sample times for state transition and measurement likelihood functions are different, specify
Sample time. Specify the sample times for the measurement functions as positive integer multiples
of the state transition sample time. The sample times you specify correspond to the following input
ports:

• Ports corresponding to state transition function — Additional input to state transition function
StateTransitionFcnInputs. The sample times of these ports must always equal the state
transition function sample time, but can differ from the sample time of the measurement
likelihood functions.

• Ports corresponding to ith measurement likelihood function — Measured output yi, additional
input to measurement likelihood function MeasurementLikelihoodFcniInputs, enable signal at
port Enablei. The sample times of these ports for the same measurement likelihood function
must always be the same, but can differ from the sample time for the state transition function and
other measurement likelihood functions.

 Particle Filter

2-67

Dependencies

This parameter is available if in the Block outputs, Multirate tab, the Enable multirate operation
parameter is on.

Programmatic Use
Block Parameter: StateTransitionFcnSampleTime,
MeasurementLikelihoodFcn1SampleTime1, MeasurementLikelihoodFcn1SampleTime2,
MeasurementLikelihoodFcn1SampleTime3, MeasurementLikelihoodFcn1SampleTime4,
MeasurementLikelihoodFcn1SampleTime5
Type: character vector, string
Default: '1'

Version History
Introduced in R2018a

References
[1] T. Li, M. Bolic, P.M. Djuric, "Resampling Methods for Particle Filtering: Classification,

implementation, and strategies," IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 70-86,
May 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The state transition and measurement likelihood functions that you specify must use only the
MATLAB commands and Simulink blocks that support code generation. For a list of blocks that
support code generation, see “Simulink Built-In Blocks That Support Code Generation” (Simulink
Coder). For a list of commands that support code generation, see “Functions and Objects Supported
for C/C++ Code Generation” (MATLAB Coder).

See Also
Blocks
Kalman Filter | Unscented Kalman Filter | Extended Kalman Filter

Functions
particleFilter | extendedKalmanFilter | unscentedKalmanFilter

Topics
“Parameter and State Estimation in Simulink Using Particle Filter Block”
“Validate Online State Estimation in Simulink”
“Troubleshoot Online State Estimation”
“Estimate States of Nonlinear System with Multiple, Multirate Sensors”

External Websites
Understanding Kalman Filters: Nonlinear State Estimators — MATLAB Video Series

2 Blocks

2-68

https://www.mathworks.com/videos/understanding-kalman-filters-part-5-nonlinear-state-estimators-1495052905460.html

Recursive Least Squares Estimator
Estimate model coefficients using recursive least squares (RLS) algorithm
Library: System Identification Toolbox / Estimators

Description
The Recursive Least Squares Estimator estimates the parameters of a system using a model that is
linear in those parameters. Such a system has the following form:

y(t) = H(t)θ(t) .

y and H are known quantities that you provide to the block to estimate θ. The block can provide both
infinite-history [1] and finite-history [2] (also known as sliding-window), estimates for θ. For more
information on these methods, see “Recursive Algorithms for Online Parameter Estimation”.

The block supports several estimation methods and data input formats. Configurable options in the
block include:

• Sample-based or frame-based data format — See the Input Processing parameter.
• Infinite-history or finite- history estimation — See the History parameter.
• Multiple infinite-history estimation methods — See the Estimation Method parameter.
• Initial conditions, enable flag, and reset trigger — See the Initial Estimate, Add enable port,

and External Reset parameters.

For a given time step t, y(t) and H(t) correspond to the Output and Regressors inports of the
Recursive Least Squares Estimator block, respectively. θ(t) corresponds to the Parameters outport.

For example, suppose that you want to estimate a scalar gain, θ, in the system y = h2θ. Here, y is
linear with respect to θ. You can use the Recursive Least Squares Estimator block to estimate θ.
Specify y and h2 as inputs to the Output and Regressor inports.

Ports
Input

Regressors — Regressors signal
vector | matrix

Regressors input signal H(t). The Input Processing and Number of Parameters parameters define
the dimensions of the signal:

• Sample-based input processing and N estimated parameters — 1-by-N vector

 Recursive Least Squares Estimator

2-69

• Frame-based input processing with M samples per frame and N estimated parameters — M-by-N
matrix

Data Types: single | double

Output — Measured output
scalar | vector

Measured output signal y(t). The Input Processing parameter defines the dimensions of the signal:

• Sample-based input processing — Scalar
• Frame-based input processing with M samples per frame — M-by-1 vector

Data Types: single | double

Enable — Enable estimation updates
true (default) | false

External signal that allows you to enable and disable estimation updates. If the signal value is:

• true — Estimate and output the parameter values for the time step.
• false — Do not estimate the parameter values, and output the most recent previously estimated

value.

Dependencies

To enable this port, select the Add enable port parameter.
Data Types: single | double | Boolean | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Reset — Reset trigger
scalar

Reset parameter estimation to its initial conditions. The value of the External reset parameter
determines the trigger type. The trigger type dictates whether the reset occurs on a signal that is
rising, falling, either rising or falling, level, or on level hold.

Dependencies

To enable this port, select any option other than None in the External reset dropdown.
Data Types: single | double | Boolean | int8 | int16 | int32 | uint8 | uint16 | uint32

InitialParameters — Initial parameter estimates
vector

Initial parameter estimates, supplied from a source external to the block. The block uses this inport at
the beginning of the simulation or when you trigger an algorithm reset using the Reset signal.

The Number of Parameters parameter defines the dimensions of the signal. If there are N
parameters, the signal is N-by-1.

Dependencies

To enable this port, set History to Infinite and Initial Estimate to External.
Data Types: single | double

2 Blocks

2-70

InitialCovariance — Initial covariance of parameters
positive scalar (default) | vector of positive scalars | symmetric positive-definite matrix

Initial parameter covariances, supplied from a source external to the block. For details, see the
Parameter Covariance Matrix parameter.The block uses this inport at the beginning of the
simulation or when you trigger an algorithm reset using the Reset signal.

Dependencies

To enable this port, set the following parameters:

• History to Infinite
• Estimation Method to Forgetting Factor or Kalman Filter
• Initial Estimate to External

Data Types: single | double

InitialRegressors — Initial values of the regressors
matrix

Initial values of the regressors in the initial data window when using finite-history (sliding-window)
estimation, supplied from an external source. The Window length parameter W and the Number of
Parameters parameter N define the dimensions of this signal, which is W-by-N.

The InitialRegressors signal controls the initial behavior of the algorithm. The block uses this inport
at the beginning of the simulation or whenever the Reset signal triggers.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Dependencies

To enable this port, set History to Finite and Initial Estimate to External.
Data Types: single | double

InitialOutputs — Initial value of the measured output buffer
vector

Initial set of output measurements when using finite-history (sliding-window) estimation, supplied
from an external source. The signal to this port must be a W-by-1 vector, where W is the window
length.

The InitialOutputs signal controls the initial behavior of the algorithm. The block uses this inport at
the beginning of the simulation or whenever the Reset signal triggers.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Dependencies

To enable this port, set History to Finite, and Initial Estimate to External.

 Recursive Least Squares Estimator

2-71

Data Types: single | double

Output

Parameters — Estimated parameters
vector

Estimated parameters θ(t), returned as an N-by-1 vector where N is the number of parameters.
Data Types: single | double

Error — Estimation error
scalar | vector

Estimation error, returned as:

• Scalar — Sample-based input processing
• M-by-1 vector — Frame-based input processing with M samples per frame

Dependencies

To enable this port, select the Output estimation error parameter.
Data Types: single | double

Covariance — Parameter estimation error covariance P
matrix

Parameter estimation error covariance P, returned as an N-by-N matrix, where N is the number of
parameters. For details, see the Output Parameter Covariance Matrix parameter.

Dependencies

To enable this port:

• If History is Infinite, set Estimation Method to Forgetting Factor or Kalman Filter.
• Whether History is Infinite or Finite, select the Output parameter covariance matrix

parameter.

Data Types: single | double

Parameters
Model Parameters

Initial Estimate — Source of initial parameter estimates
None (default) | Internal | External

Specify how to provide initial parameter estimates to the block:

• None — Do not specify initial estimates.

• If History is Infinite, the block uses 1 as the initial parameter estimate.
• If History is Finite, the block calculates the initial parameter estimates from the initial

Regressors and Outputs signals.

2 Blocks

2-72

Specify Number of Parameters, and also, if History is Infinite, Parameter Covariance
Matrix.

• Internal — Specify initial parameter estimates internally to the block

• If History is Infinite, specify the Initial Parameter Values and Parameter Covariance
Matrix parameters.

• If History is Finite, specify the Number of Parameters, the Initial Regressors, and the
Initial Outputs parameters.

• External — Specify initial parameter estimates as an input signal to the block.

Specify the Number of Parameters parameter. Your setting for the History parameter
determines which additional signals to connect to the relevant ports:

• If History is Infinite — InitialParameters and InitialCovariance
• If History is Finite — InitialRegressors and InitialOutputs

Programmatic Use
Block Parameter: InitialEstimateSource
Type: character vector, string
Values: 'None', 'Internal', 'External'
Default: 'None'

Number of Parameters — Number of parameters to estimate
2 (default) | positive integer

Specify the number of parameters to estimate in the model, equal to the number of elements in the
parameter θ(t) vector.
Dependencies

To enable this parameter, set either:

• History to Infinite and Initial Estimate to either None or External
• History to Finite

An alternative way to specify the number of parameters N to estimate is by using the Initial
Parameter Values parameter, for which you define an initial estimate vector with N elements. This
approach covers the one remaining combination, where History is Infinite and Initial Estimate
is Internal. For more information, see Initial Parameter Values.
Programmatic Use
Block Parameter: InitialParameterData
Type: positive integer
Default: 2

Parameter Covariance Matrix — Initial parameter covariance
1e4 (default) | scalar | vector | matrix

Specify Parameter Covariance Matrix as a:

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements.

• Vector of real positive scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix, with
[α1,...,αN] as the diagonal elements.

 Recursive Least Squares Estimator

2-73

• N-by-N symmetric positive-definite matrix.

Here, N is the number of parameters to be estimated.

Dependencies

To enable this parameter, set the following parameters:

• History to Infinite
• Initial Estimate to None or Internal
• Estimation Method to Forgetting Factor or Kalman Filter

Programmatic Use
Block Parameter: P0
Type: scalar, vector, or matrix
Default: 1e4

Initial Parameter Values — Initial values of the parameters to estimate
[1 1] (default) | vector

Specify initial parameter values as a vector of length N, where N is the number of parameters to
estimate.

Dependencies

To enable this parameter, set History to Infinite and Initial Estimate to Internal.

Programmatic Use
Block Parameter: InitialParameterData
Type: real vector
Default: [1 1]

Initial Regressors — Initial values of the regressors buffer
0 (default) | matrix

Specify the initial values of the regressors buffer when using finite-history (sliding window)
estimation. The Window length parameter W and the Number of Parameters parameter N define
the dimensions of the regressors buffer, which is W-by-N.

The Initial Regressors parameter controls the initial behavior of the algorithm. The block uses this
parameter at the beginning of the simulation or whenever the Reset signal triggers.

When the initial value is set to 0, the block populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Dependencies

To enable this parameter, set History to Finite and Initial Estimate to Internal.

Programmatic Use
Block Parameter: InitialRegressors
Type: real matrix

2 Blocks

2-74

Default: 0

Initial Outputs — Initial values of the measured outputs buffer
0 (default) | vector

Specify initial values of the measured outputs buffer when using finite-history (sliding-window)
estimation. This parameter is a W-by-1 vector, where W is the window length.

When the initial value is set to 0, the block populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

The Initial Outputs parameter controls the initial behavior of the algorithm. The block uses this
parameter at the beginning of the simulation or whenever the Reset signal triggers.

Dependencies

To enable this parameter, set History to Finite and Initial Estimate to Internal .

Programmatic Use
Block Parameter: InitialOutputs
Type: real vector
Default: 0

Input Processing and Sample Time

Input Processing — Choose sample-based or frame-based processing
Sample-based (default) | Frame-based

• Sample-based processing operates on signals streamed one sample at a time.
• Frame-based processing operates on signals containing samples from multiple time steps. Many

machine sensor interfaces package multiple samples and transmit these samples together in
frames. Frame-based processing allows you to input this data directly without having to first
unpack it.

Specifying frame-based data adds an extra dimension of M to some of your data inports and outports,
where M is the number of time steps in a frame. These ports are:

• Regressors
• Output
• Error

For more information, see the port descriptions in “Ports” on page 2-69.

Programmatic Use
Block Parameter: InputProcessing
Type: character vector, string
Values: 'Sample-based', 'Frame-based'
Default: 'Sample-based'

Sample Time — Block sample time
-1 (default) | positive scalar

 Recursive Least Squares Estimator

2-75

Specify the data sample time, whether by individual samples for sample-based processing (ts), or by
frames for frame-based processing (tf = Mts), where M is the frame length. When you set Sample
Time to its default value of -1, the block inherits its ts or tf based on the signal.

Specify Sample Time as a positive scalar to override the inheritance.
Programmatic Use
Block Parameter: Ts
Type: real scalar
Default: -1

Algorithm and Block Options

Algorithm Options

History — Choose infinite or finite data history
Infinite (default) | Finite

The History parameter determines what type of recursive algorithm you use:

• Infinite — Algorithms in this category aim to produce parameter estimates that explain all data
since the start of the simulation. These algorithms retain the history in a data summary. The block
maintains this summary within a fixed amount of memory that does not grow over time.

The block provides multiple algorithms of the Infinite type. Selecting this option enables the
Estimation Method parameter with which you specify the algorithm.

• Finite — Algorithms in this category aim to produce parameter estimates that explain only a
finite number of past data samples. The block uses all of the data within a finite window, and
discards data once that data is no longer within the window bounds. This method is also called
sliding-window estimation.

Selecting this option enables the Window Length parameter that sizes the sliding window.

For more information on recursive estimation methods, see “Recursive Algorithms for Online
Parameter Estimation”
Programmatic Use
Block Parameter: History
Type: character vector, string
Values: 'Infinite', 'Finite'
Default: 'Infinite'

Window Length — Window size for finite sliding-window estimation
200 (default) | positive integer

The Window Length parameter determines the number of time samples to use for the sliding-
window estimation method. Choose a window size that balances estimation performance with
computational and memory burden. Sizing factors include the number and time variance of the
parameters in your model. Always specify Window Length in samples, even if you are using frame-
based input processing.

Window Length must be greater than or equal to the number of estimated parameters.

Suitable window length is independent of whether you are using sample-based or frame-based input
processing. However, when using frame-based processing, Window Length must be greater than or
equal to the number of samples (time steps) contained in the frame.

2 Blocks

2-76

Dependencies

To enable this parameter, set History to Finite.

Programmatic Use
Block Parameter: WindowLength
Type: positive integer
Default: 200

Estimation Method — Recursive estimation algorithm
Forgetting Factor (default) | Kalman Filter | Normalized Gradient | Gradient

Specify the estimation algorithm when performing infinite-history estimation. When you select any of
these methods, the block enables additional related parameters.

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
normalized gradient methods. However, these more intensive methods have better convergence
properties than the gradient methods. For more information about these algorithms, see “Recursive
Algorithms for Online Parameter Estimation”.

Programmatic Use
Block Parameter: EstimationMethod
Type: character vector, string
Values: 'Forgetting Factor','Kalman Filter','Normalized Gradient','Gradient'
Default: 'Forgetting Factor'

Forgetting Factor — Discount old data using forgetting factor
1 (default) | positive scalar in (0 1] range

The forgetting factor λ specifies if and how much old data is discounted in the estimation. Suppose
that the system remains approximately constant over T0 samples. You can choose λ such that:

T0 = 1
1− λ

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.
• Setting λ < 1 implies that past measurements are less significant for parameter estimation and

can be “forgotten.” Set λ < 1 to estimate time-varying coefficients.

Typical choices of λ are in the [0.98 0.995] range.

Dependencies

To enable this parameter, set History to Infinite and Estimation Method to Forgetting
Factor.

Programmatic Use
Block Parameter: AdaptationParameter
Type: scalar
Values: (0 1] range
Default: 1

Process Noise Covariance — Process noise covariance for Kalman filter estimation
method
1 (default) | nonnegative scalar | vector of nonnegative scalars | symmetric positive semidefinite
matrix

 Recursive Least Squares Estimator

2-77

Process Noise Covariance prescribes the elements and structure of the noise covariance matrix for
the Kalman filter estimation. Using N as the number of parameters to estimate, specify the Process
Noise Covariance as one of the following:

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive semidefinite matrix.

The Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. Process Noise Covariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to constant
coefficients, or parameters. Values larger than 0 correspond to time-varying parameters. Use large
values for rapidly changing parameters. However, expect the larger values to result in noisier
parameter estimates. The default value is 1.

Dependencies

To enable this parameter, set History to Infinite and Estimation Method to Kalman Filter.

Programmatic Use
Block Parameter: AdaptationParameter
Type: scalar, vector, matrix
Default: 1

Adaptation Gain — Adaptation gain specification for gradient estimation methods
1 (default) | positive scalar

The adaptation gain γ scales the influence of new measurement data on the estimation results for the
gradient and normalized gradient methods. When your measurements are trustworthy, or in other
words have a high signal-to-noise ratio, specify a larger value for γ. However, setting γ too high can
cause the parameter estimates to diverge. This divergence is possible even if the measurements are
noise free.

When Estimation Method is NormalizedGradient, Adaptation Gain should be less than 2. With
either gradient method, if errors are growing in time (in other words, estimation is diverging), or
parameter estimates are jumping around frequently, consider reducing Adaptation Gain.

Dependencies

To enable this parameter, set History to Infinite and Estimation Method to Normalized
Gradient or to Gradient.

Programmatic Use
Block Parameter: AdaptationParameter
Type: scalar
Default: 1

Normalization Bias — Bias for adaptation gain scaling for normalized gradient estimation
method
eps (default) | nonnegative scalar

The normalized gradient algorithm scales the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, the near-zero denominator can cause

2 Blocks

2-78

jumps in the estimated parameters. Normalization Bias is the term introduced to the denominator
to prevent these jumps. Increase Normalization Bias if you observe jumps in estimated parameters.
Dependencies

To enable this parameter, set History to Infinite and Estimation Method to Normalized
Gradient.
Programmatic Use
Block Parameter: NormalizationBias
Type: scalar
Default: eps

Block Options

Output estimation error — Add Error outport to block
off (default) | on

Use the Error outport signal to validate the estimation. For a given time step t, the estimation error
e(t) is calculated as:

e(t) = y(t)− yest(t),

where y(t) is the measured output that you provide, and yest(t) is the estimated output using the
regressors H(t) and parameter estimates θ(t-1).
Programmatic Use
Block Parameter: OutputError
Type: character vector, string
Values: 'off','on',
Default: 'off'

Output parameter covariance matrix — Add covariance outport to block
off (default) | on

Use the Covariance outport signal to examine parameter estimation uncertainty. The software
computes parameter covariance P assuming that the residuals, e(t), are white noise, and the variance
of these residuals is 1.

The interpretation of P depends on the estimation approach you specify in History and Estimation
Method as follows:

• If History is Infinite, then your Estimation Method selection results in:

• Forgetting Factor — (R2/2)P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals. The block outputs the
residuals in the Error port.

• Kalman Filter — R2P is the covariance matrix of the estimated parameters, and R1 /R2 is the
covariance matrix of the parameter changes. Here, R1 is the covariance matrix that you specify
in Parameter Covariance Matrix.

• Normalized Gradient or Gradient — Covariance P is not available.
• If History is Finite (sliding-window estimation) — R2 P is the covariance of the estimated

parameters. The sliding-window algorithm does not use this covariance in the parameter-
estimation process. However, the algorithm does compute the covariance for output so that you
can use it for statistical evaluation.

 Recursive Least Squares Estimator

2-79

Programmatic Use
Block Parameter: OutputP
Type: character vector, string
Values: 'off','on'
Default: 'off'

Add enable port — Add Enable inport to block
off (default) | on

Use the Enable signal to provide a control signal that enables or disables parameter estimation. The
block estimates the parameter values for each time step that parameter estimation is enabled. If you
disable parameter estimation at a given step, t, then the software does not update the parameters for
that time step. Instead, the block outputs the last estimated parameter values.

• You can use this option, for example, when or if:

• Your regressors or output signal become too noisy, or do not contain information at some time
steps

• Your system enters a mode where the parameter values do not change in time

Programmatic Use
Block Parameter: AddEnablePort
Type: character vector, string
Values: 'off','on'
Default: 'off'

External reset — Specify trigger for external reset
None (default) | Rising | Falling | Either | Level | Level hold

Set the External reset parameter to both add a Reset inport and specify the inport signal condition
that triggers a reset of algorithm states to their specified initial values. Reset the estimation, for
example, if parameter covariance is becoming too large because of lack of either sufficient excitation
or information in the measured signals.

Suppose that you reset the block at a time step, t. If the block is enabled at t, the software uses the
initial parameter values specified in Initial Estimate to estimate the parameter values. In other
words, at t, the block performs a parameter update using the initial estimate and the current values
of the inports.

If the block is disabled at t and you reset the block, the block outputs the values specified in Initial
Estimate.

Specify this option as one of the following:

• None — Algorithm states and estimated parameters are not reset.
• Rising — Trigger reset when the control signal rises from a negative or zero value to a positive

value. If the initial value is negative, rising to zero triggers reset.
• Falling — Trigger reset when the control signal falls from a positive or a zero value to a

negative value. If the initial value is positive, falling to zero triggers reset.
• Either — Trigger reset when the control signal is either rising or falling.
• Level — Trigger reset in either of these cases:

• Control signal is nonzero at the current time step.

2 Blocks

2-80

• Control signal changes from nonzero at the previous time step to zero at the current time step.
• Level hold — Trigger reset when the control signal is nonzero at the current time step.

When you choose any option other than None, the software adds a Reset inport to the block. You
provide the reset control input signal to this inport.

Programmatic Use
Block Parameter: ExternalReset
Type: character vector, string
Values: 'None','Rising','Falling', 'Either', 'Level', 'Level hold'
Default: 'None'

Version History
Introduced in R2014a

References
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,

1999, pp. 363–369.

[2] Zhang, Q. "Some Implementation Aspects of Sliding Window Least Squares Algorithms." IFAC
Proceedings. Vol. 33, Issue 15, 2000, pp. 763-768.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Recursive Polynomial Model Estimator | Kalman Filter

Topics
“Estimate Parameters of System Using Simulink Recursive Estimator Block”
“Online Recursive Least Squares Estimation”
“Preprocess Online Parameter Estimation Data in Simulink”
“Validate Online Parameter Estimation Results in Simulink”
“Generate Online Parameter Estimation Code in Simulink”
“Recursive Algorithms for Online Parameter Estimation”

 Recursive Least Squares Estimator

2-81

Recursive Polynomial Model Estimator
Estimate input-output and time-series polynomial model coefficients
Library: System Identification Toolbox / Estimators

Description
Model Structures

Use the Recursive Polynomial Model Estimator block to estimate discrete-time input-output
polynomial and time-series models.

These model structures are:

• AR — A(q)y(t) = e(t)
• ARMA — A(q)y(t) = C(q)e(t)
• ARX — A(q)y(t) = B(q)u(t – nk) + e(t)
• ARMAX — A(q)y(t) = B(q)u(t – nk) + C(q)e(t)
• OE — y(t) = B(q)

F(q)u(t − nk) + e(t)

• BJ — y(t) = B(q)
F(q)u(t − nk) + C(q)

D(q)e(t)

q is the time-shift operator and nk is the input delay. u(t) is the input, y(t) is the output, and e(t) is the
error. For MISO models, there are as many B(q) polynomials as the number of inputs.

The orders of these models correspond to the maximum number of time shifts, as represented by the
exponent of q. For instance, the order na is represented in the A(q) polynomial by:

1 + a1q-1 + a2q-2 + … + anaq-na.

An equivalent representation applies to the C(q), D(q), and F(q) polynomials and their corresponding
orders nc, nd, and nf.

The B(q) polynomial is unique with respect to the others, because this polynomial operates on the
input and contains the system zeros. For B(q), the order nb is the order of the polynomial B(q) + 1:

b1 + b2q-1 + b3q-2 + … + bnbq-(nb-1).

The orders na, nb, nc, nd, nf, and input delay nk are known ahead of time. Specify these values as
block parameters. Provide u(t) and y(t) through the Inputs and Outputs inports, respectively. The
block estimates the set of A(q), B(q), C(q), D(q), and F(q) coefficients that the model structure uses
and outputs them in the Parameters outport. During the estimation, the block constrains the
estimated C, D, and F polynomials to a stable region with roots in the unit disk, while allowing the

2 Blocks

2-82

estimated A and B polynomials to be unstable. The Parameters outport provides a bus signal with
the following elements:

• A — Vector containing [1 a1(t) ... ana(t)].
• B — Vector containing [01 … 0nk, b1(t) ... bnb(t)]. For MISO data, B is a matrix where the i-th row

parameters correspond to the i-th input.
• C — Vector containing [1 c1(t) ... cnc(t)].
• D — Vector containing [1 d1(t) ... dnd(t)].
• F — Vector containing [1 f1(t) ... fnf(t)].

For example, suppose that you want to estimate the coefficients for the following SISO ARMAX
model:

y(t) + a1y(t – 1) +...+anay(t – na) = b1u(t – nk) + … + bnbu(t – nb – nk + 1) + e(t) + c1e(t – 1) + … +
cnce(t – nc)

y, u, na, nb, nc, and nk are known quantities that you provide to the block. For each time step, t, the
block estimates the A, B, and C parameter values, constraining only the C polynomial to a stable
region. The block then outputs these estimated values using the Parameters outport.

Block Capabilities

The block supports several estimation methods and data input formats. The block can provide both
infinite-history [1] and finite-history [2] (also known as sliding-window) estimates for θ. Configurable
options in the block include:

• Multiple inputs (ARX model structure only) — See the Inputs port.
• Sample-based or frame-based data format — See the Input Processing parameter.
• Multiple infinite-history estimation methods [1] — See the Estimation Method parameter.
• Infinite-history (all model structures) or finite-history (AR, ARX, or OE model structures only) —

See the History parameter.
• Initial conditions, enable flag, and reset trigger — See the Initial Estimate, Add enable port,

and External Reset parameters.

For more information on the estimation methods, see “Recursive Algorithms for Online Parameter
Estimation”.

Ports
Input

Inputs — Input signal
vector | matrix

Input signal u(t). The Input Processing parameter and the number of inputs nu define the
dimensions of the signal. Only the ARX model structure can have multiple inputs, with nu greater
than 1.

• Sample-based input processing and nu inputs — nu-by-1 vector
• Frame-based input processing with M samples per frame and nu inputs — M-by-nu matrix

 Recursive Polynomial Model Estimator

2-83

Dependencies

To enable this port, set the Model Structure parameter to ARX, ARMAX, BJ, or OE.
Data Types: single | double

Output — Measured output signal
scalar | vector

Measured output signal y(t). The Input Processing parameter defines the dimensions of the signal:

• Sample-based input processing — Scalar
• Frame-based input processing with M samples per frame — M-by-1 vector

Data Types: single | double

Enable — Enable estimation updates
true (default) | false

External signal that allows you to enable and disable estimation updates. If the signal value is:

• true — Estimate and output the parameter values for the time step.
• false — Do not estimate the parameter values, and output the most recent previously estimated

value.

Dependencies

To enable this port, select the Add enable port parameter.
Data Types: single | double | Boolean | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Reset — Reset trigger
scalar

Reset parameter estimation to its initial conditions. The value of the External reset parameter
determines the trigger type. The trigger type dictates whether the reset occurs on a signal that is
rising, falling, either rising or falling, level, or on level hold.

Dependencies

To enable this port, select any option other than None in the External reset dropdown.
Data Types: single | double | Boolean | int8 | int16 | int32 | uint8 | uint16 | uint32

InitialParameters — Initial parameter estimates
bus object

Initial parameter estimates, supplied from a source external to the block. The block uses this inport at
the beginning of the simulation or when you trigger an algorithm reset using the Reset signal.

For information on the contents of the InitialParameters bus object, see the Parameters port
description.

Dependencies

To enable this port, set History to Infinite and Initial Estimate to External.
Data Types: single | double

2 Blocks

2-84

InitialCovariance — Initial covariance of parameters
positive scalar (default) | vector of positive scalars | symmetric positive-definite matrix

Initial parameter covariances, supplied from a source external to the block. For details, see the
Parameter Covariance Matrix parameter. The block uses this inport at the beginning of the
simulation or when you trigger an algorithm reset using the Reset signal.
Dependencies

To enable this port, set the following parameters:

• History to Infinite
• Estimation Method to Forgetting Factor or Kalman Filter
• Initial Estimate to External

Data Types: single | double

InitialInputs — Initial values of the inputs
matrix

Initial set of inputs when using finite-history (sliding-window) estimation, supplied from an external
source.

• If Model Structure is ARX, then the signal to this port must be a (W–1+max(nb)+max(nk))-by-nu
matrix, where W is the window length and nu is the number of inputs. nb is the vector of B(q)
polynomial orders and nk is the vector of input delays.

• If Model Structure is OE, then the signal to this port must be a (W–1+nb+nk)-by-1 vector, where
W is the window length. nb is the vector of B(q) polynomial orders and nk is the vector of input
delays.

The block uses this inport at the beginning of the simulation or whenever the Reset signal triggers.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.
Dependencies

To enable this port, set:

• History to Finite
• Model Structure to ARX or OE
• Initial Estimate to External

Data Types: single | double

InitialOutputs — Initial values of the measured outputs buffer
vector

Initial set of output measurements when using finite-history (sliding-window) estimation, supplied
from an external source.

• If Model Structure is AR or ARX, then the signal to this port must be a (W+na)-by-1 vector, where
W is the window length and na is the polynomial order of A(q).

 Recursive Polynomial Model Estimator

2-85

• If Model Structure is OE, then the signal to this port must be a (W+nf)-by-1 vector, where W is
the window length and nf is the polynomial order of F(q).

The block uses this inport at the beginning of the simulation or whenever the Reset signal triggers.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

Dependencies

To enable this port, set:

• History to Finite
• Model Structure to AR, ARX, or OE
• Initial Estimate to External

Data Types: single | double

Output

Parameters — Estimated parameters
bus object

Estimated polynomial coefficients, returned as a bus. The bus contains an element for each of the A,
B, C, D, and F polynomials that correspond to the structure that you specify in Model Structure (see
“Model Structures” on page 2-82).

Each bus element is a vector signal containing the associated polynomial coefficients. For example,
the A element contains [1 a1(t) ... ana(t)].

Estimated C, D, and F values are constrained to be stable discrete-time polynomials. That is, these
polynomials all have roots within the unit circle. Estimated A and B polynomials are allowed to be
unstable.
Data Types: single | double

Error — Estimation error
scalar | vector

Estimation error, returned as:

• Scalar — Sample-based input processing
• M-by-1 vector — Frame-based input processing with M samples per frame

Dependencies

To enable this port, select the Output estimation error parameter.
Data Types: single | double

Covariance — Parameter estimation error covariance P
matrix

2 Blocks

2-86

Parameter estimation error covariance P, returned as an N-by-N matrix, where N is the number of
parameters. For details, see the Output Parameter Covariance Matrix parameter.

Dependencies

To enable this port:

• Select the Output parameter covariance matrix parameter.
• If History is Infinite, set Estimation Method to Forgetting Factor or Kalman Filter.

Data Types: single | double

Parameters
Model Structure

Estimated model structure, specified as one of the following:

• ARX — SISO or MISO ARX model
• ARMAX — SISO ARMAX model
• OE — SISO OE model
• BJ — SISO BJ model
• AR — Time-series AR model
• ARMA — Time-series ARMA model

Model Parameters

Initial Estimate — Source of initial parameter estimates
None (default) | Internal | External

Specify how to provide initial parameter estimates to the block:

• None — Do not specify initial estimates.

The block uses 0 as the initial parameter estimate.

Specify the parameters that the block enables based on your choice of model structure and
estimation method.

• Specify the set of Number of Parameters () parameters that the block enables based on your
Model Structure. For instance, if your setting for Model Structure is AR, specify the
Number of Parameters in A(q) (na) parameter.

• Specify the Input Delay (nk) parameter that the block enables when your model structure
uses a B(q) element.

• Specify the Parameter Covariance Matrix if Estimation Method is Forgetting Factor
or Kalman Filter.

• Internal — Specify initial parameter estimates internally to the block.

• Specify the initial parameter values Initial () parameters that the block enables based on your
Model Structure and History. For instance, if your setting for Model Structure is AR and
History is Infinite, specify the Initial A(q) parameter.

 Recursive Polynomial Model Estimator

2-87

• Specify the Input Delay (nk) parameter that the block enables when your model structure
uses a B(q) element.

• Specify the Parameter Covariance Matrix parameter if Estimation Method is Forgetting
Factor or Kalman Filter.

• Specify the Initial Inputs parameter (ARX and OE only) and the Initial Outputs parameter
(ARX, AR, and OE) if History is Finite.

• External — Specify initial parameter estimates as an input signal to the block.

Specify the Number of Parameters () parameters that the block enables based on your Model
Structure. Your setting for Model Structure and for the History parameter determines which
signals to connect to the relevant ports:

• If History is Infinite — InitialParameters and InitialCovariance
• If History is Finite — InitialOutputs for the AR, ARX, and OE model structures, and

InitialInputs for the ARX and OE model structures

Programmatic Use
Block Parameter: InitialEstimateSource
Type: character vector, string
Values: 'None', 'Internal', 'External'
Default: 'None'

Number of Parameters in A(q) (na) — Number of estimated parameters in the A(q)
polynomial
1 (default) | non-negative integer

Specify the number of estimated parameters na in the A(q) polynomial.

Dependencies

To enable this parameter, either:

• Set History to Infinite, Model Structure to AR, ARX, ARMA, or ARMAX, and Initial Estimate to
None or External.

• Set History to Finite, Model Structure to AR or ARX, and Initial Estimate to None or
External.

Programmatic Use
Block Parameter: A0
Type: non-negative integer
Default: 1

Number of Parameters in B(q) (nb) — Number of estimated parameters in the B(q)
polynomial
1 (default) | vector of positive integers

Specify the number of estimated parameters nb in the B(q) polynomial.

For MISO systems using an ARX model structure, specify nb as a vector with as many elements as
there are inputs. Each element of this vector represents the order of the B(q) polynomial associated
with the corresponding input. For example, suppose that you have a two-input MISO system whose

B(q) elements are:
B1
B2

=
0 b11 0
0 b21 b22

. The zero at the beginning of each polynomial represents a

2 Blocks

2-88

single input delay for each input (see the Initial B(q) parameter description). The trailing zero in B1
is for equalizing the length of the polynomials and has no impact on estimation. nb for each
polynomial is equal to the number of estimated parameters following the initial zero, or 1 for input 1
and 2 for input 2. Specify Number of Parameters in B(q) (nb) as [1 2], and Input Delay (nk) as
[1 1].
Dependencies

To enable this parameter, either:

• Set History to Infinite, Model Structure to ARX, ARMAX, BJ, or OE, and Initial Estimate to
None or External.

• Set History to Finite with Model Structure of ARX or OE and Initial Estimate to None or
External.

Programmatic Use
Block Parameter: B0
Type: positive integer
Default: 1

Number of Parameters in C(q) (nc) — Number of estimated parameters in the C(q)
polynomial
1 (default) | positive integer

Specify the number of estimated parameters nc in the C(q) polynomial.
Dependencies

To enable this parameter, set History to Infinite, Model Structure to ARMA, ARMAX, or BJ, and
Initial Estimate to None or External
Programmatic Use
Block Parameter: C0
Type: positive integer
Default: 1

Number of Parameters in D(q) (nd) — Number of estimated parameters in the D(q)
polynomial
1 (default) | positive integer

Specify the number of estimated parameters nd in the D(q) polynomial.
Dependencies

To enable this parameter, set History to Infinite, Model Structure to BJ, and Initial Estimate to
None or External.
Programmatic Use
Block Parameter: D0
Type: positive integer
Default: 1

Number of Parameters in F(q) (nf) — Number of estimated parameters in the F(q)
polynomial
1 (default) | positive integer

Specify the number of estimated parameters nf in the F(q) polynomial.

 Recursive Polynomial Model Estimator

2-89

Dependencies

To enable this parameter, set Initial Estimate to None or External and either:

• History to Infinite, Model Structure to OE or BJ, and Initial Estimate to None or External
• History to Finite, Model Structure to OE, and Initial Estimate to None or External

.

Programmatic Use
Block Parameter: F0
Type: positive integer
Default: 1

Input Delay (nk) — Input delay
1 (default) | vector of non-negative integers

Specify the input delay as an integer representing the number of time steps that occur before the
input affects the output. This delay is also called the dead time in the system. The block encodes the
input delay as fixed leading zeros of the B(q) polynomial. For more information, see the B(q)
parameter description.

For MISO systems with ARX model structure, specify nk as a vector with elements specifying the
delay for each input. This vector is of length nu, where nu is the number of inputs.

For example, suppose that you have a two-input MISO system whose B(q) elements are:
B1
B2

=
0 b11 b12
0 0 b21

. The zeros at the beginning of the polynomials represent a single-sample delay for

the first input, and a two-sample delay for the second input (see the Initial B(q) parameter
description). nb for each polynomial is equal to the number of estimated parameters following the
initial zeros, or 2 for input 1 and 1 for input 2. Specify Input Delay (nk) as [1 2], and Number of
Parameters in B(q) (nb) as [2 1].

Dependencies

To enable this parameter, either:

• Set History to Infinite, Model Structure to ARX, ARMAX, OE, or BJ, and Initial Estimate to
None or External.

• Set History to Finite, Model Structure to ARX or OE, and Initial Estimate to None or
External.

Programmatic Use
Block Parameter: nk
Type: non-negative integer vector
Default: 1

Parameter Covariance Matrix — Initial parameter covariance
1e4 (default) | scalar | vector | matrix

• Real positive scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the diagonal
elements.

• Vector of real positive scalars, [α(a),α(b),α(c), α(d), α(f)] — Covariance matrix is an N-by-N
diagonal matrix, with [α(a),α(b),α(c),α(d), α(f)] as the diagonal elements. α(a) is a vector of the

2 Blocks

2-90

covariance for each coefficient of the A polynomial. Similarly, α(b), α(c), α(d) and α(f) are vectors
containing the covariance of the coefficients of the B, C, D and F polynomials, respectively.

• N-by-N symmetric positive-definite matrix.

N can be one of the following:

• AR — N = na
•

ARX — N = na + ∑
i = 1

Nu
nbi

• ARMA — N = na + nc
• ARMAX — N = na + nb + nc
• OE — N = nb + nf
• BJ — N = nb + nc + nd + nf

Dependencies

To enable this parameter, set

• History to Infinite
• Initial Estimate to None or Internal
• Estimation Method to Forgetting Factor or Kalman Filter

The block uses this parameter at the beginning of the simulation or whenever the Reset signal
triggers.

Programmatic Use
Block Parameter: P0
Type: scalar, vector, or matrix
Default: 1e4

Initial A(q) — Initial values of the A(q) polynomial coefficients
[1 eps] (default) | vector

Specify the initial estimate of the A(q) polynomial coefficients as a row vector of length na+1.

The leading coefficient of A must be 1.

Dependencies

To enable this parameter, set:

• Model Structure to AR, ARX, ARMA, or ARMAX
• Initial Estimate to Internal

Programmatic Use
Block Parameter: A0
Type: real vector
Default: [1 eps]

Initial B(q) — Initial values of the B(q) polynomial coefficients
[0 eps] (default) | vector | matrix

 Recursive Polynomial Model Estimator

2-91

Specify the initial estimate of the B(q) polynomial coefficients as a row vector of length nb+nk. For
multiple-input models, specify a matrix where the ith row corresponds to the ith input.

The block counts the leading zeros in B(q) and interprets them as input delay nk. Those zeros are
fixed throughout the estimation. nb is the number of elements after the first nonzero element in B(q).
The block estimates the value of these nb elements.

For example:

• [0 eps] corresponds to nk=1 and nb=1.
• [0 0 eps] corresponds to nk=2 and nb=1.
• [0 0 eps 0 eps] corresponds to nk=2 and nb=3.

The default value is [0 eps].

Dependencies

To enable this parameter, set:

• Model Structure to ARX, ARMAX, OE, or BJ
• Initial Estimate to Internal

Programmatic Use
Block Parameter: B0
Type: real vector or matrix
Default: [0 eps]

Initial C(q) — Initial values of the C(q) polynomial coefficients
[1 eps] (default) | vector

Specify the initial estimate of the C(q) polynomial coefficients as a row vector of length nc+1.

The leading coefficient of C(q) must be 1.

The coefficients must define a stable discrete-time polynomial, that is, have all polynomial roots
within the unit circle.

Dependencies

To enable this parameter, set:

• History to Infinite
• Model Structure to ARMA, ARMAX, or BJ
• Initial Estimate to Internal

Programmatic Use
Block Parameter: C0
Type: real vector
Default: [1 eps]

Initial D(q) — Initial values of the D(q) polynomial coefficients
[1 eps] (default) | vector

Specify the initial estimate of the D(q) polynomial coefficients as a row vector of length nd+1.

2 Blocks

2-92

The leading coefficient of D(q) must be 1.

The coefficients must define a stable discrete-time polynomial, that is, have all polynomial roots
within the unit circle.

Dependencies

To enable this parameter, set:

• History to Infinite
• Model Structure to BJ
• Initial Estimate to Internal

Programmatic Use
Block Parameter: D0
Type: real vector
Default: [1 eps]

Initial F(q) — Initial values of the F(q) polynomial coefficients
[1 eps] (default) | vector

Specify the initial estimate of the F(q) polynomial coefficients as a row vector of length nf+1.

The leading coefficient of F(q) must be 1.

The coefficients must define a stable discrete-time polynomial, that is, have all polynomial roots
within the unit circle.

Dependencies

To enable this parameter, set:

• Model Structure to OE or to BJ
• Initial Estimate to Internal

Programmatic Use
Block Parameter: F0
Type: real vector
Default: [1 eps]

Initial Inputs — Initial values of the inputs buffer
0 (default) | matrix

Specify initial values of the inputs buffer when using finite-history (sliding window) estimation. The
buffer dimensions accommodate the specified window length, the regressors associated with
polynomials within that window, the input delays, and the number of inputs. These elements drive a
matrix size of:

• ARX model structure — (W–1+max(nb)+max(nk))-by-nu
• OE model structure — (W–1+nb+nk)-by-1

where W is the window length and nu is the number of inputs. nb is the vector of B(q) polynomial
orders and nk is the vector of input delays.

When the initial value is set to 0, the block populates the buffer with zeros.

 Recursive Polynomial Model Estimator

2-93

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

The block uses this parameter at the beginning of the simulation or whenever the Reset signal
triggers.

Dependencies

To enable this parameter, set

• History to Finite
• Model Structure to ARX or OE
• Initial Estimate to Internal

.

Programmatic Use
Block Parameter: InitialInputs
Type: real matrix
Default: 0

Initial Outputs — Initial values of the measured outputs buffer
0 (default) | vector

Specify initial values of the measured outputs buffer when using finite-history (sliding-window)
estimation. The buffer dimensions accommodate the specified window length and the regressors
associated with the polynomials within that window.

• AR or ARX model structure — (W+na)-by-1 vector, where W is the window length and na is the
polynomial order of A(q).

• OE model structure — (W+nf)-by-1 vector, where W is the window length and nf is the polynomial
order of F(q).

When the initial value is set to 0, the block populates the buffer with zeros.

If the initial buffer is set to 0 or does not contain enough information, you see a warning message
during the initial phase of your estimation. The warning should clear after a few cycles. The number
of cycles it takes for sufficient information to be buffered depends upon the order of your polynomials
and your input delays. If the warning persists, you should evaluate the content of your signals.

The block uses this parameter at the beginning of the simulation or whenever the Reset signal
triggers.

Dependencies

To enable this parameter, set:

• History to Finite
• Model Structure to AR, ARX, or OE
• Initial Estimate to Internal

2 Blocks

2-94

Programmatic Use
Block Parameter: InitialOutputs
Type: real vector
Default: 0

Input Processing and Sample Time

Input Processing — Choose sample-based or frame-based processing
Sample-based (default) | Frame-based

• Sample-based processing operates on signals streamed one sample at a time.
• Frame-based processing operates on signals containing samples from multiple time steps. Many

machine sensor interfaces package multiple samples and transmit these samples together in
frames. Frame-based processing allows you to input this data directly without having to first
unpack it.

Specifying frame-based data adds an extra dimension of M to some of your data inports and outports,
where M is the number of time steps in a frame. These ports are:

• Inputs
• Output
• Error

For more information, see the port descriptions in “Ports” on page 2-83.

Programmatic Use
Block Parameter: InputProcessing
Type: character vector, string
Values: 'Sample-based', 'Frame-based'
Default: 'Sample-based'

Sample Time — Block sample time
–1 (default) | positive scalar

Specify the data sample time, whether by individual samples for sample-based processing (ts), or by
frames for frame-based processing (tf = Mts), where M is the frame length. When you set Sample
Time to its default value of –1, the block inherits its ts or tf based on the signal.

Specify Sample Time as a positive scalar to override the inheritance.

Programmatic Use
Block Parameter: Ts
Type: real scalar
Values: –1, positive scalar
Default: –1

Algorithm and Block Options

Algorithm Options

History — Choose infinite or finite data history
Infinite (default) | Finite

The History parameter determines what type of recursive algorithm you use:

 Recursive Polynomial Model Estimator

2-95

• Infinite — Algorithms in this category aim to produce parameter estimates that explain all data
since the start of the simulation. These algorithms retain the history in a data summary. The block
maintains this summary within a fixed amount of memory that does not grow over time.

The block provides multiple algorithms of the Infinite type. Selecting this option enables the
Estimation Method parameter with which you specify the algorithm.

• Finite — Algorithms in this category aim to produce parameter estimates that explain only a
finite number of past data samples. The block uses all of the data within a finite window, and
discards data once that data is no longer within the window bounds. This method is also called
sliding-window estimation.

The block provides one algorithm of the Finite type. You can use this option only with the AR,
ARX, and OE model structures.

Selecting this option enables the Window Length parameter.

For more information on recursive estimation methods, see “Recursive Algorithms for Online
Parameter Estimation”

Programmatic Use
Block Parameter: History
Type: character vector, string
Values: 'Infinite', 'Finite'
Default: 'Infinite'

Window Length — Window size for finite sliding-window estimation
200 (default) | positive integer

The Window Length parameter determines the number of time samples to use for the finite-history
(sliding-window) estimation method. Choose a window size that balances estimation performance
with computational and memory burden. Sizing factors include the number and time variance of the
parameters in your model. Always specify Window Length in samples, even if you are using frame-
based input processing.

Window Length must be greater than or equal to the number of estimated parameters.

Suitable window length is independent of whether you are using sample-based or frame-based input
processing. However, when using frame-based processing, Window Length must be greater than or
equal to the number of samples (time steps) contained in the frame.

Dependencies

To enable this parameter, set History to Finite.

Programmatic Use
Block Parameter: WindowLength
Type: positive integer
Default: 200

Estimation Method — Recursive estimation algorithm
Forgetting Factor (default) | Kalman Filter | Normalized Gradient | Gradient

Specify the estimation algorithm when performing infinite-history estimation. When you select any of
these methods, the block enables additional related parameters.

2 Blocks

2-96

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and
normalized gradient methods. However, these more intensive methods have better convergence
properties than the gradient methods. For more information about these algorithms, see “Recursive
Algorithms for Online Parameter Estimation”.
Programmatic Use
Block Parameter: EstimationMethod
Type: character vector, string
Values: 'Forgetting Factor','Kalman Filter','Normalized Gradient','Gradient'
Default: 'Forgetting Factor'

Forgetting Factor — Discount old data using forgetting factor
1 (default) | positive scalar in (0 1] range

The forgetting factor λ specifies if and how much old data is discounted in the estimation. Suppose
that the system remains approximately constant over T0 samples. You can choose λ such that:

T0 = 1
1− λ

• Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients.
• Setting λ < 1 implies that past measurements are less significant for parameter estimation and

can be “forgotten.” Set λ < 1 to estimate time-varying coefficients.

Typical choices of λ are in the [0.98 0.995] range.
Dependencies

To enable this parameter, set History to Infinite and Estimation Method to Forgetting
Factor.
Programmatic Use
Block Parameter: AdaptationParameter
Type: scalar
Values: (0 1] range
Default: 1

Process Noise Covariance — Process noise covariance for Kalman filter estimation
method
1 (default) | nonnegative scalar | vector of nonnegative scalars | symmetric positive semidefinite
matrix

Process Noise Covariance prescribes the elements and structure of the noise covariance matrix for
the Kalman filter estimation. Using N as the number of parameters to estimate, specify the Process
Noise Covariance as one of the following:

• Real nonnegative scalar, α — Covariance matrix is an N-by-N diagonal matrix, with α as the
diagonal elements.

• Vector of real nonnegative scalars, [α1,...,αN] — Covariance matrix is an N-by-N diagonal matrix,
with [α1,...,αN] as the diagonal elements.

• N-by-N symmetric positive semidefinite matrix.

The Kalman filter algorithm treats the parameters as states of a dynamic system and estimates these
parameters using a Kalman filter. Process Noise Covariance is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to constant

 Recursive Polynomial Model Estimator

2-97

coefficients, or parameters. Values larger than 0 correspond to time-varying parameters. Use large
values for rapidly changing parameters. However, expect the larger values to result in noisier
parameter estimates. The default value is 1.

Dependencies

To enable this parameter, set History to Infinite and Estimation Method to Kalman Filter.

Programmatic Use
Block Parameter: AdaptationParameter
Type: scalar, vector, matrix
Default: 1

Adaptation Gain — Adaptation gain specification for gradient estimation methods
1 (default) | positive scalar

The adaptation gain γ scales the influence of new measurement data on the estimation results for the
gradient and normalized gradient methods. When your measurements are trustworthy, or in other
words have a high signal-to-noise ratio, specify a larger value for γ. However, setting γ too high can
cause the parameter estimates to diverge. This divergence is possible even if the measurements are
noise free.

When Estimation Method is NormalizedGradient, Adaptation Gain should be less than 2. With
either gradient method, if errors are growing in time (in other words, estimation is diverging), or
parameter estimates are jumping around frequently, consider reducing Adaptation Gain.

Dependencies

To enable this parameter, set History to Infinite and Estimation Method to Normalized
Gradient or to Gradient.

Programmatic Use
Block Parameter: AdaptationParameter
Type: scalar
Default: 1

Normalization Bias — Bias for adaptation gain scaling for normalized gradient estimation
method
eps (default) | nonnegative scalar

The normalized gradient algorithm scales the adaptation gain at each step by the square of the two-
norm of the gradient vector. If the gradient is close to zero, the near-zero denominator can cause
jumps in the estimated parameters. Normalization Bias is the term introduced to the denominator
to prevent these jumps. Increase Normalization Bias if you observe jumps in estimated parameters.

Dependencies

To enable this parameter, set History to Infinite and Estimation Method to Normalized
Gradient.

Programmatic Use
Block Parameter: NormalizationBias
Type: scalar
Default: eps

2 Blocks

2-98

Block Options

Output estimation error — Add Error outport to block
off (default) | on

Use the Error outport signal to validate the estimation. For a given time step t, the estimation error
e(t) is calculated as:

e(t) = y(t)− yest(t),

where y(t) is the measured output that you provide, and yest(t) is the estimated output using the
regressors H(t) and parameter estimates θ(t-1).

Programmatic Use
Block Parameter: OutputError
Type: character vector, string
Values: 'off','on',
Default: 'off'

Output parameter covariance matrix — Add covariance outport to block
off (default) | on

Use the Covariance outport signal to examine parameter estimation uncertainty. The software
computes parameter covariance P assuming that the residuals, e(t), are white noise, and the variance
of these residuals is 1.

The interpretation of P depends on the estimation approach you specify in History and Estimation
Method as follows:

• If History is Infinite, then your Estimation Method selection results in:

• Forgetting Factor — (R2/2)P is approximately equal to the covariance matrix of the
estimated parameters, where R2 is the true variance of the residuals. The block returns these
residuals through the Error port.

• Kalman Filter — R2P is the covariance matrix of the estimated parameters, and R1 /R2 is the
covariance matrix of the parameter changes. Here, R1 is the covariance matrix that you specify
in Parameter Covariance Matrix.

• Normalized Gradient or Gradient — Covariance P is not available.
• If History is Finite (sliding-window estimation) — R2P is the covariance of the estimated

parameters. The sliding-window algorithm does not use this covariance in the parameter-
estimation process. However, the algorithm does compute the covariance for output so that you
can use it for statistical evaluation.

Programmatic Use
Block Parameter: OutputP
Type: character vector, string
Values: 'off','on'
Default: 'off'

Add enable port — Add Enable inport to block
off (default) | on

Use the Enable signal to provide a control signal that enables or disables parameter estimation. The
block estimates the parameter values for each time step that parameter estimation is enabled. If you

 Recursive Polynomial Model Estimator

2-99

disable parameter estimation at a given step, t, then the software does not update the parameters for
that time step. Instead, the block output contains the last estimated parameter values.

You can use this option, for example, when or if:

• Your regressors or output signal become too noisy, or do not contain information at some time
steps

• Your system enters a mode where the parameter values do not change in time

Programmatic Use
Block Parameter: AddEnablePort
Type: character vector, string
Values: 'off','on'
Default: 'off'

External reset — Specify trigger for external reset
None (default) | Rising | Falling | Either | Level | Level hold

Set the External reset parameter to both add a Reset inport and specify the inport signal condition
that triggers a reset of algorithm states to their specified initial values. Reset the estimation, for
example, if parameter covariance is becoming too large because of lack of either sufficient excitation
or information in the measured signals. The External reset parameter determines the timing for the
reset.

Suppose that you reset the block at a time step, t. If the block is enabled at t, the software uses the
initial parameter values specified in Initial Estimate to estimate the parameter values. In other
words, at t, the block performs a parameter update using the initial estimate and the current values
of the inports.

If the block is disabled at t and you reset the block, the block output contains the values specified in
Initial Estimate.

Specify this option as one of the following:

• None — Algorithm states and estimated parameters are not reset.
• Rising — Trigger reset when the control signal rises from a negative or zero value to a positive

value. If the initial value is negative, rising to zero triggers reset.
• Falling — Trigger reset when the control signal falls from a positive or a zero value to a

negative value. If the initial value is positive, falling to zero triggers reset.
• Either — Trigger reset when the control signal is either rising or falling.
• Level — Trigger reset in either of these cases:

• Control signal is nonzero at the current time step.
• Control signal changes from nonzero at the previous time step to zero at the current time step.

• Level hold — Trigger reset when the control signal is nonzero at the current time step.

When you choose any option other than None, the software adds a Reset inport to the block. You
provide the reset control input signal to this inport.

Programmatic Use
Block Parameter: ExternalReset
Type: character vector, string

2 Blocks

2-100

Values: 'None','Rising','Falling', 'Either', 'Level', 'Level hold'
Default: 'None'

Version History
Introduced in R2014a

References
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,

1999, pp. 363–369.

[2] Zhang, Q. "Some Implementation Aspects of Sliding Window Least Squares Algorithms." IFAC
Proceedings. Vol. 33, Issue 15, 2000, pp. 763–768.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Recursive Least Squares Estimator | Kalman Filter

Topics
“Estimate Parameters of System Using Simulink Recursive Estimator Block”
“Online Recursive Least Squares Estimation”
“Preprocess Online Parameter Estimation Data in Simulink”
“Validate Online Parameter Estimation Results in Simulink”
“Generate Online Parameter Estimation Code in Simulink”
“Recursive Algorithms for Online Parameter Estimation”

 Recursive Polynomial Model Estimator

2-101

Unscented Kalman Filter
Estimate states of discrete-time nonlinear system using unscented Kalman filter
Library: Control System Toolbox / State Estimation

System Identification Toolbox / Estimators

Description
The Unscented Kalman Filter block estimates the states of a discrete-time nonlinear system using the
discrete-time unscented Kalman filter algorithm.

Consider a plant with states x, input u, output y, process noise w, and measurement noise v. Assume
that you can represent the plant as a nonlinear system.

Using the state transition and measurement functions of the system and the unscented Kalman filter
algorithm, the block produces state estimates x for the current time step. For information about the
algorithm, see “Extended and Unscented Kalman Filter Algorithms for Online State Estimation”.

You create the nonlinear state transition function and measurement functions for the system and
specify these functions in the block. The block supports state estimation of a system with multiple
sensors that are operating at different sampling rates. You can specify up to five measurement
functions, each corresponding to a sensor in the system. For more information, see “State Transition
and Measurement Functions” on page 2-114.

Ports
Input

y1,y2,y3,y4,y5 — Measured system outputs
vector

Measured system outputs corresponding to each measurement function that you specify in the block.
The number of ports equals the number of measurement functions in your system. You can specify up
to five measurement functions. For example, if your system has two sensors, you specify two
measurement functions in the block. The first port y1 is available by default. When you click Apply,
the software generates port y2 corresponding to the second measurement function.

2 Blocks

2-102

Specify the ports as N-dimensional vectors, where N is the number of quantities measured by the
corresponding sensor. For example, if your system has one sensor that measures the position and
velocity of an object, then there is only one port y1. The port is specified as a 2-dimensional vector
with values corresponding to position and velocity.

Dependencies

The first port y1 is available by default. Ports y2 to y5 are generated when you click Add
Measurement, and click Apply.
Data Types: single | double

StateTransitionFcnInputs — Additional optional input argument to state transition
function
scalar | vector | matrix

Additional optional input argument to the state transition function f other than the state x and
process noise w. For information about state transition functions see, “State Transition and
Measurement Functions” on page 2-114.

Suppose that your system has nonadditive process noise, and the state transition function f has the
following form:

x(k+1) = f(x(k),w(k),StateTransitionFcnInputs).

Here k is the time step, and StateTransitionFcnInputs is an additional input argument other
than x and w.

If you create f using a MATLAB function (.m file), the software generates the port
StateTransitionFcnInputs when you click Apply. You can specify the inputs to this port as a scalar,
vector, or matrix.

If your state transition function has more than one additional input, use a Simulink Function block to
specify the function. When you use a Simulink Function block, you provide the additional inputs
directly to the Simulink Function block using Inport blocks. No input ports are generated for the
additional inputs in the Unscented Kalman Filter block.

Dependencies

This port is generated only if both of the following conditions are satisfied:

• You specify f in Function using a MATLAB function, and f is on the MATLAB path.
• f requires only one additional input argument apart from x and w.

Data Types: single | double

MeasurementFcn1Inputs,MeasurementFcn2Inputs,MeasurementFcn3Inputs,Measurement
Fcn4Inputs,MeasurementFcn5Inputs — Additional optional input argument to each
measurement function
scalar | vector | matrix

Additional optional inputs to the measurement functions other than the state x and measurement
noise v. For information about measurement functions see, “State Transition and Measurement
Functions” on page 2-114.

 Unscented Kalman Filter

2-103

MeasurementFcn1Inputs corresponds to the first measurement function that you specify, and so
on. For example, suppose that your system has three sensors and nonadditive measurement noise,
and the three measurement functions h1, h2, and h3 have the following form:

y1[k] = h1(x[k],v[k],MeasurementFcn1Inputs)

y2[k] = h2(x[k],v[k],MeasurementFcn2Inputs)

y3[k] = h3(x[k],v[k])

Here k is the time step, and MeasurementFcn1Inputs and MeasurementFcn2Inputs are the
additional input arguments to h1 and h2.

If you specify h1, h2, and h3 using MATLAB functions (.m files) in Function, the software generates
ports MeasurementFcn1Inputs and MeasurementFcn2Inputs when you click Apply. You can
specify the inputs to these ports as scalars, vectors, or matrices.

If your measurement functions have more than one additional input, use Simulink Function blocks to
specify the functions. When you use a Simulink Function block, you provide the additional inputs
directly to the Simulink Function block using Inport blocks. No input ports are generated for the
additional inputs in the Unscented Kalman Filter block.

Dependencies

A port corresponding to a measurement function h is generated only if both of the following
conditions are satisfied:

• You specify h in Function using a MATLAB function, and h is on the MATLAB path.
• h requires only one additional input argument apart from x and v.

Data Types: single | double

Q — Time-varying process noise covariance
scalar | vector | matrix

Time-varying process noise covariance, specified as a scalar, vector, or matrix depending on the value
of the Process noise parameter:

• Process noise is Additive — Specify the covariance as a scalar, an Ns-element vector, or an Ns-
by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no cross-
correlation between process noise terms, and all the terms have the same variance. Specify a
vector of length Ns, if there is no cross-correlation between process noise terms, but all the terms
have different variances.

• Process noise is Nonadditive — Specify the covariance as a W-by-W matrix, where W is the
number of process noise terms in the state transition function.

Dependencies

This port is generated if you specify the process noise covariance as Time-Varying. The port appears
when you click Apply.
Data Types: single | double

R1,R2,R3,R4,R5 — Time-varying measurement noise covariance
matrix

2 Blocks

2-104

Time-varying measurement noise covariances for up to five measurement functions of the system,
specified as matrices. The sizes of the matrices depend on the value of the Measurement noise
parameter for the corresponding measurement function:

• Measurement noise is Additive — Specify the covariance as an N-by-N matrix, where N is the
number of measurements of the system.

• Measurement noise is Nonadditive — Specify the covariance as a V-by-V matrix, where V is
the number of measurement noise terms in the corresponding measurement function.

Dependencies

A port is generated if you specify the measurement noise covariance as Time-Varying for the
corresponding measurement function. The port appears when you click Apply.
Data Types: single | double

Enable1,Enable2,Enable3,Enable4,Enable5 — Enable correction of estimated states
when measured data is available
scalar

Suppose that measured output data is not available at all time points at the port y1 that corresponds
to the first measurement function. Use a signal value other than 0 at the Enable1 port to enable the
correction of estimated states when measured data is available. Specify the port value as 0 when
measured data is not available. Similarly, if measured output data is not available at all time points at
the port yi for the ith measurement function, specify the corresponding port Enablei as a value other
than 0.

Dependencies

A port corresponding to a measurement function is generated if you select Add Enable port for that
measurement function. The port appears when you click Apply.
Data Types: single | double | Boolean

Output

xhat — Estimated states
vector

Estimated states, returned as a vector of size Ns, where Ns is the number of states of the system. To
access the individual states, use the Selector block.

When the Use the current measurements to improve state estimates parameter is selected, the
block outputs the corrected state estimate x [k k] at time step k, estimated using measured outputs
until time k. If you clear this parameter, the block returns the predicted state estimate x [k k− 1] for
time k, estimated using measured output until a previous time k-1. Clear this parameter if your filter
is in a feedback loop and there is an algebraic loop in your Simulink model.
Data Types: single | double

P — State estimation error covariance
matrix

State estimation error covariance, returned as an Ns-by-Ns matrix, where Ns is the number of states
of the system. To access the individual covariances, use the Selector block.

 Unscented Kalman Filter

2-105

Dependencies

This port is generated if you select Output state estimation error covariance in the System
Model tab, and click Apply.
Data Types: single | double

Parameters
System Model Tab

State Transition

Function — State transition function name
myStateTransitionFcn (default) | function name

The state transition function calculates the Ns-element state vector of the system at time step k+1,
given the state vector at time step k. Ns is the number of states of the nonlinear system. You create
the state transition function and specify the function name in Function. For example, if
vdpStateFcn.m is the state transition function that you created and saved, specify Function as
vdpStateFcn.

The inputs to the function you create depend on whether you specify the process noise as additive or
nonadditive in Process noise.

• Process noise is Additive — The state transition function f specifies how the states evolve as a
function of state values at previous time step:

x(k+1) = f(x(k),Us1(k),...,Usn(k)),

where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function, such as system inputs or the sample time. To
see an example of a state transition function with additive process noise, type edit
vdpStateFcn at the command line.

• Process noise is Nonadditive — The state transition function also specifies how the states
evolve as a function of the process noise w:

x(k+1) = f(x(k),w(k),Us1(k),...,Usn(k)).

For more information, see “State Transition and Measurement Functions” on page 2-114.

You can create f using a Simulink Function block or as a MATLAB function (.m file).

• You can use a MATLAB function only if f has one additional input argument Us1 other than x and
w.

x(k+1) = f(x(k),w(k),Us1(k))

The software generates an additional input port StateTransitionFcnInputs to specify this
argument.

• If you are using a Simulink Function block, specify x and w using Argument Inport blocks and the
additional inputs Us1,...,Usn using Inport blocks in the Simulink Function block. You do not
provide Us1,...,Usn to the Unscented Kalman Filter block.

2 Blocks

2-106

Programmatic Use
Block Parameter: StateTransitionFcn
Type: character vector, string
Default: 'myStateTransitionFcn'

Process noise — Process noise characteristics
Additive (default) | Nonadditive

Process noise characteristics, specified as one of the following values:

• Additive — Process noise w is additive, and the state transition function f that you specify in
Function has the following form:

x(k+1) = f(x(k),Us1(k),...,Usn(k)),

where x(k) is the estimated state at time k, and Us1,...,Usn are any additional input
arguments required by your state transition function.

• Nonadditive — Process noise is nonadditive, and the state transition function specifies how the
states evolve as a function of the state and process noise at the previous time step:

x(k+1) = f(x(k),w(k),Us1(k),...,Usn(k)).

Programmatic Use
Block Parameter: HasAdditiveProcessNoise
Type: character vector
Values: 'Additive', 'Nonadditive'
Default: 'Additive'

Covariance — Time-invariant process noise covariance
1 (default) | scalar | vector | matrix

Time-invariant process noise covariance, specified as a scalar, vector, or matrix depending on the
value of the Process noise parameter:

• Process noise is Additive — Specify the covariance as a scalar, an Ns-element vector, or an Ns-
by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no cross-
correlation between process noise terms and all the terms have the same variance. Specify a
vector of length Ns, if there is no cross-correlation between process noise terms but all the terms
have different variances.

• Process noise is Nonadditive — Specify the covariance as a W-by-W matrix, where W is the
number of process noise terms.

If the process noise covariance is time-varying, select Time-varying. The block generates input port
Q to specify the time-varying covariance.
Dependencies

This parameter is enabled if you do not specify the process noise as Time-Varying.
Programmatic Use
Block Parameter: ProcessNoise
Type: character vector, string
Default: '1'

Time-varying — Time-varying process noise covariance
'off' (default) | 'on'

 Unscented Kalman Filter

2-107

If you select this parameter, the block includes an additional input port Q to specify the time-varying
process noise covariance.

Programmatic Use
Block Parameter: HasTimeVaryingProcessNoise
Type: character vector
Values: 'off', 'on'
Default: 'off'

Initialization

Initial state — Initial state estimate
0 (default) | vector

Initial state estimate value, specified as an Ns-element vector, where Ns is the number of states in the
system. Specify the initial state values based on your knowledge of the system.

Programmatic Use
Block Parameter: InitialState
Type: character vector, string
Default: '0'

Initial covariance — State estimation error covariance
1 (default) | scalar | vector | matrix

State estimation error covariance, specified as a scalar, an Ns-element vector, or an Ns-by-Ns matrix,
where Ns is the number of states of the system. If you specify a scalar or vector, the software creates
an Ns-by-Ns diagonal matrix with the scalar or vector elements on the diagonal.

Specify a high value for the covariance when you do not have confidence in the initial state values
that you specify in Initial state.

Programmatic Use
Block Parameter: InitialStateCovariance
Type: character vector, string
Default: '1'

Unscented Transformation Parameters

Alpha — Spread of sigma points
1e-3 (default) | scalar value between 0 and 1

The unscented Kalman filter algorithm treats the state of the system as a random variable with a
mean state value and variance. To compute the state and its statistical properties at the next time
step, the algorithm first generates a set of state values distributed around the mean value by using
the unscented transformation. These generated state values are called sigma points. The algorithm
uses each of the sigma points as an input to the state transition and measurement functions to get a
new set of transformed state points and measurements. The transformed points are used to compute
the state and state estimation error covariance value at the next time step.

The spread of the sigma points around the mean state value is controlled by two parameters Alpha
and Kappa. A third parameter, Beta, impacts the weights of the transformed points during state and
measurement covariance calculations:

• Alpha — Determines the spread of the sigma points around the mean state value. Specify as a
scalar value between 0 and 1 (0 < Alpha <= 1). It is usually a small positive value. The spread of

2 Blocks

2-108

sigma points is proportional to Alpha. Smaller values correspond to sigma points closer to the
mean state.

• Kappa — A second scaling parameter that is typically set to 0. Smaller values correspond to
sigma points closer to the mean state. The spread is proportional to the square-root of Kappa.

• Beta — Incorporates prior knowledge of the distribution of the state. For Gaussian distributions,
Beta = 2 is optimal.

If you know the distribution of state and state covariance, you can adjust these parameters to capture
the transformation of higher-order moments of the distribution. The algorithm can track only a single
peak in the probability distribution of the state. If there are multiple peaks in the state distribution of
your system, you can adjust these parameters so that the sigma points stay around a single peak. For
example, choose a small Alpha to generate sigma points close to the mean state value.

For more information, see “Unscented Kalman Filter Algorithm”.

Programmatic Use
Block Parameter: Alpha
Type: character vector, string
Default: '1e-3'

Beta — Characterization of state distribution
2 (default) | scalar value greater than or equal to 0

Characterization of the state distribution that is used to adjust weights of transformed sigma points,
specified as a scalar value greater than or equal to 0. For Gaussian distributions, Beta = 2 is the
optimal choice.

For more information, see the description for Alpha.

Programmatic Use
Block Parameter: Beta
Type: character vector, string
Default: '2'

Kappa — Spread of sigma points
0 (default) | scalar value between 0 and 3

Spread of sigma points around mean state value, specified as a scalar value between 0 and 3 (0 <=
Kappa <= 3). Kappa is typically specified as 0. Smaller values correspond to sigma points closer to
the mean state. The spread is proportional to the square root of Kappa. For more information, see
the description for Alpha.

Programmatic Use
Block Parameter: Kappa
Type: character vector, string
Default: '0'

Measurement

Function — Measurement function name
myMeasurementFcn (default) | function name

The measurement function calculates the N-element output measurement vector of the nonlinear
system at time step k, given the state vector at time step k. You create the measurement function and

 Unscented Kalman Filter

2-109

specify the function name in Function. For example, if vdpMeasurementFcn.m is the measurement
function that you created and saved, specify Function as vdpMeasurementFcn.

The inputs to the function you create depend on whether you specify the measurement noise as
additive or nonadditive in Measurement noise.

• Measurement noise is Additive — The measurement function h specifies how the
measurements evolve as a function of state Values:

y(k) = h(x(k),Um1(k),...,Umn(k)),

where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function. For example, if you are
using a sensor for tracking an object, an additional input could be the sensor position.

To see an example of a measurement function with additive process noise, type edit
vdpMeasurementFcn at the command line.

• Measurement noise is Nonadditive— The measurement function also specifies how the output
measurement evolves as a function of the measurement noise v:

y(k) = h(x(k),v(k),Um1(k),...,Umn(k)).

To see an example of a measurement function with nonadditive process noise, type edit
vdpMeasurementNonAdditiveNoiseFcn.

For more information, see “State Transition and Measurement Functions” on page 2-114.

You can create h using a Simulink Function block or as a MATLAB function (.m file).

• You can use a MATLAB function only if h has one additional input argument Um1 other than x and
v.

y[k] = h(x[k],v[k],Um1(k))

The software generates an additional input port MeasurementFcnInput to specify this
argument.

• If you are using a Simulink Function block, specify x and v using Argument Inport blocks and the
additional inputs Um1,...,Umn using Inport blocks in the Simulink Function block. You do not
provide Um1,...,Umn to the Unscented Kalman Filter block.

If you have multiple sensors in your system, you can specify multiple measurement functions. You can
specify up to five measurement functions using the Add Measurement button. To remove
measurement functions, use Remove Measurement.
Programmatic Use
Block Parameter: MeasurementFcn1, MeasurementFcn2, MeasurementFcn3,
MeasurementFcn4, MeasurementFcn5
Type: character vector, string
Default: 'myMeasurementFcn'

Measurement noise — Measurement noise characteristics
Additive (default) | Nonadditive

Measurement noise characteristics, specified as one of the following values:

2 Blocks

2-110

• Additive — Measurement noise v is additive, and the measurement function h that you specify
in Function has the following form:

y(k) = h(x(k),Um1(k),...,Umn(k)),

where y(k) and x(k) are the estimated output and estimated state at time k, and Um1,...,Umn
are any optional input arguments required by your measurement function.

• Nonadditive — Measurement noise is nonadditive, and the measurement function specifies how
the output measurement evolves as a function of the state and measurement noise:

y(k) = h(x(k),v(k),Um1(k),...,Umn(k)).

Programmatic Use
Block Parameter: HasAdditiveMeasurementNoise1, HasAdditiveMeasurementNoise2,
HasAdditiveMeasurementNoise3, HasAdditiveMeasurementNoise4,
HasAdditiveMeasurementNoise5
Type: character vector
Values: 'Additive', 'Nonadditive'
Default: 'Additive'

Has measurement wrapping — Enable measurement wrapping
off (default) | on

Select this parameter to enable measurement wrapping to estimate states when you have circular
measurements that are independent of your model states. If you select this parameter, then the
measurement function you specify must include the following two outputs:

1 The measurement, specified as a N-element output measurement vector of the nonlinear system
at time step k, given the state vector at time step k. N is the number of measurements of the
system.

2 The measurement wrapping bounds, specified as an N-by-2 matrix where, the first column
provides the minimum measurement bound and the second column provides the maximum
measurement bound.

Enabling the Has measurement wrapping check box wraps the measurement residuals in a defined
bound, which helps to prevent the filter from divergence due to incorrect measurement residual
values. For an example, see “State Estimation with Wrapped Measurements Using Extended Kalman
Filter”.

Programmatic Use
Block Parameter: HasMeasurementWrapping1, HasMeasurementWrapping2,
HasMeasurementWrapping3, HasMeasurementWrapping4, HasMeasurementWrapping5
Type: character vector
Values: 'off', 'on'
Default: 'off'

Covariance — Time-invariant measurement noise covariance
1 (default) | matrix

Time-invariant measurement noise covariance, specified as a matrix. The size of the matrix depends
on the value of the Measurement noise parameter:

• Measurement noise is Additive — Specify the covariance as an N-by-N matrix, where N is the
number of measurements of the system.

 Unscented Kalman Filter

2-111

• Measurement noise is Nonadditive — Specify the covariance as a V-by-V matrix, where V is
the number of measurement noise terms.

If the measurement noise covariance is time-varying, select Time-varying. The block generates input
port Ri to specify the time-varying covariance for the ith measurement function.

Dependencies

This parameter is enabled if you do not specify the process noise as Time-Varying.

Programmatic Use
Block Parameter: MeasurementNoise1, MeasurementNoise2, MeasurementNoise3,
MeasurementNoise4, MeasurementNoise5
Type: character vector, string
Default: '1'

Time-varying — Time-varying measurement noise covariance
off (default) | on

If you select this parameter for the measurement noise covariance of the first measurement function,
the block includes an additional input port R1. You specify the time-varying measurement noise
covariance in R1. Similarly, if you select Time-varying for the ith measurement function, the block
includes an additional input port Ri to specify the time-varying measurement noise covariance for
that function.

Programmatic Use
Block Parameter: HasTimeVaryingMeasurementNoise1,
HasTimeVaryingMeasurementNoise2, HasTimeVaryingMeasurementNoise3,
HasTimeVaryingMeasurementNoise4, HasTimeVaryingMeasurementNoise5
Type: character vector
Values: 'off', 'on'
Default: 'off'

Add Enable Port — Enable correction of estimated states only when measured data is
available
off (default) | on

Suppose that measured output data is not available at all time points at the port y1 that corresponds
to the first measurement function. Select Add Enable port to generate an input port Enable1. Use a
signal at this port to enable the correction of estimated states only when measured data is available.
Similarly, if measured output data is not available at all time points at the port yi for the ith
measurement function, select the corresponding Add Enable port.
Programmatic Use
Block Parameter: HasMeasurementEnablePort1, HasMeasurementEnablePort2,
HasMeasurementEnablePort3, HasMeasurementEnablePort4, HasMeasurementEnablePort5
Type: character vector
Values: 'off', 'on'
Default: 'off'

Settings

Use the current measurements to improve state estimates — Choose between
corrected or predicted state estimate
on (default) | off

2 Blocks

2-112

When this parameter is selected, the block outputs the corrected state estimate x [k k] at time step k,
estimated using measured outputs until time k. If you clear this parameter, the block returns the
predicted state estimate x [k k− 1] for time k, estimated using measured output until a previous time
k-1. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your
Simulink model.

Programmatic Use
Block Parameter: UseCurrentEstimator
Type: character vector
Values: 'off', 'on'
Default: 'on'

Output state estimation error covariance — Output state estimation error covariance
off (default) | on

If you select this parameter, a state estimation error covariance output port P is generated in the
block.

Programmatic Use
Block Parameter: OutputStateCovariance
Type: character vector
Values: 'off','on'
Default: 'off'

Data type — Data type for block parameters
double (default) | single

Use this parameter to specify the data type for all block parameters.

Programmatic Use
Block Parameter: DataType
Type: character vector
Values: 'single', 'double'
Default: 'double'

Sample time — Block sample time
1 (default) | positive scalar

Block sample time, specified as a positive scalar. If the sample times of your state transition and
measurement functions are different, select Enable multirate operation in the Multirate tab, and
specify the sample times in the Multirate tab instead.

Dependencies

This parameter is available if in the Multirate tab, the Enable multirate operation parameter is
off.

Programmatic Use
Block Parameter: SampleTime
Type: character vector, string
Default: '1'

 Unscented Kalman Filter

2-113

Multirate Tab

Enable multirate operation — Enable specification of different sample times for state
transition and measurement functions
off (default) | on

Select this parameter if the sample times of the state transition and measurement functions are
different. You specify the sample times in the Multirate tab, in Sample time.
Programmatic Use
Block Parameter: EnableMultirate
Type: character vector
Values: 'off', 'on'
Default: 'off'

Sample times — State transition and measurement function sample times
positive scalar

If the sample times for state transition and measurement functions are different, specify Sample
time. Specify the sample times for the measurement functions as positive integer multiples of the
state transition sample time. The sample times you specify correspond to the following input ports:

• Ports corresponding to state transition function — Additional input to state transition function
StateTransitionFcnInputs and time-varying process noise covariance Q. The sample times of
these ports must always equal the state transition function sample time, but can differ from the
sample time of the measurement functions.

• Ports corresponding to ith measurement function — Measured output yi, additional input to
measurement function MeasurementFcniInputs, enable signal at port Enablei, and time-
varying measurement noise covariance Ri. The sample times of these ports for the same
measurement function must always be the same, but can differ from the sample time for the state
transition function and other measurement functions.

Dependencies

This parameter is available if in the Multirate tab, the Enable multirate operation parameter is
on.
Programmatic Use
Block Parameter: StateTransitionFcnSampleTime, MeasurementFcn1SampleTime1,
MeasurementFcn1SampleTime2, MeasurementFcn1SampleTime3,
MeasurementFcn1SampleTime4, MeasurementFcn1SampleTime5
Type: character vector, string
Default: '1'

More About
State Transition and Measurement Functions

The algorithm computes the state estimates x of the nonlinear system using state transition and
measurement functions specified by you. You can specify up to five measurement functions, each
corresponding to a sensor in the system. The software lets you specify the noise in these functions as
additive or nonadditive.

• Additive Noise Terms — The state transition and measurements equations have the following
form:

2 Blocks

2-114

x[k + 1] = f (x[k], us[k]) + w[k]
y[k] = h(x[k], um[k]) + v[k]

Here f is a nonlinear state transition function that describes the evolution of states x from one
time step to the next. The nonlinear measurement function h relates x to the measurements y at
time step k. w and v are the zero-mean, uncorrelated process and measurement noises,
respectively. These functions can also have additional optional input arguments that are denoted
by us and um in the equations. For example, the additional arguments could be time step k or the
inputs u to the nonlinear system. There can be multiple such arguments.

Note that the noise terms in both equations are additive. That is, x(k+1) is linearly related to the
process noise w(k), and y(k) is linearly related to the measurement noise v(k). For additive
noise terms, you do not need to specify the noise terms in the state transition and measurement
functions. The software adds the terms to the output of the functions.

• Nonadditive Noise Terms — The software also supports more complex state transition and
measurement functions where the state x[k] and measurement y[k] are nonlinear functions of the
process noise and measurement noise, respectively. When the noise terms are nonadditive, the
state transition and measurements equation have the following form:

x[k + 1] = f (x[k], w[k], us[k])
y[k] = h(x[k], v[k], um[k])

Version History
Introduced in R2017a

Numerical Changes
Behavior changed in R2020b

Starting in R2020b, numerical improvements in the Unscented Kalman Filter algorithm might
produce results that are different from the results you obtained in previous versions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The state transition and measurement functions that you specify must use only the MATLAB
commands and Simulink blocks that support code generation. For a list of blocks that support code
generation, see “Simulink Built-In Blocks That Support Code Generation” (Simulink Coder). For a list
of commands that support code generation, see “Functions and Objects Supported for C/C++ Code
Generation” (MATLAB Coder).

Generated code uses an algorithm that is different from the algorithm that the Unscented Kalman
Filter block itself uses. You might see some numerical differences in the results obtained using the
two methods.

See Also
Blocks
Kalman Filter | Extended Kalman Filter | Particle Filter

 Unscented Kalman Filter

2-115

Functions
extendedKalmanFilter | unscentedKalmanFilter | particleFilter

Topics
“What Is Online Estimation?”
“Extended and Unscented Kalman Filter Algorithms for Online State Estimation”
“Validate Online State Estimation in Simulink”
“Troubleshoot Online State Estimation”

External Websites
Understanding Kalman Filters: Nonlinear State Estimators — MATLAB Video Series

2 Blocks

2-116

https://www.mathworks.com/videos/understanding-kalman-filters-part-5-nonlinear-state-estimators-1495052905460.html

	Functions
	absorbDelay
	advice
	addMinPhase
	addreg
	aic
	append
	ar
	armax
	armaxOptions
	arOptions
	arx
	arxOptions
	arxRegul
	arxRegulOptions
	arxstruc
	balred
	bandwidth
	bj
	bjOptions
	blkdiag
	bode
	bodemag
	bodeoptions
	bodeplot
	c2d
	c2dOptions
	canon
	chgFreqUnit
	chgTimeUnit
	clone
	clone
	compare
	compareOptions
	correct
	cra
	createMLPNetwork
	customreg
	customRegressor
	d2c
	d2cOptions
	d2d
	d2dOptions
	damp
	data2state
	db2mag
	dcgain
	delayest
	detrend
	diff
	era
	Estimate Process Model
	Estimate State-Space Model
	Estimate Spectral Model
	etfe
	evalfr
	extendedKalmanFilter
	evaluate
	idNeuralStateSpace/evaluate
	fcat
	fdel
	feedback
	fft
	idnlarx/findop
	idnlhw/findop
	findopOptions
	findstates
	findstatesOptions
	fnorm
	forecast
	forecastOptions
	fpe
	frdata
	freqresp
	fselect
	generateMATLABFunction
	get
	getcov
	getDelayInfo
	getexp
	getinit
	getoptions
	getpar
	getpar
	getpvec
	getreg
	getStateEstimate
	getTrend
	goodnessOfFit
	greyest
	greyestOptions
	hasdelay
	idCustomNetwork
	iddata
	iddataPlotOptions
	idDeadZone
	identpref
	idFeedforwardNetwork
	idfilt
	idfrd
	idGaussianProcess
	idgrey
	idinput
	idLinear
	idNeuralStateSpace
	idnlarx
	idnlgrey
	idnlhw
	idpar
	idPiecewiseLinear
	idpoly
	idPolynomial1D
	idproc
	idresamp
	idSaturation
	idSigmoidNetwork
	idss
	idssdata
	idSupportVectorMachine
	idtf
	idTreeEnsemble
	idTreePartition
	idUnitGain
	idWaveletNetwork
	ifft
	impulse
	impulseest
	impulseestOptions
	impulseplot
	init
	initialCondition
	initialize
	interp
	iopzmap
	iopzplot
	isct
	isdt
	isempty
	isLocked
	isnlarx
	isproper
	isreal
	issiso
	isstable
	ivar
	ivstruc
	ivx
	iv4
	iv4Options
	linapp
	idNeuralStateSpace/linearize
	idnlarx/linearize
	idnlhw/linearize
	linearRegressor
	lsim
	lsiminfo
	lsimplot
	mag2db
	merge (iddata)
	merge
	midprefs
	misdata
	n4sid
	n4sidOptions
	ndims
	nkshift
	nlarx
	nlarxOptions
	nlgreyest
	nlgreyestOptions
	nlhw
	nlhwOptions
	nlssest
	noise2meas
	noisecnv
	norm
	nparams
	nuderst
	nyquist
	nyquistoptions
	nyquistplot
	nssTrainingADAM
	nssTrainingOptions
	nssTrainingSGDM
	oe
	oeOptions
	idnlarx/operspec
	idnlhw/operspec
	order
	particleFilter
	pe
	peOptions
	pem
	periodicRegressor
	pexcit
	plot
	idnlarx/plot
	idnlhw/plot
	pole
	polydata
	polyest
	polyestOptions
	polynomialRegressor
	polyreg
	predict
	predict
	predictOptions
	present
	procest
	procestOptions
	pzmap
	pzoptions
	pzplot
	rarmax
	rarx
	rbj
	realdata
	recursiveAR
	recursiveARMA
	recursiveARMAX
	recursiveARX
	recursiveBJ
	recursiveLS
	recursiveOE
	release
	repsys
	resample
	reset
	reshape
	resid
	residOptions
	residual
	retrend
	roe
	rpem
	rplr
	rsample
	segment
	selstruc
	set
	setcov
	setinit
	setoptions
	setpar
	setpar
	setPolyFormat
	setpvec
	sgrid
	showConfidence
	sim
	simOptions
	simsd
	simsdOptions
	size
	spa
	spafdr
	spectrum
	spectrumoptions
	spectrumest
	spectrumestOptions
	spectrumplot
	ss2ss
	ssdata
	ssest
	ssestOptions
	ssform
	ssregest
	ssregestOptions
	stack
	step
	step
	stepDataOptions
	stepinfo
	stepplot
	strseq
	struc
	System Identification
	tfdata
	tfest
	tfestOptions
	timeoptions
	totaldelay
	translatecov
	TrendInfo
	unscentedKalmanFilter
	xperm
	zero
	zgrid
	zpkdata

	Blocks
	Extended Kalman Filter
	Iddata Sink
	Iddata Source
	Idmodel
	Nonlinear ARX Model
	Nonlinear Grey-Box Model
	Hammerstein-Wiener Model
	Neural State-Space Model
	Kalman Filter
	Model Type Converter
	Particle Filter
	Recursive Least Squares Estimator
	Recursive Polynomial Model Estimator
	Unscented Kalman Filter

